数学七年级下学期数学4月月考试卷及答案-百度文库
2020-2021七年级下学期月考数学试卷含答案解析

一、选择题(每题3分,共24分)1.(3分)下列图形中匕1和匕2是对顶角的是()2.(3分)实数-兀,-3.14,0,V2四个数中,最小的是()A.-JiB.■3.14C.扼D.03.(3分)如图,AB II CD,AE平分ZCAB交CD于点E,A.65°B115° C.125°D.130°4.(3分)如图,点E在BC的延长线上,下列条件中不能判定AB II CD的是()A.匕3=匕4B.z1=z2C.zB=zDCED.zD+z DAB=180°5.(3分)如图,若将木条a绕点0旋转后与木条b平行,则旋转的最小角度为()q°力150。
bA.65°B.85°C.95°D.115°6.(3分)估计M+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间7.(3分)如图,在6X6方格中有两个涂有阴影的图形M、N,①中的图形M平移后位置如②所示,以下对图形M的平移方法叙述正确的是()z1图①图②A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位8.(3分)如图,CD II AB,OE平分匕AOD,OF±OE, OG±CD,匕D=50°,则下列结论:®ZAOE=65°;②OF平分匕BOD;(3)zGOE=zDOF;④ZGOE=25°.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题(每小题3分,共21分)9.(3分)9的算术平方根是;16的平方根是;64的立方根是.10.(3分)将命题“对顶角相等”改写成“如果…那么・•”的形式:,这个命题的逆命题是命题(填:真或假)11.(3分)如图,计划把河水引到水池A中,先作AB±CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.12.(3分)如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF.如果匕ABE=20°,那么ZEFB=度.13.(3分)如图,EF II AD,AD II BC,CE平分匕BCF, ZDAC=115°,ZACF=25°,贝l]zFEC=度.14.(3分)a、b、c是同一平面内不重合的三条直线,下列四个命题:①如果a II b,a±c,那么b±c;②如果b II a, c II a,那么b II c;③如果b±a,c±a,那么b±c;④如果b_La,c±a,那么b II c.其中真命题是(填写所有真命题的序号)15.(3分)观察下列各式的规律:三、解答题(共75分)16.(8分)计算:(1)I V3~2|-74+^27;(2)I-3|-屈+扼+(-2)2.17.(8分)求下列各式中的x.(1)4x2=81;(2)(x+1)3-27=0.18.(5分)AABC在网格中的位置如图所示,请根据下列要求作图:(1)过点C作AB的平行线;(2)过点A作BC的垂线段,垂足为D;(3)将6ABC先向下平移3格,再向右平移2格得到AEFG (点A的对应点为点E,点B的对应点为点F,点C的对应点为点G)19.(6分)如图,已矢口AB^BC,BC±CD,z1=z2.试判断BE与CF的关系,并说明你的理由.解:BE II CF.理由:•.•AB^BC,BC±CD(已知)==90°匕1=匕2•••zABC-z1=zBCD-z2,1H z EBC=z BCF20.(6分)已知2a+1的平方根为土3,a+3b-3的算术平方根为4.(1)求a,b的值;(2)求a+b的平方根.21.(6分)如图所示,点B,E分别在AC,DF±,BD, CE均与AF相交,匕1=匕2,zC=zD,求证:匕A=/F.22.(6分)请根据如图所示的对话内容回答下列问题.我有一ME方体的魔方,它的体积是216cm*123|我有体的纸盒,它的体积是600cmL纸盒Z a S|的宽与你的魔方的棱长该纸盒的长与高相等。
七年级下册数学4月月考试卷及答案-百度文库

【点睛】
此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键.
4.﹣2<x≤1.
【详解】
试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可.
试题解析: ,
∵解不等式①得:x≤1,
解不等式②得:x>﹣2,
∴不等式组的解集为﹣2<x≤1.
(x+3y)(x+3y)
=x2+6xy+9y2
=900+1800+900
=3600(平方米),
(18﹣12)×3600+(26﹣16)×3600
=6×3600+10×3600
=57600(元).
答:整改后A、B两园区旅游的收益之和为57600元.
考点:整式的混合运算.
3.(1) ;(2) .
【分析】
点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.
5.(1)3;0;2;(2)证明见解析.
【分析】
(1)根据已知和同底数的幂法则得出即可;
(2)根据已知得出3a=5,3b=6,3c=30,求出3a×3b=30,即可得出答案.
先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将a,b的值代入计算可得.
【详解】
原式=4a2+4ab+b2﹣(4a2﹣9b2)
=4a2+4ab+b2﹣4a2+9b2
=4ab+10b2
当a ,b=﹣2时,原式=4 (﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36.
江苏省2022年七年级下学期4月份月考数学试卷 (2)

江苏省七年级下学期4月份月考数学试卷一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格)1.下列计算正确的是()A.2a+a2=3a3B.a6÷a2=a3C.(a2)3=a6D.3a2﹣2a=a22.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(x+1)(﹣x﹣1)C.(﹣m﹣n)(﹣m+n)D.(3x﹣y)(﹣3x+y)3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6 B.a x﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.若x是不为0的有理数,已知M=(x2+1)(x2﹣1),N=(x2+1)2,则M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定5.2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1的个位数字为()A.1B.3C.7D.96.已知9m =,3n =;则下列结论正确的是()A.2m﹣n=1 B.2m﹣n=3 C.2m+n=3 D.=37.如图所示,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是()A.10 B.20 C.30 D.408.△ABC中三边长a,b,c满足条件|a﹣2|+b2﹣6b+9=0,则c边不可能为()A.1B.2C.3D.4二、填空题(本大题共10小题,每小题3分,共30分)9.柴静的纪录片《穹顶之下》揭示了当今雾霾对人们生活的极大危害,同时它也给我们普及了PM 2.5是指大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.10.若(|a﹣3|﹣1)0+(2a﹣1)﹣4有意义,则a的取值范围是.11.已知x(x﹣1)﹣(x2﹣y)=﹣2,则﹣xy=.12.把多项式﹣16x3+40x2y提出一个公因式﹣8x2后,另一个因式是.13.若(2x﹣3)x+3=1,则x=.14.已知a=2﹣100,b=3﹣75,c=5﹣50,将a、b、c用“<”从小到大连接起来:.15.我们规定一种运算:,例如,.按照这种运算规定,当x=时,.16.若3x+4y﹣3=0,则8x﹣2•16y+1=.17.已知x﹣6y=5,那么x2﹣6xy﹣30y的值是.18.已知9a•5•15b=36•55,则b﹣a=.三、解答题(本大题共9小题,共96分)19.计算(1)(﹣)﹣3﹣(3.14﹣π)0+()202X×(﹣2)202X(2)a•a2•(﹣a)3+(﹣2a3)2﹣a8÷a2(3)(2x﹣5y+1)(﹣2x+5y+1)(4)﹣2a2(12ab+b2)﹣5ab(a2﹣ab)20.因式分解(1)a3﹣4ab2(2)3x(a﹣b)﹣6y(b﹣a)(3)(x2+y2)2﹣4x2y2(4)81x4﹣72x2y2+16y4.21.