工程光学第三版课后答案样本

合集下载

郁道银老师主编工程光学3课后答案

郁道银老师主编工程光学3课后答案

A' A
'
F
B' B
F
( f )l = f / 2
'
F
'
A A
B
'F
B
(g)l = f
'
F
(h)l = 2 f
'
B
'
F
'
A
(i)l = +∞
F
A
F
B
2 、 已 知 照 相 物 镜 的 焦 距 f’ = 75mm, 被 摄 景 物 位 于 ( 以 F 点 为 坐 标 原 点 )
x = − ∝,−10m,−8m,−6m,−4m,−2m, 处,试求照相底片应分别放在离物镜的像方焦面多远
∴ f ' = 150mm
答:透镜焦距为100mm。
5、如图3-30所示,焦距为 f ' =120mm 的透镜后有一厚度为 d =60mm 的平行平板,其折射率
n =1.5。当平行平板绕 O 点旋转时,像点在像平面内上下移动,试求移动量△ y' 与旋
转角φ的关系,并画出关系曲线。如果像点移动允许有 0.02mm 的非线形度,试求φ允
(1)
有:
而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则
(2)
由(1)式和(2)式联立得到 n0 .
16、一束平行细光束入射到一半径 r=30mm、折射率 n=1.5的玻璃球上,求其会聚点的位置。
如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会 聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
F
-f -l

第三版工程光学答案

第三版工程光学答案

第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I 88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:1mmI 1=90︒n 1 n 2200mmL I 2 xn0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 .16、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。

第三版工程光学答案[1]

第三版工程光学答案[1]

第一章50mm 则像的大小变为70mm 求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变, 令屏到针孔的初始距离为 x ,则可以根据三角形相似得出:所以 x=300mm即屏到针孔的初始距离为 300mm厚度为200mm 的平行平板玻璃(设 n =),下面放一直径n 1 sini j n 2 sinl ?sin 12 — 0.66666 n 2cosl 20.6666620.745356 0.66666 200* 178.88 0.745356 L 2x 1 358.77mm 3、一物体经针孔相机在屏上成一 60mn 大小的像,若将屏拉远4、 为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在 玻璃板上方任何方向上都看不到该金属片, 问纸片的最小x 200*tgl 28、•光纤芯的折射率为n 1,包层的折射率为n 2,光纤所在介质的折射率为 n o ,求光纤的数 n o Sini 1,其中I i 为光在光纤内能以全反射方式传播时在入射端面的最大入射 角)。

位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n o sinl 1=n 2sinl 2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:16、一束平行细光束入射到一半径 r=30mm 折射率n=的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚 点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。

(1) 首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后 15mn 处。

(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。

还可以用B 正负判断:第二面镀膜,则:值孔径(即 解: 由(1) 式和(2)式联立得到n o .(3)光线经过第一面折射:虚像得到:(4)在经过第一面折射物像相反为虚像。

工程光学第3版第一章习题答案

工程光学第3版第一章习题答案
• 光的干涉与衍射的关联与区别:光的干涉和衍射是波动性的两种表现形式,理 解它们之间的联系和区别是解决相关问题的关键。需要注意干涉和衍射产生的 条件、现象及其在光学系统中的应用。
• 光学元件的特性与选择:不同光学元件具有不同的特性,如透镜的焦距、折射 率,反射镜的反射率、角度等。在选择和使用光学元件时,需要考虑系统的需 求和限制,如成像质量、光束直径、光谱范围等。
习题1.6
什么是光的衍射?衍射现象有哪些应用?
答案
光的衍射是指光波在遇到障碍物时,绕过障碍物的边缘继 续传播的现象。衍射现象在许多领域都有应用,如全息摄 影、光学仪器制造和光学信息处理等。
习题1.3答案
习题1.7
什么是光谱线及其分类?光谱分析的原理是什么?
答案
光谱线是指物质在特定温度和压力下发射或吸收的特定波长的光。根据产生机理 ,光谱线可分为发射光谱和吸收光谱。光谱分析的原理是利用物质对光的吸收、 发射或散射特性来分析物质的组成和结构。
习题1.2
简述光学显微镜的基本组成部分。
习题1.1答案
习题1.3
如何正确使用光学显微镜?
答案
使用光学显微镜时,应先调节光源亮度,然后调节聚光镜和物镜的焦距,确保 样品清晰可见。接着,通过调节载物台和调焦装置,使样品在显微镜视场中居 中。最后,通过目镜观察并记录观察结果。
习题1.2答案
习题1.4
什么是光的折射?折射率与题考察了光学显微镜的分辨本领与照 明方式、物镜的数值孔径和照明光的波长的 关系。光学显微镜的分辨本领主要取决于物 镜的数值孔径和照明光的波长。数值孔径越 大,照明光的波长越短,则显微镜的分辨本 领越高。同时,照明方式也会影响显微镜的 分辨本领,暗视场显微镜具有较高的对比度
练习题3

第三版工程光学答案[1]

第三版工程光学答案[1]

第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离.解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n =1。

5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=1mmI 1=90︒n 1 n 2200mmL I 2 x8、。

