金属材料之储氢材料

合集下载

金属氢化物储氢材料的制备及应用研究

金属氢化物储氢材料的制备及应用研究

金属氢化物储氢材料的制备及应用研究近年来,由于全球氢能产业的快速发展,研究金属氢化物储氢材料已成为科研人员的热门领域。

金属氢化物储氢材料因其高储氢量、快速充放氢速度、优异的循环稳定性等特性,成为氢能储备、运输和利用的重要材料。

一、金属氢化物储氢材料的制备方法1.1 物理化学法物理化学法是一种常用的金属氢化物储氢材料制备方法,包括共沉淀、溶剂热、熔盐电解、磁控溅射等技术。

其中,共沉淀法是最为传统和广泛采用的方法之一,通过调节pH值、温度、沉淀剂等影响因素来控制金属离子的还原和氢反应的控制。

在溶剂热法中,所需的金属或金属合金在溶剂中进行热反应,水热法、高温氢化反应等其它方法也可以构成溶剂热反应法。

熔盐电解法是通过将金属或金属合金放入电解介质中,进行电化学还原并生成氢化物。

1.2 生物法生物法是指利用天然微生物所产生的还原酶,将氢化物还原成金属,在储氢材料中,这种方法具有很好的针对性。

使用生物法合成的金属氢化物,通常都具备很强的还原能力,这一方法的主要优点是不需要耗费太多的能源和反应条件,因此会被氢能科学探索的越来越多。

二、金属氢化物储氢材料的应用2.1 储氢材料金属氢化物作为一种高效的储氢材料,已经在氢能源领域得到越来越广泛的应用,尤其是在氢燃料电池、燃料电池车和家庭储氢方面。

在单车、汽车和公交等物流运输模式逐步向熟练化、缩小化、城市化转变的大环境下,储氢制氢所具有的灵活性和多种用途性将更受关注。

2.2 其他应用领域金属氢化物储氢材料不仅有在氢能源领域的应用,其它领域也有潜在的应用。

如铁锂电池、动力电池、钠离子电池等二次电池储能材料等等,都被视为未来材料结构设计的热点领域之一。

三、发展金属氢化物储氢材料应注意的问题3.1 安全性问题由于其中的氢气具有极高的易燃性和爆炸性,在生产、运输和使用过程中,安全问题一直是制约金属氢化物储氢材料应用的重要因素,对于储氢化学或物理反应产生的暴燃问题,是开展金属氢化物制备和应用研究的重要议题。

浅谈金属氢化物储氢及常用的金属储氢材料

浅谈金属氢化物储氢及常用的金属储氢材料

浅谈金属氢化物储氢及常用的金属储氢材料摘要:为了应对能源危机,减少全球温室气体排放,人类不断在探索可持续和可再生替代能源载体,包括风能、核能、太阳能和氢能等。

氢因其具有含量丰富,容易再生,废气排放无污染、应用场景灵活等优点,被视为理想的可再生能源,很多学者预测未来将进入能源“氢经济”的时代。

氢气虽然具有绿色可再生能源的诸多优点,但是也存在不可忽视的缺点。

与化石燃料相比,氢的体积能量密度较低(低热值9.9MJ/m3,标准状态下气态氢的体积能量密度仅为汽油的0.04%,即使在液态也只是汽油的32%),导致氢气的存储需要大量的空间,这对于固定能源系统尚可接受,但是对于可移动的能源系统(例如绿色能源汽车、移动电源等)则是巨大的挑战。