先化简,再求值已知代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含有x2项和常数项.(1)求a、b的值;(2)求(b﹣a)(﹣a﹣b)+(﹣a﹣b)2﹣a(2a+b)的值.22.已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.23.已知4x=m,8y=n.(1)求22x+3y;(2)求26x﹣9y.24.小颖家开了甲、乙两个超市,两个超市在3月份的销售额均为a万元,在4月份和5月份这两个月中,甲超市的销售额平均每月增长x%,而乙超市的销售额平均每月减少x%.(1)5月份甲超市的销售额比乙超市多多少?(2)如果a=150,x=2,那么5月份甲超市的销售额比乙超市多多少万元?25.阅读理解题有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,试比较x,y的大小.解:设123456788=a,那么x=(a+1)(a﹣2)=a2﹣a﹣2y=a(a﹣1)=a2﹣a,∵x﹣y=(a2﹣a﹣2)﹣(a2﹣a)=﹣2<0∴x<y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:计算:1.202X×0.202X×2.4030﹣1.202X3﹣1.202X×0.202X2.26.所谓完全平方式,就是对于一个整式A,如果存在另一个整式B,使A=B2,则称A 是完全平方式,例如:a4=(a2)2、4a2﹣4a+1=(2a﹣1)2.(1)下列各式中完全平方式的编号有;①a6;②x2+4x+4y2;③4a2+2ab+b2;④a2﹣ab+b2;⑤x2﹣6x﹣9;⑥a2+a+0.25(2)若4x2+5xy+my2和x2﹣nxy+y2都是完全平方式,求(m ﹣)﹣1的值;(3)多项式9x2+1加上一个单项式后,使它能成为一个完全平方式,那么加上的单项式可以是哪些?(请罗列出所有可能的情况,直接写答案)27.实践操作题如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(3a+b)(2a+2b),在下面虚框③中画出图形,并根据图形回答(3a+b)(2a+2b)=;(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+6b2.根据你所拼成的长方形可知,多项式a2+5ab+6b2可以分解因式为;(3)若现在有3张A类纸片,6张B类纸片,10张C类纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形,则拼成的正方形边长最长可以是;(4)若取其中的六张B类卡片拼成一个如图④所示的长方形,通过不同方法计算阴影部分的面积,你能得到什么等式?并用乘法法则说明这个等式成立.七年级下学期月考数学试卷(4月份)一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格)1.下列计算正确的是()A.2a+a2=3a3B.a6÷a2=a3C.(a2)3=a6D.3a2﹣2a=a2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,可判断A、D,根据同底数幂的除法,可判断B,根据幂的乘方,可判断C.解答:解:A、不是同类项不能合并,故A错误;B、底数不变指数相减,故B错误;C、底数不变指数相乘,故C正确;D、不是同类项不能合并,故D错误;故选:C.点评:本题考查了幂的运算,根据法则计算是解题关键.2.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a) B.(x+1)(﹣x﹣1) C.(﹣m﹣n)(﹣m+n)D.(3x﹣y)(﹣3x+y)考点:平方差公式.专题:计算题.分析:利用平方差公式的结构特征判断即可.解答:解:能用平方差公式计算的是(﹣m﹣n)(﹣m+n),故选C.点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6 B.a x﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)考点:因式分解的意义.分析:根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.解答:解:A、是多项式乘法,不是因式分解,错误;B 、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选D.点评:这类问题的关键在于能否正确应用分解因式的定义来判断.4.若x是不为0的有理数,已知M=(x2+1)(x2﹣1),N=(x2+1)2,则M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定考点:完全平方公式;非负数的性质:偶次方;平方差公式.分析:利用平方差公式对M进行化简,将N利用完全平方公式展开,即可比较两者的大小.解答:解:∵M=(x2+1)(x2﹣1)=x4﹣1,N=(x2+1)2=x4+2x2+1,x是不为0的有理数,∴N>M,故选:B.点评:本题主要考查了完全平方公式几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.平方差公式两个数的和与这两个数的差相乘,等于这两个数的平方差,即(a+b)(a﹣b)=a2﹣b2.5.2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1的个位数字为()A.1B.3C.7D.9考点:平方差公式;尾数特征.专题:计算题.分析:原式中2变形为(3﹣1)后,利用平方差公式计算即可得到结果.解答:解:原式=(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(32﹣1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(34﹣1)(34+1)(38+1)(316+1)(332+1)+1=(38﹣1)(38+1)(316+1)(332+1)+1=(316﹣1)(316+1)(332+1)+1=(332﹣1)(332+1)+1=364﹣1+1=364,则结果的个位数字为1.故选A点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.已知9m =,3n =;则下列结论正确的是()A.2m﹣n=1 B.2m﹣n=3 C.2m+n=3 D .=3考点:幂的乘方与积的乘方.分析:由9m =,可得32m =,即可得32m=3×3n=3n+1,从而可判断出答案.解答:解:∵9m =,∴32m =,∴32m=3×3n=3n+1,∴2m=n+1,即2m﹣n=1.故选A.点评:本题考查了幂的乘方与积的乘方,解答本题的关键是掌握幂的乘方与积的乘方运算法则.7.如图所示,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是()A.10 B.20 C.30 D.40考点:整式的混合运算.专题:计算题.分析:根据题意得到S阴影部分=S△BCD+S正方形CEFG﹣S△BGF,利用三角形面积公式和正方形的面积公式得S阴影部分=•a•a+b2﹣•b•(a+b),变形后得到S阴影部分=[(a+b)2﹣3ab],然后把a+b=10,ab=20整体代入计算即可.解答:解:S阴影部分=S△BCD+S正方形CEFG﹣S△BGF=•a•a+b2﹣•b•(a+b)=a2+b2﹣ab ﹣b2=[(a2+b2)﹣ab]=[(a+b)2﹣3ab],当a+b=10,ab=20时,S阴影部分=[102﹣3×20]=20.故选B.点评:本题考查了整式的混合运算:先进行整式的乘方运算,再进行整式的乘除运算,然后进行整式的加减运算.也考查了整体思想的运用.8.△ABC中三边长a,b,c满足条件|a﹣2|+b2﹣6b+9=0,则c边不可能为()A.1B.2C.3D.4考点:因式分解的应用;非负数的性质:绝对值;非负数的性质:偶次方;三角形三边关系.分析:已知等式左边后三项利用完全平方公式变形,根据非负数之和为0,非负数分别为0求出a与b的值,即可得出第三边c的范围.解答:解:∵|a﹣2|+b2﹣6b+9=|a﹣2|+(b﹣3)2=0,∴a=2,b=3,∵△ABC的三边长分别为a,b,c,b﹣a<c<b+a,∴3﹣2<c<3+2,即1<c<5.故选:A.点评:此题考查了因式分解的应用,三角形的三边关系,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.