光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角).解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 。

16、一束平行细光束入射到一半径r=30mm 、折射率n=1。

5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面.(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处.(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。

第三版工程光学答案[1]

第三版工程光学答案[1]

第三版工程光学答案[1]第一章3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n =),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2) 由(1)式和(2)式联立得到n 0 .16、一束平行细光束入射到一半径r=30mm 、折射率n=的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm 处。

(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。

第三版工程光学答案[1]

第三版工程光学答案[1]

第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I1mmI 1=90︒n 1 n 2200mmL I 2 x745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .16、一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。

第三版工程光学答案[1]

第三版工程光学答案[1]

第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm ,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm.4、一厚度为200mm 的平行平板玻璃(设n =1。

5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=1mmI 1=90︒n 1 n 2200mmL I 2 x8、。

光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .16、一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置.如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
2、已知真空中的光速c=3*108m/s, 求光在水( n=1.333) 、冕牌玻璃
( n=1.51) 、火石玻璃( n=1.65) 、加拿大树胶( n=1.526) 、金刚石( n=2.417) 等介质中的
光速。

解:
则当光在水中, n=1.333 时, v=2.25*108m/s,
当光在冕牌玻璃中, n=1.51 时, v=1.99*108m/s,
当光在火石玻璃中, n=1.65 时, v=1.82*108m/s,
当光在加拿大树胶中, n=1.526 时, v=1.97*108m/s,
当光在金刚石中, n=2.417 时, v=1.24*108m/s。

3、一物体经针孔相机在屏上成一60mm 大小的像, 若将屏拉远50mm, 则像的大小变为70mm,求屏到针孔的初始距离。

解: 在同种均匀介质空间中光线直线传播, 如果选定经过节点的光线则方向
不变, 令屏到针孔的初始距离为x, 则能够根据三角形相似得出:
因此x=300mm
即屏到针孔的初始距离为300mm。

4、一厚度为200mm 的平行平板玻璃( 设n=1.5) , 下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片, 要求在玻璃板上方任何方向上都看不到该金
属片, 问纸片最小直径应为多少?
解: 令纸片最小半径为x,
则根据全反射原理, 光束由玻璃射向空气中时满足入射角度大于或等于全
反射临界角时均会发生全反射, 而这里正是由于这个原因导致在玻璃板上方看
不到金属片。

而全反射临界角求取方法为:
(1) 其中
n2=1, n1=1.5, 同时根据几何关系, 利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:
(2)
联立( 1) 式和( 2) 式能够求出纸片最小直径x=179.385mm, 因此纸片最小直径为358.77mm 。

8、 .光纤芯的折射率为1n , 包层的折射率为2n , 光纤所在介质的折射率为0n , 求光纤的数值孔径( 即10sin I n , 其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角) 。

解: 位于光纤入射端面, 满足由空气入射到光纤芯中, 应用折射定律则有:
n 0sinI 1=n 2sinI 2
(1)
而当光束由光纤芯入射到包层的时候满足全反射, 使得光束能够在光纤内传播, 则有:
(2)
由( 1) 式和( 2) 式联立得到n 0 .
16、 一束平行细光束入射到一半径r=30mm 、 折射率n=1.5 的玻璃球上, 求其会聚点的位置。

如果在凸面镀反射膜, 其会聚点应在何处? 如果在凹面镀反射
膜, 则反射光束在玻璃中的会聚点又在何处? 反射光束经前表面折射后, 会聚点又在何处? 说明各会聚点的虚实。

解: 该题能够应用单个折射面的高斯公式来解决,
设凸面为第一面, 凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态, 使用高斯式公式式:
会聚点位于第二面后15mm 处。

( 2) 将第一面镀膜, 就相当于凸面镜
像位于第一面的右侧, 只是延长线的交点,
因此是虚像。

还能够用β正负判断:
(3)光线经过第一面折射: , , 第二面镀膜, 则:
得到: l 2 ' 10mm
(4)在经过第一面折射:
物像相反为虚像。

19、有一平凸透镜r1=100mm,r2=∞,d=300mm,n=1.5,当物体在-∞时, 求高斯像的位置l '。

在第二面上刻一十字丝, 问其经过球面的共轭像在何处? 当入射高度h=10mm, 实际光线的像方截距为多少? 与高斯像面的距离为多少?
解:
对于平面l=0 得到l’=0 , 即像为其本身,
即焦面处发出的经第一面成像于无穷远处, 为平行光出射
20、一球面镜半径r=-100mm,求=0 , -0.1 , -0.2 , -1 , 1 , 5, 10, ∝时的物距和像距。

解: ( 1)
同理
( 2) ( 3)
( 4) ( 5)
( 6) ( 7)
( 8)
21、一物体位于半径为r 的凹面镜前什么位置时, 可分别得到: 放大4 倍的实像, 放大4 倍的虚像、缩小4 倍的实像和缩小4 倍的虚像?
解: ( 1) 放大4 倍的实像
( 2) 放大四倍虚像β=4
( 3) 缩小四倍实像β=﹣1/4
( 4) 缩小四倍虚像β=1/4。

相关文档
最新文档