因此,发展高体积能量密度的储氢技术成为当前的研究热点。

关键词:金属氢化物;储氢;金属储氢材料引言储氢技术作为氢气“制”和“用”环节之间的重要桥梁,其重要性不容忽视。

高压气态储氢技术、低温液态储氢技术,固态储氢技术及有机物液体储氢技术是目前主要的四种储氢技术,其中主流方式还是高压气态储氢。

从长远来看氢能要实现其对净零排放的重大贡献潜力,就必须进行大规模储存。

地下储氢技术由于其储氢规模大、综合成本低而受到了广泛关注。

以美国为代表的世界发达国家围绕地下储氢技术正进行技术攻关,并得到迅速发展。

目前,英国、德国、加拿大、波兰、土耳其、荷兰和丹麦等也都制定了盐穴储氢计划。

相比上述国家,我国地下储氢研究较为滞后,尚无地下储氢实践。

为此,本文主要根据国外地下储氢技术的研究和应用现状,分析氢气地下储存可能面临的技术问题,为国内发展盐穴储氢技术提供借鉴。

进一步结合中盐金坛盐穴综合利用的经验以及江苏地区的地域特点,探索盐穴储氢技术路线的可能性,为中国实现“双碳”目标提供思路。

1.金属氢化物储氢原理在一定温度和压力条件下,将储氢合金与氢气混合,储氢合金就可以吸收氢气,并且与氢气反应生成金属固溶体MHx和金属氢化物MHy。

储氢材料的新载体——金属有机框架材料

储氢材料的新载体——金属有机框架材料

的重要环节之一——氢 的存储 , 要求储氢系统安全 、 容量 大、 成本低和使用方便 。2 1 0 0年 , 美 国能 源部 ( O ) 出 的 实 用 化 储 氢 系 统 的 指 标 为 : 氢 质 量 百 分 数 为 6 5 , 积 容 量 为 D E提 储 .% 体 6 kg 2 /m。 车用 储 氢 系统 的储 氢 能 力 大 于 3 1 g m . k / 。我 国也 高度 重 视储 氢 技 术 的发 展 , 在 “ 6 ” 新技 术 发展 规划 和 “ 7 ” 划 中 , 氢材 料 是重 点研 究 的项 目。储氢 材料 ( 83 高 93 计 储 系统 ) 满 应 足 以下 要 求 : 环 境温 度 下尽 可 能低 的储 放压 强 ; 高 的存 储 能 力 ; 放 氢 速度 快 、 ① ② ③ 能耗 小 、 安

全性 高 ; ④循 环 使 用寿命 长 。 目前发 展 的储 氢方 式 有 : 氢气 液化 或 者通 过金 属/ 金 、 位 金 属 化 合 物 、 机 液 体 、 基 合 配 有 碳 多 孔材 料 吸附 氢气 等 。储 氢材 料 按 材 料 与 氢 的 结 合 方 式 可 分 为 两 大类 : 学 储 氢 ( 储 氢 合 化 如 金 、 位氢 化物 、 基化 合 物 、 配 氨 硼氢 化合 物 、 机液 体等 ) 有 和物理 储氢 ( 如碳 基 材料 等 ) 。传 统 J
度 高及结晶性好等优 点。这类材料在气 体存 储尤其是 氢的存储方 面展示 出广 阔的应 用前景 , 已成 为研 究储氢材料载体 的热点 。本文 主要 介绍 MO s F 材料 的结构特 点 、 合成方法 、 储氢性能及其影 响
因素 , 进一 步对 MO s 氢材料 的发展 进行展望 。 F储
能源 是社 会存 在 与发 展 的物 质基 础 , 随着 工 业化 的进 程 和人 们生 活水 平 的提 高 , 能源 的 对 需 求 与 日俱 增 。现代 工业 依赖 的化石 燃料 储 量有 限 、 可再 生 , 在使 用 中存 在环 境 污染 等 问 不 且 题, 因此 寻找 可再 生 的绿 色能 源迫 在 眉 睫 。氢 能 资 源 丰 富 , 量 密度 高 且 环 境友 好 , 能 已引起 广 泛关注_ 。世界各 国都 高度重视 氢能 的开发 和利用 , 1 j 期望在 2 世 纪 中叶进入 “ 经济” l 氢 时 代 _ 。氢 能 的有 效 开发 和 利用 需要 解 决 的 3个 关 键 问题 是 氢 的制 取 、 储 和应 用 。作 为其 中 2 j 存

储氢材料简介精选课件 (一)

储氢材料简介精选课件 (一)