柴静的纪录片《穹顶之下》揭示了当今雾霾对人们生活的极大危害,同时它也给我们普及了PM 2.5是指大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为2.5×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6,故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.若(|a﹣3|﹣1)0+(2a﹣1)﹣4有意义,则a的取值范围是a≠2且a≠4且a≠.考点:负整数指数幂;零指数幂.分析:根据零指数幂有意义的条件,负整数指数幂有意义的条件,可得|a﹣3|﹣1≠0且2a﹣1≠0,依此即可求解.解答:解:∵(|a﹣3|﹣1)0+(2a﹣1)﹣4有意义,∴|a﹣3|﹣1≠0且2a﹣1≠0,解得a≠2且a≠4且a≠.故答案为:a≠2且a≠4且a≠.点评:考查了负整数指数幂,零指数幂,关键是根据题意得到|a﹣3|﹣1≠0且2a﹣1≠0.11.已知x(x﹣1)﹣(x2﹣y)=﹣2,则﹣xy=2.考点:提公因式法与公式法的综合运用.分析:已知的式子可以化成x﹣y=2的形式,所求的式子可以化成(x﹣y)2代入求解即可.解答:解:x(x﹣1)﹣(x2﹣y)=﹣2,即x2﹣x﹣x2+y=﹣2,则x﹣y=2.故原式=(x﹣y)2=×4=2.故答案是:2.点评:本题考查了代数式的化简求值,正确利用完全平方公式的变形,把所求的式子化成(x﹣y)2的形式是关键.12.把多项式﹣16x3+40x2y提出一个公因式﹣8x2后,另一个因式是2x﹣5y.考点:因式分解-提公因式法.分析:根据提公因式法分解因式解答即可.解答:解:﹣16x3+40x2y=﹣8x2•2x+(﹣8x2)•(﹣5y)=﹣8x2(2x﹣5y),所以另一个因式为2x﹣5y.故答案为:2x﹣5y.点评:本题考查了提公因式法分解因式,把多项式的各项写成公因式与另一个因式相乘的形式是解题的关键.13.若(2x﹣3)x+3=1,则x=﹣3或2或1.考点:零指数幂.专题:计算题;分类讨论.分析:分别根据x+3=0且2x﹣3≠0,2x﹣3=1,2x﹣3=﹣1且x+3为偶数三种情况讨论.解答:解:(1)当x+3=0且2x﹣3≠0,解得x=﹣3;(2)当2x﹣3=1时,解得x=2;(3)2x﹣3=﹣1且x+3为奇数时无解.(4)当2x﹣3=﹣1,即x=1时,x+3=4,原式成立,故x=﹣3或2或1.点评:本题考查的是非0数的0次幂等于1,解答此题的关键是熟知1的任何次幂等于1;﹣1的偶次幂等于1.14.已知a=2﹣100,b=3﹣75,c=5﹣50,将a、b、c用“<”从小到大连接起来:b<c<a.考点:实数大小比较;负整数指数幂.分析:首先将a,b,c化成分数形式再比较大小.解答:解:∵a=2﹣100==,b=3﹣75==,c=5﹣50==,∴b<c<a,故答案为:b<c<a.点评:本题主要考查了负整数指数幂和实数的大小比较,掌握负整数指数幂:a﹣p=(a≠0,p为正整数),将分母化为指数相同的幂是解答此题的关键.15.我们规定一种运算:,例如,.按照这种运算规定,当x=5时,.考点:整式的混合运算;解一元一次方程.专题:新定义.分析:根据题中的新定义将所求式子化为普通方程,整理后求出x的值即可.解答:解:=(x+1)(x﹣1)﹣(x﹣2)(x+3)=0,整理得:x2﹣1﹣(x2+x﹣6)=﹣x+5=0,解得:x=5.故答案为:5点评:此题考查了整式的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.16.若3x+4y﹣3=0,则8x﹣2•16y+1=2.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:首先根据3x+4y﹣3=0,求出3x+4y的值是多少;然后根据8x﹣2•16y+1=23x﹣6•24y+4=23x+4y﹣2,求出8x﹣2•16y+1的值是多少即可.解答:解:∵3x+4y﹣3=0,∴3x+4y=3,∴8x﹣2•16y+1=23x﹣6•24y+4=23x+4y﹣2=23﹣2=2,∴8x﹣2•16y+1的值是2.故答案为:2.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.17.已知x﹣6y=5,那么x2﹣6xy﹣30y的值是25.考点:因式分解-提公因式法.分析:原式后两项提取公因式,把已知等式变形后代入计算即可求出值.解答:解:∵x﹣6y=5,即6y=x﹣5,∴原式=x2﹣6y(x+5)=x2﹣(x+5)(x﹣5)=x2﹣x2+25=25.故答案为:25.点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.18.已知9a•5•15b=36•55,则b﹣a=.考点:幂的乘方与积的乘方;同底数幂的乘法;负整数指数幂.分析:先根据幂的乘方与积的乘方法则得到9a•5•15b=32a•5•(3b•5b)=32a+b•51+b,由9a•5•15b=36•55,得出32a+b•51+b =36•55,那么2a+b=6,1+b=5,求出a与b的值,再代入b﹣a,计算即可求解.解答:解:∵9a•5•15b=32a•5•(3b•5b)=32a+b•51+b,9a•5•15b=36•55,∴32a+b•51+b=36•55,∴2a+b=6,1+b=5,∴b=4,a=1,∴b﹣a=4﹣1=.故答案为.点评:本题考查了幂的乘方和积的乘方,同底数幂的乘法,负整数指数幂,掌握运算法则是解答本题的关键.三、解答题(本大题共9小题,共96分)19.计算(1)(﹣)﹣3﹣(3.14﹣π)0+()202X×(﹣2)202X(2)a•a2•(﹣a)3+(﹣2a3)2﹣a8÷a2(3)(2x﹣5y+1)(﹣2x+5y+1)(4)﹣2a2(12ab+b2)﹣5ab(a2﹣ab)考点:整式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用积的乘方运算法则变形,计算即可得到结果;(2)原式利用同底数幂的乘除法则,以及幂的乘方与积的乘方运算法则计算即可得到结果;(3)原式利用平方差公式变形,再利用完全平方公式展开即可得到结果;(4)原式利用单项式乘以多项式法则计算,去括号合并即可得到结果.解答:解:(1)原式=﹣8﹣1+(﹣×)202X×(﹣)=﹣;(2)原式=﹣a6+4a6﹣a6=2a6;(3)原式=1﹣(2x﹣5y)2=1﹣4x2+20xy﹣25y2;(4)原式=﹣24a3b﹣2a2b2﹣5a3b+5a2b2=﹣29a3b+3a2b2.点评:此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.因式分解(1)a3﹣4ab2(2)3x(a﹣b)﹣6y(b﹣a)(3)(x2+y2)2﹣4x2y2(4)81x4﹣72x2y2+16y4.考点:提公因式法与公式法的综合运用.分析:(1)先提取公因式a,再对余下的多项式利用平方差公式继续分解;(2)先提取公因式3(a﹣b),然后整理即可得解;(3)先利用平方差公式分解因式,再利用完全平方公式继续分解因式即可;(4)先利用完全平方公式分解因式,再利用平方差公式继续分解因式即可.解答:解:(1)a3﹣4ab2,=a(a2﹣4b2),=a(a+2b)(a﹣2b);(2)3x(a﹣b)﹣6y(b﹣a),=3x(a﹣b)+6y(a﹣b),=3(a﹣b)(x+2y);(3)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2;(4)81x4﹣72x2y2+16y4,=(9x2﹣4y2)2,=(3x+2y)2(3x﹣2y2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.先化简,再求值已知代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含有x2项和常数项.(1)求a、b的值;(2)求(b﹣a)(﹣a﹣b)+(﹣a﹣b)2﹣a(2a+b)的值.考点:整式的混合运算—化简求值.分析:(1)先算乘法,合并同类项,即可得出关于a、b的方程,求出即可;(2)先算乘法,再合并同类项,最后代入求出即可.解答:解:(1)(ax﹣3)(2x+4)﹣x2﹣b=2ax2+4ax﹣6x﹣12﹣x2﹣b=(2a﹣1)x2+(4a﹣6)x+(﹣12﹣b),∵代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含有x2项和常数项.,∴2a﹣1=0,﹣12﹣b=0,∴a=,b=﹣12;(2)∵a=,b=﹣12,∴(b﹣a)(﹣a﹣b)+(﹣a﹣b)2﹣a(2a+b)=a2﹣b2+a2+2ab+b2﹣2a2﹣ab=ab=×(﹣12)=﹣6.点评:本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键,难度适中.22.已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:(1)根据同底数幂的乘法法则及幂的乘方法则将原式化简为(x2n)2,再把x2n=4代入进行计算即可;(2)根据同底数幂的乘法法则及幂的乘方法则将原式化简为9(x2n)3﹣13(x2n)2,再把x2n=4代入进行计算即可.解答:解:(1)∵x2n=4,∴x n﹣3•x3(n+1)=x n﹣3•x3n+3=x4n=(x2n)2=42=16;(2)∵x2n=4,∴9(x3n)2﹣13(x2)2n=9x6n﹣13x4n=9(x2n)3﹣13(x2n)2=9×43﹣13×42=576﹣208=368.点评:本题考查的是幂的乘方与同底数幂的乘法法则,熟知幂的乘方法则是底数不变,指数相乘是解答此题的关键.23.已知4x=m,8y=n.(1)求22x+3y;(2)求26x﹣9y.考点:幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法.分析:分别将4x,8y化为底数为2的形式,然后分别代入(1)(2)求解即可.解答:解:(1)∵4x=m,8y=n,∴22x=m,23y=n,(1)22x+3y=22x•23y=mn;②26x﹣9y=26x÷29y=(22x)3÷(23y)3=.点评:本题考查了同底数幂的乘法、同底数幂的除法以及幂的乘方,掌握运算法则是解答本题的关键.24.小颖家开了甲、乙两个超市,两个超市在3月份的销售额均为a万元,在4月份和5月份这两个月中,甲超市的销售额平均每月增长x%,而乙超市的销售额平均每月减少x%.(1)5月份甲超市的销售额比乙超市多多少?(2)如果a=150,x=2,那么5月份甲超市的销售额比乙超市多多少万元?考点:整式的混合运算.专题:应用题.分析:先列出两超市3~5月的销售额的表格.(1)用5月份甲超市的销售额﹣乙超市的销售额;(2)将a=150,x=2代入计算即可.解答:解:两超市3~5月的销售额可列表格如下:3月份4月份5月份甲超市销售额 a a(1+x%)a(1+x%)(1+x%)=a(1+x%)2乙超市销售额 a a(1﹣x%)a(1﹣x%)(1﹣x%)=a(1﹣x%)2(1)5月份甲超市与乙超市的差额为a(1+x%)2﹣a(1﹣x%)2=4ax%(万元);…(2)当a=150,x=2时,代入(1)中的化简式得4ax%=12(万元).…点评:本题考查了整式的混合运算,解题的关键是分别得到甲、乙两个超市各月的销售额.25.阅读理解题有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,试比较x,y的大小.解:设123456788=a,那么x=(a+1)(a﹣2)=a2﹣a﹣2y=a(a﹣1)=a2﹣a,∵x﹣y=(a2﹣a﹣2)﹣(a2﹣a)=﹣2<0∴x<y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:计算:1.202X×0.202X×2.4030﹣1.202X3﹣1.202X×0.202X2.考点:整式的混合运算.专题:阅读型.分析:设0.202X=a,则1.202X=1+a,2.4030=2a,原式变形后计算即可得到结果.解答:解:设0.202X=a,则1.202X=1+a,2.4030=2a,原式=(1+a)a×2a﹣(1+a)3﹣a2(1+a)=2a2+2a3﹣a2﹣a3﹣1﹣a﹣2a﹣2a2﹣a2﹣a3=﹣2a2﹣3a﹣1=﹣2×0.202X2﹣3×(0.202X)﹣1=﹣1.6857045.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.26.所谓完全平方式,就是对于一个整式A,如果存在另一个整式B,使A=B2,则称A是完全平方式,例如:a4=(a2)2、4a2﹣4a+1=(2a﹣1)2.(1)下列各式中完全平方式的编号有①②⑥;①a6;②x2+4x+4y2;③4a2+2ab+b2;④a2﹣ab+b2;⑤x2﹣6x﹣9;⑥a2+a+0.25(2)若4x2+5xy+my2和x2﹣nxy+y2都是完全平方式,求(m﹣)﹣1的值;(3)多项式9x2+1加上一个单项式后,使它能成为一个完全平方式,那么加上的单项式可以是哪些?(请罗列出所有可能的情况,直接写答案)考点:完全平方式.专题:计算题.分析:(1)利用完全平方公式的结构特征判断即可;(2)利用完全平方公式的结构特征求出m与n的值,即可确定出原式的值;(3)利用完全平方公式的结构特征判断即可.解答:解:(1)①a6=(a2)3;②x2+4x+4y2,不是完全平方式;③4a2+2ab+b2=(2a+b)2;④a2﹣ab+b2,不是完全平方式;⑤x2﹣6x﹣9,不是完全平方式;⑥a2+a+0.25=(a+)2,各式中完全平方式的编号有①②⑥;(2)∵4x2+5xy+my2和x2﹣nxy+y2都是完全平方式,∴m=,n=±1,当n=1时,原式=;当n=﹣1时,原式=;(3)单项式可以为﹣1,﹣9x2,6x,﹣6x.点评:此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.27.实践操作题如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(3a+b)(2a+2b),在下面虚框③中画出图形,并根据图形回答(3a+b)(2a+2b)=6a2+8ab+2b2;(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+6b2.根据你所拼成的长方形可知,多项式a2+5ab+6b2可以分解因式为(a+2b)(a+3b);(3)若现在有3张A类纸片,6张B类纸片,10张C类纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形,则拼成的正方形边长最长可以是a+3b;(4)若取其中的六张B类卡片拼成一个如图④所示的长方形,通过不同方法计算阴影部分的面积,你能得到什么等式?并用乘法法则说明这个等式成立.考点:因式分解的应用;完全平方公式的几何背景.专题:应用题.分析:(1)画出图形,结合图形和面积公式得出即可;(2)根据图形和面积公式得出即可;(3)由完全平方公式可得三种纸片拼出一个正方形,可以让正方形的边长分别为a+b,a+2b,a+3b,由此即可确定拼出的正方形的边长最长是多少;(4)用两种方法求出阴影部分的面积,即整个矩形面积减去6个B类卡片和阴影部分矩形的面积列式即可.解答:解:(1)如图:(3a+b)(2a+2b)=6a2+8ab+2b2;(2)a2+5ab+6b2=(a+2b)(a+3b);(3)∵有3张A类纸片,6张B类纸片,10张C类纸片,∴由完全平方公式可得每种纸片至少取一张,把取出的这些纸片拼成一个正方形,可以让正方形的边长分别为a+b,a+2b,a+3b,所以拼出的正方形的边长最长可以为a+3b;(4)整个矩形面积为:(a+2b)(a+b),6个B类卡片的面积为:6ab,阴影部分矩形的面积为:(2b﹣a)(b﹣a),(a+2b)(a+b)﹣6ab=a2+2b2﹣3ab,(2b﹣a)(b﹣a)=a2+2b2﹣3ab,∴(a+2b)(a+b)﹣6ab=(2b﹣a)(b﹣a),故答案为:6a2+8ab+2b2;(a+2b)(a+3b);a+3b.点评:本题考查了分解因式的应用,长方形的面积,完全平方公式的应用,主要考查学生的观察图形的能力和化简能力.。
呼和浩特市七年级下学期数学月考试卷

呼和浩特市七年级下学期数学月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七上·海曙期末) 下列说法正确的是()A . 立方根是它本身的数只能是0和1B . 如果一个数有立方根,那么这个数也一定有平方根C . 16的平方根是4D . -2是4的一个平方根 .2. (2分) (2019七上·双台子月考) 若m﹣n>0,则下列各式中一定正确的是()A . m>nB . mn>0C .D . m+n>03. (2分)如图是测量一颗玻璃球体积的过程:(1)将300ml的水倒进一个容量为500ml的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在()A . 20cm3以上,30cm3以下B . 30cm3以上,40cm3以下C . 40cm3以上,50cm3以下D . 50cm3以上,60cm3以下4. (2分)下列各数:3.14,,3π,sin60°,tan45°,,2.65867中,是无理数的个数是()A . 1B . 2C . 3D . 45. (2分)质检部门为了检测某品牌汽车的质量,从同一批次共10万件产品中随机抽取2000件进行检测,共检测出次品3件,则估计在这一批次的10万产品中次品数约为()A . 15件B . 30件C . 150件D . 1500件6. (2分) (2016八下·滕州期中) 不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的是()A .B .C .D .7. (2分)实数的相反数是()A . ﹣B .C . ﹣D .8. (2分)(2017·绥化) 不等式组的解集是()A . x≤4B . 2<x≤4C . 2≤x≤4D . x>29. (2分) x与的差的一半是正数,用不等式表示为()A . (x﹣)>0B . x﹣<0C . x﹣>0D . (x﹣)<010. (2分) (2019八下·余姚月考) 阅读材料:对于任何实数,我们规定符号的意义是=ad-bc.按照这个规定,若=0,则x的值是()A . -4B . 1C . -4或1D . 不存在二、填空题 (共10题;共12分)11. (1分)已知a<b,则﹣3a________ ﹣3b(填“<”或“>”号).12. (1分) (2019七下·孝义期中) 比较大小: ________ (填“ ”或“ ”或“ ”).13. (1分) (2019七下·蔡甸期末) 的立方根的平方的相反数是________.14. (2分)绕一个半径是4米的圆形花圃走2圈,要走________米。