储氢材料简介精选课件 (一)
储氢材料是一种用于储存氢气的材料,是未来氢能源发展的重要组成部分。

因为氢气是一种很容易燃烧的气体,而且能量密度高,因此储氢材料的研发和应用对于氢能源的发展具有重要意义。

本文将为大家介绍一些储氢材料的基本信息和特点。

一、金属储氢材料
金属储氢材料是最早被研究和应用的储氢材料之一。

金属储氢材料的优点是氢气吸附能力强,氢气释放速率高,储氢量大。

但其缺点也是显而易见的,金属储氢材料本身质量较大,不便于携带和使用。

二、碳基储氢材料
碳基储氢材料是一种储氢材料,其基本原理是将氢气吸附在碳材料表面上。

其优点是储氢量大,可重复使用,成本低廉,但其缺点也非常明显,碳基储氢材料的反应速率较低,吸氢量和释氢量不稳定。

三、氮杂环化合物储氢材料
相比于其他储氢材料,氮杂环化合物储氢材料的储氢量更高。

其优点是储氢量大,对氢气的吸附和释放速度快,但其缺点也很明显,需要高温和高压环境才能实现氧化物的还原或者还原氧化物。

四、化学储氢材料
化学储氢材料是利用化学反应将氢气储存在其内部的储氢材料。

其优点是原料易得,储氢周期长,但其缺点也非常明显,从化学反应的角
度来看,储氢和释氢的过程较为复杂,容易发生不可逆反应,因此化学储氢材料在实际应用中存在一定的难度。

总之,储氢材料的研究和应用是未来氢能源发展的重要组成部分。

通过对现有储氢材料的研究和开发,实现氢能源的可持续发展。

储氢材料分类

储氢材料分类

储氢材料分类目前储氢材料有金属氢化物、碳纤维碳纳米管、非碳纳米管、玻璃储氢微球、络合物储氢材料以及有机液体氢化物。

下面仅就合金、有机液体以及纳米储氢材料三个方面对储氢材料加以介绍。

一,合金储氢材料储氢合金是指在一定温度和氢气压力下,能可逆的大量吸收、储存和释放氢气的金属间化合物,其原理是金属与氢形成诸如离子型化合物、共价型金属氢化物、金属相氢化物-金属间化合物等结合物,并在一定条件下能将氢释放出来。

合金作为储氢材料要满足一定的要求,首先其氢化物的生成热要适当,如果生成热太高,生成的氢化物过于稳定,释放氢时就需要较高的温度.而如果生成热太低,则不易吸收氢。

其次形成氢化物的平衡压要适当,最好在室温附近只有几个大气压,便于吸放氢,而且要吸放速度快,这样才能够满足实际应用的需求。

另外合金及其氢化物对水、氧和二氧化碳等杂质敏感性小,反复吸放氢时,材料性能不至于恶化。

而且,储氢材料的氢化物还要满足在存储与运输过程中性能可靠、安全、无害、化学性质稳定等条件。

现在已研究的并且符合上述要求的有镁系、稀土系、钛系和锆系等。

在上述储氢材料中,镁系储氢合金具有较高的储氢容量,而且吸放氢平台好、资源丰富、价格低廉,应用前景十分诱人。

镁可直接与氢反应,在300—400℃和较高的压力下, 反应生成Mg和H2反应生成MgH2: Mg + H2= MgH2 △H=-74.6kJ/mol。

MgH2理论氢含量可达7.6% , 具有金红石结构, 性能较稳定, 在287 ℃时分解压为101.3kPa。

由于纯镁的吸放氢反应动力学性能差, 吸放氢温度高, 所以纯镁很少被直接用来储存氢气,为此人们又开始研究镁基储氢合金材料。

到目前为止, 人们已对300多种重要的镁基储氢合金材料进行了研究。

二,液态有机物储氢材料有机液体氢化物贮氢是借助不饱和液体有机物与氢的一对可逆反应, 即加氢和脱氢反应来实现的。

加氢反应时贮氢,脱氢反应时放氢, 有机液体作为氢载体达到贮存和输送氢的目的。

储氢材料的研究进展

储氢材料的研究进展

储氢材料的研究进展储氢材料是一种能够吸附和释放氢气的材料,广泛应用于氢能源领域。

目前,研究人员正在不断寻找新型的储氢材料,以提高氢气的吸附能力和储存密度,并且减少储氢过程中的能量损失。

以下是当前储氢材料研究领域的一些进展。

一、金属有机骨架材料(MOF)金属有机骨架材料是一种由金属离子和有机配体组成的晶体结构。

这种材料具有高度可控的孔隙结构,能够提供大量的吸附空间。

研究者已经成功开发出一系列储氢性能优良的MOF材料。

例如,Mg-MOF-74材料具有高达7.5 wt%的氢气存储密度,在77 K、20 bar的条件下可以实现高达6.0 wt%的氢气吸附。

二、共价有机框架材料(COF)共价有机框架材料是一种新型的多孔有机材料,由于其特殊的共价键连接方式,其结构稳定性和储氢性能较好。

例如,研究者在实验中发现,COF-5可以在77 K、物理吸附模式下实现高达7.2 wt%的氢气储存密度。

三、纳米多孔材料纳米多孔材料是一种具有高度可控孔隙结构和较大比表面积的材料。

这些材料具有丰富的储氢位点,并且能够实现快速的吸附和释放过程。

例如,一些石墨烯基的纳米多孔材料已经成功应用于氢能源领域。

研究者发现,这些纳米多孔材料能够实现高达5 wt%的氢气吸附。

四、氧化物材料氧化物材料是一种常见的储氢材料,具有较好的储氢性能。

例如,氧化镁和氧化钛等材料具有良好的氢气吸附能力。

此外,一些研究者还研究了稀土氧化物的储氢性能,并发现它们可以在相对较低的温度和压力下实现高储氢密度。

综上所述,储氢材料的研究进展十分迅速。

金属有机骨架材料、共价有机框架材料、纳米多孔材料和氧化物材料等新型储氢材料的开发,为增加氢气的储存密度以及减少储氢过程中的能量损失提供了新的思路和方法。

随着进一步研究和开发,相信未来储氢材料的性能将不断提高,并为氢能源的广泛应用提供有力支持。

高中化学常见储氢材料

高中化学常见储氢材料

高中化学常见储氢材料
储氢技术是解决氢能源应用的重要环节之一。

在氢能源的应用中,储氢材料的选择和性能直接影响到储氢系统的性能和成本。

本文将介绍高中化学常见的储氢材料。

1. 金属储氢材料
金属储氢材料是指能够在一定条件下,将氢气吸附或吸附并化学反应形成化合物的金属及其合金。

常见的金属储氢材料有镁、钛、锆等。

2. 有机储氢材料
有机储氢材料是指能够通过吸附氢气来储存氢气的化合物,其主要成分为氨基酸、多孔有机聚合物等。

3. 化合物储氢材料
化合物储氢材料是指由金属、非金属等基础成分组成的化合物,能够在一定条件下储氢,如氢化物、氮化物、碳化物等。