七年级(下)第一次月考数学试卷

七年级(下)第一次月考数学试卷七年级(下)第一次月考数学试卷数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的。
下面是店铺为大家搜索整理的七年级(下)第一次月考数学试卷,仅供大家学习参考。
七年级(下)第一次月考数学试卷篇1一、选择题(每题3分,共30分)1.已知方程①2x+y=0;② x+y=2;③x2﹣x+1=0;④2x+y﹣3z=7是二元一次方程的是( )A.①②B.①②③C.①②④D.①2.以为解的二元一次方程组是( )A. B. C. D.4.已知是方程kx﹣y=3的一个解,那么k的值是( )A.2B.﹣2C.1D.﹣15.方程组的解是( )A. B. C. D.6.“六一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装的x套,B型童装y套,依题意列方程组正确的是( )A. B.C. D.7.若方程mx+ny=6的两个解是,,则m,n的值为( )A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣48.已知,则a+b等于( )A.3B.C.2D.19.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是( )A. B.10.某市准备对一段长120m的河道进行清淤疏通,若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队单独工作8天,则余下的任务由乙工程队单独完成需要3天;设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则(x+y)的值为( )A.20B.15C.10D.5二、填空题(每题4分,共32分)11.如果x=﹣1,y=2是关于x、y的二元一次方程mx﹣y=4的一个解,则m= .12.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x张,乙种票y张,由此可列出方程组:.13.孔明同学在解方程组的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为,又已知直线y=kx+b过点(3,1),则b的正确值应该是.14.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的 .两根铁棒长度之和为55cm,此时木桶中水的深度是cm.15.方程组的解是.16.设实数x、y满足方程组,则x+y= .17.4xa+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= .18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.三、解答题19.解方程组:(1) ;20.已知方程组和有相同的解,求a、b的值.21.关于x,y方程组满足x、y和等于2,求m2﹣2m+1的值.22.浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?23.在一次数学测验中,甲、乙两校各有100名同学参加测试,测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率= ×100%,全校优分率= ×100%)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.24.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.七年级(下)第一次月考数学试卷篇2一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A.B.C.D的四个答案,其中只有一个是正确的,请将正确答案的代号填人答题卷中对应的表格内.1.(4分)在下列实例中,属于平移过程的个数有()①时针运行过程;②电梯上升过程;③火车直线行驶过程;④地球自转过程;⑤生产过程中传送带上的电视机的移动过程.A.1个B.2个C.3个D.4个【解答】解:①时针运行是旋转,故此选项错误;②电梯上升,是平移现象;③火车直线行驶,是平移现象;④地球自转,是旋转现象;⑤电视机在传送带上运动,是平移现象.故属于平移变换的个数有3个.故选:C.2.(4分)如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4【解答】解:A、∠1与∠2不是两平行线AB、CD形成的角,故A 错误;B、∠3与∠2不是两平行线AB、CD形成的内错角,故B错误;C、∠1与∠4是两平行线AB、CD形成的内错角,故C正确;D、∠3与∠4不是两平行线AB、CD形成的角,无法判断两角的数量关系,故D错误.故选:C.3.(4分)如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个B.5个C.4个D.3个【解答】解:如图,∵EG∥DB,∴∠1=∠2,∠1=∠3,∵AB∥EF∥DC,∴∠2=∠4,∠3=∠5=∠6,∴与∠1相等的角有∠2、∠3、∠4、∠5、∠6共5个.故选:B.4.(4分)已知点P到x轴的距离为3,到y轴的距离为2,且在第二象限,则点P的坐标为()A.(2,﹣3)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣3,2)【解答】解:∵点P到x轴的距离为3,到y轴的距离为2,且在第二象限,∴点P的横坐标是﹣2,纵坐标是3,∴点P的坐标为(﹣2,3).故选:B.5.(4分)某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°【解答】解:如图所示(实线为行驶路线)A符合“同位角相等,两直线平行”的判定,其余均不符合平行线的判定.故选:A.6.(4分)三条直线两两相交于同一点时,对顶角有m对;交于不同三点时,对顶角有n对,则m与n的关系是()A.m=n B.m>n C.m<n D.m+n=10【解答】解:因为三条直线两两相交与是否交于同一点无关,所以m=n,故选A.7.(4分)下列实数:﹣、、、﹣3.14、0、,其中无理数的个数是()A.1个B.2个C.3个D.4个【解答】解:、是无理数.故选:B.8.(4分)下列语句中,正确的是()A.一个实数的平方根有两个,它们互为相反数B.负数没有立方根C.一个实数的立方根不是正数就是负数D.立方根是这个数本身的数共有三个【解答】解:A、一个非负数的平方根有一个或两个,其中0的平方根是0,故选项A错误;B、负数有立方根,故选项B错误,C、一个数的立方根不是正数可能是负数,还可能是0,故选项C 错误,D、立方根是这个数本身的数共有三个,0,1,﹣1,故D正确.故选:D.9.(4分)下列运算中,错误的是()①=1,②=±4,③=﹣④=+=.A.1个B.2个C.3个D.4个【解答】解:①==,原来的计算错误;②=4,原来的计算错误;③=﹣=﹣1,原来的计算正确;④==,原来的计算错误.故选:C.10.(4分)请你观察、思考下列计算过程:因为11 2 =121,所以=11;因为111 2 =12321,所以=111;…,由此猜想=()【解答】解:∵=11,=111…,…,∴═111 111 111.故选:D.11.(4分)如图,AB∥EF,∠C=90°,则α、β和γ的关系是()A.β=α+γ B.α+β+γ=180° C.α+β﹣γ=90° D.