4. 碳材料
碳材料是指以碳为主体的材料,如石墨、碳纤维等,能够通过吸附、物理吸附、化学吸附等方式储氢。

总之,高中化学常见的储氢材料有金属储氢材料、有机储氢材料、化合物储氢材料和碳材料等。

对于不同的应用场景和要求,选择合适的储氢材料非常重要。

- 1 -。

金属材料之储氢材料

金属材料之储氢材料
02
储氢材料通过物理吸附或化学反 应的方式储存氢气,具有高容量 、高纯度、低成本等优点。
储氢材料的分类
根据储氢原理,储氢材料可分为 物理吸附储氢和化学反应储氢两
类。
物理吸附储氢材料主要利用材料 表面的物理吸附作用储存氢气, 具有较高的储存密度和安全性。
化学反应储氢材料通过化学反应 将氢气储存于材料的化学键中, 具有较高的储存容量和较低的成
02 金属储氢材料的特性
金属储氢原理
金属与氢气发生反应,通过物理吸附或化学键合的方式将氢气储存于金属材料中。
金属储氢过程中,氢气与金属原子之间相互作用,形成稳定的金属氢化物。
金属储氢的原理主要基于金属的化学性质和晶体结构,不同的金属具有不同的储氢 能力和特性。
金属储氢材料的优点
01
02
03
高储氢密度
燃油效率和环保性能。
汽车热能回收
03
金属储氢材料可以吸收和释放大量的热能,可用于汽车热能回
收和利用。
感谢您的观看
THANKS
降低成本和提高安全性
成本
金属储氢材料的成本较高,限制了其 大规模应用。通过降低材料成本、优 化制备工艺和提高回收利用率,可以 降低金属储氢材料的成本。
安全性
金属储氢材料在充放氢过程中存在一 定的安全隐患。因此,提高金属储氢 材料的安全性是当前面临的重要挑战。 通过改进材料结构和控制反应条件, 可以降低安全风险。
材料复合化
金属间化合物
多层复合材料
通过控制金属元素的配比和合成条件, 制备具有优异性能的金属间化合物储 氢材料。
将不同种类的金属储氢材料进行多层 复合,利用各层材料的优点实现优异 的综合性能。
纳米复合材料
将金属储氢材料与纳米尺度的其他材 料(如碳纳米管、陶瓷颗粒等)进行 复合,以提高材料的储氢性能和机械 强度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平台压力、平台宽度与倾斜度、平台起始浓度和 滞后效应,既是常规鉴定贮氢合金的吸放氢性能 主要指标,又是探索新的贮氢合金的依据。
a
16
贮氢合金粉
a
17
金属的贮氢原理
贮氢合金
物理方式贮氢:如采用压 缩、冷冻、吸附等方式;
氢的存贮方式
金属氢化物贮氢: 氢化物 具有优异的吸放氢性能外, 还兼顾了很多其它功能。
在一定温度和压力下,许多金属、合金和金属
间化合物(Me)与气态H2可逆反应生成金属
固溶体MHx和氢化物MHy。反应分三步进行。
p
2 H2
HM
A一B:为吸氢过程的第二步,固溶体进一步与氢反应,
产生相变,形成金属氢化物;
B点以后:为第三步,氢溶入氢化物形成固溶体,氢压
增加。
提高温度,平台压力升高,但有效氢 容量减少
a
21
p-c-T曲线是衡量贮氢材料热力学性能的重要特性
曲线。通过该图可以了解金属氢化物中能含多少
氢(%)和任一温度下的分解压力值。 p-c-T曲线的
改变温度和压力条件可使反应按正向、逆向反 复进行,实现材料的稀释氢功能。
a
19
根据Gibbs相率,压力-浓度等温线(PCT曲线)如下图所示:
平台压力
PCT曲线横轴固相中氢与金属原子比,纵轴氢压
a
ห้องสมุดไป่ตู้
20
O一A:为吸氢过程的第一步,金属吸氢,形成含氢固溶
体;其固溶度[H]M与固溶体平衡氢压的平方根成正比:1
a
3
太阳能的利用形式主要有两种:-是热能的直接 利用,如利用镜面或反射槽将太阳光聚焦在收 集器上,由中间介质吸热产生蒸汽,推动气轮 机组发电,美国单台容量己达80MW;另一种形 式是利用小型太阳能装置为房屋采暖供热,现 己大量应用。研制高效、长寿、廉价的光伏转 换材料已成为目前能源新材料领域的重要课题。
a
6
a
7
氢能开发,大势所趋
氢是自然界中最普遍的元素,资源无 穷无尽-不存在枯竭问题
氢的热值高,燃烧产物是水-零排放,无污
染,可循环利用
氢能的利用途径多-燃烧放热或电化学发电
氢的储运方式多-气体、液体、固体或化合物