β+γ﹣α=180°【解答】解:延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,∵AB∥EF,∴∠1=∠2,∴90°﹣α=β﹣γ,即α+β﹣γ=90°.故选:C.12.(4分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.5个【解答】解:由三角形的外角性质得,∠EAC=∠ABC+∠ACB=2∠ABC,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD,∴∠EAD=∠ABC,∴AD∥BC,故①正确,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABC=2∠CBD,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确;∵AD∥BC,∴∠ADC=∠DCF,∵CD是∠ACF的平分线,∴∠ADC=∠ACF=(∠ABC+∠BAC)=(180°﹣∠ACB)=(180°﹣∠ABC)=90°﹣∠ABD,故③正确;由三角形的外角性质得,∠ACF=∠ABC+∠BAC,∠DCF=∠BDC+∠DBC,∵BD平分∠ABC,CD平分∠ACF,∴∠DBC=∠ABC,∠DCF=∠ACF,∴∠BDC+∠DBC=(∠ABC+∠BAC)=∠ABC+∠BAC=∠DBC+∠BAC,∴∠BDC=∠BAC,故⑤正确;∵AD∥BC,∴∠CBD=∠ADB,∵∠ABC与∠BAC不一定相等,∴∠ADB与∠BDC不一定相等,∴BD平分∠A DC不一定成立,故④错误;综上所述,结论正确的是①②③⑤共4个.故选:C.二、填空题(每题4分,共24分)请将答案直接写到对应的横线上.13.(4分)比较大小:﹣3<﹣2,>(填“>”或“<”或“=”)【解答】解:∵﹣<﹣,∴﹣3<﹣2.∵:∵2<<3,∴1<﹣1<2,∴<<1.故答案是:<;>.14.(4分)若点P(a+5,a﹣2)在x轴上,则a=2,点M(﹣6,9)到y轴的距离是6.【解答】解:根据题意得a﹣2=0,则a=2,点M(﹣6,9)到y轴的距离是|﹣6|=6,故答案为:2、6.15.(4分)大于﹣,小于的`整数有5个.【解答】解:∵1<2,3<4,∴﹣2<﹣<﹣1,∴大于﹣,小于的整数有﹣1,0,1,2,3,共5个,故答案为:5.16.(4分)两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别为72度,108度.【解答】解:设其中一个角是x,则另一个角是180﹣x,根据题意,得x=(180﹣x)解得x=72,∴180﹣x=108;故答案为:72、108.17.(4分)如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF 折叠图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是120°.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图(2)中∠GFC=180°﹣2∠EFG=140°,在图(3)中∠CFE=∠GFC﹣∠EFG=120°,故答案为:120°.18.(4分)一个自然数的立方,可以分裂成若干个连续奇数的和.例如:2 3,3 3和4 3分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即2 3 =3+5;3 3 =7+9+11;4 3 =13+15+17+19;…;若6 3也按照此规律来进行“分裂”,则6 3 “分裂”出的奇数中,最大的奇数是41.【解答】解:由2 3 =3+5,分裂中的第一个数是:3=2×1+1,3 3 =7+9+11,分裂中的第一个数是:7=3×2+1,4 3 =13+15+17+19,分裂中的第一个数是:13=4×3+1,5 3 =21+23+25+27+29,分裂中的第一个数是:21=5×4+1,6 3 =31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1,所以6 3 “分裂”出的奇数中最大的是6×5+1+2×(6﹣1)=41.故答案为:41.三、计算(总共22分)请将每小题答案做到答题卡对应的区域.19.(16分)计算:(1)利用平方根解下列方程.①(3x+1)2﹣1=0;②27(x﹣3)3=﹣64(2)先化简,再求值:3x 2 y﹣[2xy﹣2(xy﹣x 2 y)+xy],其中x=3,y=﹣.【解答】解:(1)①(3x+1)2﹣1=0∴(3x+1)2=1∴3x+1=1或3x+1=﹣1解得x=0或x=﹣;②27(x﹣3)3=﹣64∴(x﹣3)3=﹣[来源:学|科|网]∴x﹣3=﹣∴x=;(2)3x 2 y﹣[2xy﹣2(xy﹣x 2 y)+xy]=3x 2 y﹣(2xy﹣2xy+3x 2 y+xy)=3x 2 y﹣2xy+2xy﹣3x 2 y﹣xy=﹣xy当x=3,y=﹣时,原式=﹣3×(﹣)=1.20.(6分)已知5+的小数部分是a,5﹣的小数部分是b,求:(1)a+b的值;(2)a﹣b的值.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴a=5+﹣8=﹣3,b=5﹣﹣1=4﹣,∴a+b=(﹣3)+(4﹣)=1;a﹣b=(﹣3)﹣(4﹣)=2﹣7.四、解答题(56分)请将每小题的答案做到答题卡中对应的区域内.21.(8分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.【解答】解:∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∴∠HFD=∠EFD=65°;∴∠BHF=180°﹣∠HFD=115°.[来源:Z*xx*]22.(8分)若x、y都是实数,且y=++8,求x+3y的立方根.【解答】解:∵y=++8,∴解得:x=3,将x=3代入,得到y=8,∴x+3y=3+3×8=27,∴=3,即x+3y的立方根为3.23.(8分)如果A=是a+3b的算术平方根,B=的1﹣a 2的立方根.试求:A﹣B的平方根.【解答】解:依题意有,解得,A==3,B==﹣2A﹣B=3+2=5,故A﹣B的平方根是±.24.(8分)已知:如图,AB∥CD,∠1=∠2.求证:∠E=∠F.【解答】证明:分别过E、F点作CD的平行线EM、FN,如图∵AB∥CD,∴CD∥FN∥EM∥AB,∴∠3=∠2,∠4=∠5,∠1=∠6,而∠1=∠2,∴∠3+∠4=∠5+∠6,即∠E=∠F.25.(12分)如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米,(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MN和PQ).请根据这个等量关系,求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.如果两队从同一点开始,沿相反的方向同时施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?【解答】解:(1)若设图中最大正方形B的边长是x米,最小的正方形的边长是1米.F的边长为(x﹣1)米,C的边长为,E的边长为(x﹣1﹣1);(2)∵MQ=PN,∴x﹣1+x﹣2=x+,x=7,x的值为7;(3)设余下的工程由乙队单独施工,还要x天完成.(+)×2+x=1,x=10(天).答:余下的工程由乙队单独施工,还要10天完成.26.(12分)如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为∠P+n∠Q=360°.(直接写结论)【解答】(1)证明:如图1,过点P作PG∥AB,,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF.(2)如图2,,由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ=(∠BEP+∠DFP)==,∴∠EPF+2∠EQF=360°.(3)如图3,,由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=∠BEP,∠DFQ=∠DFP,∴∠Q=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠C FP)]=×(360°﹣∠P),∴∠P+3∠Q=360°.(4)由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=∠BEP,∠DFQ=∠DFP,∴∠Q=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠CFP)]=×(360°﹣∠P),∴∠P+n∠Q=360°.故答案为:∠P+n∠Q=360°.七年级(下)第一次月考数学试卷篇3一、填空题的倒数是____;的相反数是____;-0.3的绝对值是______。
七年级下学期第一次月考数学试卷(含参考答案)

七年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,每题4分)1.计算:(12)﹣1=()A.2B.-2C.12D.﹣122.地球是人与自然共同生存的家园,在这个家园中,还住着许多常常被人们忽略的微小生命,在冰岛海岸的黄铁矿粘液池中的古菌身上,科学家发现了基因片段,并提取出了最小的生命体,它的直径仅为0.00 000 002米,将数字0.00 000 002用科学记数法表示为()A.2x10﹣7B.2x10﹣8C.2x10﹣9D.20x10﹣83.下面四个图形中,∠1与∠2是对顶角的图形是()A. B. C. D.4.下列计算正确的是( )A.a6+a2=a8B.a6÷a2=a3C.a6·a2=a12D.(a6)2=a125.下列乘法中,不能运用平方差公式进行运算的是( )A.(x+a)(x-a)B.(a+b)(-a-b)C.(-x-b)(x-b)D.(b+m)(m-b )6.如果"□×2ab=4a2b”,那么"口"内应填的代数式是()A.2bB.2abC.aD.2a7.如图,某污水处理厂要从A处把处理过的水引入排水渠PQ,为了节约用料,铺设垂直于排水渠的管道AB.这种铺设方法蕴含的数学原理是()A.两点确定一条直线B.两点之间,线段最短C.过一点可以作无数条直线D.垂线段最短(第7题图) (第10题图)8.如果a=(﹣2024)0,b=(﹣2022)﹣1,c=(-2)2024.则a ,b ,c 三数的大小关系是( ) A.c>a>b B.a>b>c C.a>c>b D.c>b>a9.若(3x+2)(3x+a )的化简结果中不含x 的一次项,则常数a 的值为( ) A.-2 B.-1 C.0 D.210.如图有两张正方形纸片A 和B ,图1将B 放置在A 内部,测得阴影部分面积为2,图2将正方形AB 开列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A 和2个正方形B 并列放置后构造新正方形如图3,(图2,图3中正方形AB 纸片均无重叠部分)则图3阴影部分面积( )A.22B.24C.42D.44 二.填空题(共6小题,每题4分) 11.计算:a(a+3)= .12.如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 .(第12题图) (第15题图)13.若x 2-kx+4一个完全平方式,则k 的值是 . 14.42020×(﹣0.25)2021= .15.一副三角板按如图方式摆放,且∠1比∠2大50°,则∠1= . 16.观察下列运算并填空: 1×2×3×4+1=25=52; 2×3×4×5+1=121=112; 3×4×5×6+1=361=192;根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1= . 三.解答题(共16小题) 17.(12分)计算:(1)(﹣1)4+(3.14-π)0+(﹣13)﹣1 (2)(-1)3+(3+π)0-|﹣2|+(13)-2(3)(-1)2023-(3.14-π)0-(12)﹣2+|﹣3| (4)﹣12023×|﹣34|+(3.14-π)0-2﹣118.(12分)(1)(a+2b)(3a -b) (2)(12m ³-6m 2+2m)÷2m(3)x 2·x 6-(2x 2)4+x 9÷x (4)m 2·m 4+(m 3)2-m 8÷m 219.(12分)用乘法公式进行简便运算:(1)102x98 (2)10032(3)20242-20232 (4)20232-2023×2048+2024220.(6分)先化简,再求值:(2x+y)(2x -y)-(2x -y )2,其中x=﹣2,y=﹣1221.(4分)如图,已知∠2=∠3,求证:AB∥CD.证明:∵∠2=∠3(已知)又∠1=∠3()∴= ()∴AB∥CD()22.(6分)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.23.(10分)观察以下等式:(x+1)(x2-x+1)=x3+1(x+3)(x2-3x+9)=x3+27(x+6)(x2-6x+36)=x3+216...(1)按以上等式的规律,填空:(a+b)(a2-ab+b2)= ;(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x+2y)(x2-2xy+4y2)24.(12分)实践与探究,如图1,边长为a的大正方形有一个边长为b的小证方形,把图1中的阴影部分折成一个长方形(如图2所示)。
七年级(下)数学月考(4月)试题

七年级(下)数学月考(4月)试题一.选择题(共10小题,满分30分,每小题3分)1.(3分)如果m是任意实数,则点P(m﹣2,m﹣3)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列说法正确的是()A.144的平方根等于12B.25的算术平方根等于5C.的平方根等于±4D.9的算术平方根等于±33.(3分)下列说法正确的是()A.﹣2是(﹣2)2的算术平方根B.3是﹣9的算术平方根C.16的平方根是±4D.27 的立方根是±34.(3分)下列各数中,3.14159,﹣,0.131131113…,﹣π,﹣,无理数的个数有()A.1个B.2个C.3个D.4个5.(3分)如图所示,点P为直线l外一点,点A,B,C在直线l上,且PB⊥l,垂足为B,∠APC=90°,则下列结论中错误的是()A.线段PB的长表示点P到直线l的距离B.线段P A、PB、PC中,PB最短C.线段P A的长等于点P到直线l的距离D.线段P A的长表示点A到直线PC的距离6.(3分)如图,在下列四组条件中,能得到AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠ADC+∠BCD=180°D.∠BAC=∠ACD7.(3分)如图,已知a∥b,∠1=70°,则∠2=()A.40°B.70°C.110°D.130°8.(3分)如图,在数轴上点A表示的实数是()A.B.+2C.﹣2D.29.(3分)如图,在长方形ABCD中,BD是对角线,∠ABD=25°,将△ABD沿直线BD 折叠,点A落在点E处,则∠CDE的度数()A.25°B.30°C.40°D.50°10.(3分)如图,AB∥CD,AE∥CF,∠C=131°,则∠A=()A.39°B.41°C.49°D.51°二.填空题(共6小题,满分18分,每小题3分)11.(3分)若x﹣2有平方根,则实数x的取值范围是.12.(3分)“对顶角相等”的逆命题是.(用“如果…那么…”的形式写出)13.(3分)﹣0.064的立方根是,的平方根是.14.(3分)如图,已知直线AB与CD相交于点O,OE平分∠BOD,OF⊥OE,若∠2:∠1=4:1,则∠DOF=度.15.(3分)若实数a,b满足,则a﹣b的平方根是.16.(3分)如图,将三角尺与两边平行的直尺(EF∥HG)贴在一起,使三角尺的直角顶点(∠ACB=90°)在直尺的一边上.若∠2=47°,则∠1的大小为度.三.解答题(共8小题,满分72分)17.(8分)计算.(1)﹣5﹣(﹣6)×.(2)4.8﹣(﹣1.2)+(﹣6)+|﹣4|.(3).(4).18.(8分)若一个正数m的平方根是2a﹣1和3﹣a,若a+3b﹣16的立方根是3,则2b﹣3a的平方根是多少?19.(8分)已知正数x的两个不等的平方根分别是2a﹣14和a+2,b+1的立方根为﹣3,c 是的整数部分.(1)求x和b的值;(2)求a﹣b+c的平方根.20.(8分)完成下列推理说明:如图,已知CD∥BF,∠B+∠D=180°,求证:AB∥DE.证明:∵CD∥BF(已知),∴∠AOC=(),∵∠AOC=∠BOD(),∴∠BOD=(),∵∠B+∠D=180°,∴∠BOD+∠D=180°,∴AB∥DE().21.(8分)如图,由边长为1的小正方形组成的网格,△ABC的顶点都在格点上.请分别按下列要求完成解答:(1)画出△ABC的高CD,中线AE;(2)画出将△ABC向左平移2格,再向上平移3格所得到的△A1B1C1;(3)在(2)中的平移过程中,线段AC所扫过的面积为.22.(10分)如图,O是直线AB上的一点,OM平分∠AOC,ON平分∠BOC.(1)猜想∠MON是否等于90°;(2)请用你所学的知识说明理由.23.(10分)探究(如图所示):(1)如图①,若AB∥CD,则∠B+∠D=∠E,请你说明理由;(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图②所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将点E移至图③所示位置,情况又如何?(5)在图④中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图⑤中,若AB∥CD,你能得到什么结论?24.(12分)填空:(将下面的推理过程及依据补充完整)如图,已知:CD平分∠ACB,AC∥DE,CD∥EF,求证:EF平分∠DEB.证明:∵CD 平分∠ACB(已知),∴∠DCA=∠DCE()∵AC∥DE(已知),∴∠DCA=()∴∠DCE=∠CDE(等量代换),∵CD∥EF(已知),∴=∠CDE()∠DCE=∠BEF()∴=(等量代换),∴EF平分∠DEB(角平分线的定义)。