燃烧1千克氢可放出62.8千焦的热量,1千克氢可以 代替3千克煤油
a
8
实现氢能经济的关键技术
a
13
作为储氢合金必须容易吸收氢,又能不太困难 释放氢 共价键型化合物中氢与元素的键和作用不强, 氢化物的稳定性差、易分解,氢在这种化合物中 不易存留 分子型和大多数离子键型氢化物十分稳定很 难分解,即氢化物中的氢不易释放出来 适合做储氢材料的主要是一些适当的金属键 型氢化物
a
14
储氢材料技术现状
廉价而又高效的制氢技术
安全高效的储氢技术-开发新型高效的储氢材料和安
全的储氢技术是当务之急
a
9
储氢方法有三种: 气态:高压钢瓶(氢气瓶)来储存氢气,但钢瓶储 存氢气的容积小,瓶里的氢气即使加压到150个大气压, 所装氢气的质量也不到氢气瓶质量的1%,而且还有爆 炸的危险; 液态:将气态氢降温到-252.6oC变为液体进行储存, 能耗大,而且需要超低温用的特殊容器,防止液态氢 汽化。 固态:储氢密度与液态相同或更高,安全
金属氢化物 配位氢化物 纳米材料
储氢合金及其应用得到迅速发展.
a
15
储氢合金能以金属氢化物的形式吸收氢,加热 后又能释放氢,是一种安全、经济而有效的储 氢方法.
金属氢化物不仅具有储氢特性,而且具有将化 学能与热能或机械能相互转化的机能, 从而能 利用反应过程中的焓变开发热能的化学储存与 输送, 有效利用废热形式的低质热源.因此,储氢 合金的众多应用以受到人们的特别关注.
动植物的生存!!!
人类的出路何在?-新能源研究势在必
行!!!
a
2
对中国来说,首要的是开发水力资源和 生物质能,其次是发展地热能、风能和 太阳能。太阳能和风能的利用存在较大 的新材料问题。
太阳照射到地面的能量相当于全球能耗 的1.6万倍,既无污染,又是永久性能源。 可惜太阳辐射到地球的能量密度太低, 只有1kW/m2,还受气候影响。
a
10
不同储氢方式的比较总结
气态储氢:能量密度低,不太安全。 液化储氢:能耗高,对储罐绝热性能要求
高。 固态储氢的优势:体积储氢容量高,无需
高压及隔热容器,安全性好,无爆炸危险, 可得到高纯氢,提高氢的附加值 。
a
11
体积比较
a
12
金属氢化物与储氢合金 氢化物的分类
氢几乎可以与所有的元素反应生成各种氢化物,氢化物大致可 以分为四类: 1、离子键型 指氢与一二主族金属反应的离子键化合物如LiH、 MgH2等 2、金属型 指氢与过渡族金属反应的金属键化合物如TiH1.7 3、共价键高聚合型 氢与硼及其附近元素反应的共价键型化 合物如B2H6、AlH3 4、分子型 指氢与非金属反应的分子型化合物NH3、H2O等
a
4
生物质能
高梁、玉米和薯类等经过发酵、蒸馏,可得到乙
醇,乙醇属于可再生能源,酒精是乙醇的俗称。
乙醇的化学式:C2H5OH
C2H5OH +3O2
2CO2+3H2O
乙醇燃烧时放出大量的热,所以它被用作酒精灯、
火锅、内燃机等的燃料。在汽油中加入适量乙
醇作为汽车燃料,减少汽车尾气的污染。
a
5
风能
太阳能在地面上约2%转变为风能,全球风力用 于发电功率可达11.3万亿kW,很有发展前景。 风能与风速密切相关,我国沿海与西北地区的 风力资源丰富,大有作为,但风车材料是关键。 -个2.5MW的风车,转子叶片直径要80m, 包括传动箱的总重达30t;风车高近百米,用 材几百吨。风车叶片耍有足够的强度和抗疲劳 性能(全寿命转数要求109以上),目前主要 采用玻璃钢或碳纤维增强塑料,正向增强木材 发展。
贮氢合金 hydrogen storage metal
能源危机?
a
1
能源危机与环境问题
化石能源的有限性与人类需求的无限性 -石油、煤炭等主要能源将在未来数十年至
数百年内枯竭!!!(科技日报,2004年2月25日,
第二版)
化石能源的使用正在给地球造成巨大的 生态灾难-温室效应、酸雨等严重威胁地球
a
18
贮氢合金
氢在金属中的吸收和释放,取决于金属和氢的相 平衡关系,影响相平衡的因素为温度、压力和组 成。(也就是金属吸氢生成金属氢化物还是金属 氢化物分解释放氢,受温度、压力和合金成分的 控制)
M+xH2→MHx+△H (生成热,<0)
金属与氢的反应是一个可逆过程。
正向反应吸氢、放热,逆向反应释氢、吸热。
相关文档
最新文档