七年级下学期数学月考试卷附带答案

七年级下学期数学月考试卷一、选择题1. 一个长方形的长是8厘米,宽是5厘米,它的周长是多少厘米?A. 18厘米B. 23厘米C. 30厘米D. 38厘米**答案:C**2. 小明从家到学校的路程是1.2千米,他骑自行车用了15分钟,那么他骑自行车的速度是多少千米/小时?A. 8千米/小时B. 12千米/小时C. 16千米/小时D. 20千米/小时**答案:B**3. 一个正方形的面积是64平方厘米,那么它的边长是多少厘米?A. 8厘米B. 16厘米C. 24厘米D. 32厘米**答案:A**4. 下列说法中,正确的是()A. 两个长方形的面积相等,那么它们的周长也相等B. 一个圆的直径是它的半径的两倍C. 一个长方体的体积等于它的长D. 一个梯形的面积等于它的上底加下底的和**答案:B**(注:选项A的错误在于,两个长方形的面积相等,并不意味着它们的周长也相等。
例如,长为4厘米、宽为3厘米的长方形和长为6厘米、宽为2厘米的长方形面积相等,但周长不同。
选项C的描述不完整,一个长方体的体积等于它的长、宽、高的乘积。
选项D的描述也不准确,一个梯形的面积等于它的上底、下底和高的乘积的一半。
)5. 现有两根木棒,它们长分别是40cm和50cm,若要钉成一个三角形木架,则应选取的木棒长度为?A. 10cm的木棒B. 40cm的木棒C. 90cm的木棒D. 100cm的木棒**答案:B**二、判断题1. 一个正方形的四条边都相等。
()**答案:√**2. 一个长方体的体积等于它的长、宽、高的乘积。
()**答案:√**3. 一个圆的面积等于π乘以半径的平方。
()**答案:√**(注:虽然题目中说的是“面积等于π乘以半径的平方”,但核心意思是正确的,即圆的面积与半径的平方成正比,且系数为π。
为了严谨性,可以理解为题目表述了圆面积计算公式的核心部分。
)4. 一个梯形的面积等于它的上底、下底和高的乘积。
()**答案:×**(注:梯形的面积等于它的上底、下底和高的乘积的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若∠BFE=110°,∠A=60°,求∠B的度数.
12.已知a6=2b=84,且a<0,求|a﹣b|的值.
13.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.
③如图4,继续旋转直线 ,与线段 交于点 ,与 的延长线交于点 ,请直接写出 与 的关系(用含 的代数式表示).
2.解不等数组: ,并在数轴上表示出它的解集.
3.因式分解:
(1)m2﹣16;
(2)x2(2a﹣b)﹣y2(2a﹣b);
(3)y2﹣6y+9;
(4)x4﹣8x2y2+16y4.
4.如果acb,那么我们规定(a,b)=c,例如:因为238,所以(2,8)=3.
(1)根据图2,写出一个代数恒等式:.
(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.
(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.
10.如图,在边长为1个单位长度的小正方形网格中,ΔABC经过平移后得到Δ ,图中标出了点B的对应点 ,点 、 分别是A、C的对应点.
(1)画出平移后的Δ ;
(2)连接 、 ,那么线段 与 的关系是_________;
(3)四边形 的面积为_______.
11.已知:如图, ,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.
(2)由于疫情加重, 两组工人均提高了工作效率,一名 组工人和一名 组工人每小时共可生产口罩 只,若 两组工人每小时至少加工 只口罩,那么 组工人每人每小时至少加工多少只口罩?
6.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.
(1)求证:AB∥CD;
(2)若FG⊥BC于点H,BC平分∠ABD,∠D=112°,求∠1的度数.
(1)若 , ________.
(2)如图①,若各个角度不确定,试猜想 , , 之间的数量关系,直接写出结论.
②当点 落在四边形 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立, , , 之间又存在什么关系?请说明.
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的 和是________.
(1)根据上述规定,填空:(3,27)=,(4,1)=,(2, )=;
(2)若记(3,5)=a,(3,6)=b,(3,30)=c,求证:abc.
5.某口罩加工厂有 两组工人共 人, 组工人每人每小时可加工口罩 只, 组工人每小时可加工口罩 只, 两组工人每小时一共可加工口罩 只.
(1)求 两组工人各有多少人?
14.装饰公司为小明家设计电视背景墙时需要A、B型板材若干块,A型板材规格是ab,B型板材规格是bb.现只能购得规格是150b的标准板材.(单位:cm)
(1)若设a60cm,b30cm.一张标准板材尽可能多的裁出A型、B型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.
裁法一
裁法二
裁法三
A型板材块数
7.如图,在△ 中,∠ACB=90°,∠ABC与∠BAC的角平分线相交于点P,连接CP,过点P作DE⊥CP分别交AC、BC于点D、E,
(1)若∠BAC=40°,求∠APB与∠ADP度数;
(2)探究:通过(1)的计算,小明猜测∠APB=∠ADP,请你说明小明猜测的正确性(要求写出过程).
8.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.
(1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系:;
(2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.
(3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系.
,在 中, 平分 , 平分 .
(1)若 ,则 的度数为______;
(2)若 ,直线 经过点 .
①如图2,若 ,求 的度数(用含 的代数式表示);
②如图3,若 绕点 旋转,分别交线段 于点 ,试问在旋转过程中 的度数是否会发生改变?若不变,求出 的度数(用含 的代数式表示),若改变,请说明理由:
15.已知关于x,y的二元一次方程组 的解适合方程x+y=6,求n的值.
16.解方程组
(1)
(2) .
17.已知a+b=2,ab=-1,求下面代数式的值:
(1)a2+b2;(2)(a-b)2.
18.解不等式(组)
(1)解不等式 ,并把解集在数轴上表示出来.
(2)解不等式 ,并写出它的所有整数解.
19.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:
1
2
0
B型板材块数
3
m
n
则上表中,m=___________,n=__________;
(2)为了装修的需要,小明家又购买了若干C型板材,其规格是aa,并做成如下图的背景墙.请写出下图中所表示的等式:______ቤተ መጻሕፍቲ ባይዱ___;
(3)若给定一个二次三项式2a25ab3b2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)
…… ……
(1)请直接写出(a+b)4=__________;
(2)利用上面的规律计算:
①24+4×23+6×22+4×2+1=__________;
②36-6×35+15×34-20×33+15×32-6×3+1=________.
9.如图①所示,在三角形纸片 中, , ,将纸片的一角折叠,使点 落在 内的点 处.