2020各地中考几何综合压轴题汇总

合集下载

2020中考数学几何压轴题汇编:三角形与平行四边形(含答案)

2020中考数学几何压轴题汇编:三角形与平行四边形(含答案)

2020中考数学几何压轴题汇编:三角形与平行四边形(含答案)1.如图,设E、F分别为正方形ABCD边BC、CD上的点,且/EAF= 45° ,过E、F分别作AC的垂线,垂足分别为P、Q.(1)试找出图中相似三角形(至少3对,全等除外);(2)求证:AB2 = APAQ;(3)设正方形的边长为4,当P、Q重合时,求BE的长.第1题图(1)解:图中相似三角形有:△ABC S£QF,在PC"ZADC,笈PE s/CQF, 8QFsADC, 3BE SZ AQF, z2APE^ZADF 等(写出任意3 对,即可得分).(2)证明:・. /BAE+ /EAP= /EAP+ /QAF = 45 ,・•.zBAE= /QAF.在小BE与9QF中,/BAE= /QAF/B=/AQF = 90 ,••Z ABE S/AQF,AB AE . AQ —AF'同理,在^AEP与办FD中,ZEAP= ZFADZEPA=ZD = 90 '.•.去EPs 也FD.AP AE , AD-AF?AB APA Q—AD'•AB = AD,.AB2 = AP AQ.(3)解:如解图,当P、Q重合时,,.zEPC=ZFQC=90 ,:E、P、F在同一直线上.••Z ECP=ZFCQ=45,「.EP= FQ,在小EP和*FP中,AP = AQ小PE=/AQF,EP= FQ. • AEP^AFP(SAS),1 /.Z EAP=-X45 =22.5 ,•.Z BAE=45 -£AP=22.5 ,•••Z AEBSEP(AAS),.EB= EP, AB = AP=4, 丁四边形ABCD为正方形,•.Z ACB=45 ,AC = 4 也X.Ep= PC,.BE= PC= AC-AP=4A/2-4.--------- 同wB E C第1题解图2.已知:在^ABC中,/ABC=/ACB= a,点D是AB边上任意一点,将射线DC绕点D逆时针旋转a与过点A且平行于BC 边的直线交于点E.(1)如图①,当尸60。

2020年贵州省中考数学压轴题汇编解析:几何综合

2020年贵州省中考数学压轴题汇编解析:几何综合

2020年全国各地中考数学压轴题汇编(贵州专版)几何综合参考答案与试题解析一.选择题(共6小题)1.(2020•贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.9解:∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴EF=BC,∴BC=6,∴菱形ABCD的周长是4×6=24.故选:A.2.(2020•遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC =S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,故选:C.3.(2020•贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.B.1 C.D.解:连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选:B.4.(2020•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3D.2解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.5.(2020•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm 解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.6.(2020•铜仁市)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4﹣1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或3cm.故选:C.二.填空题(共8小题)7.(2020•贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是72度.解:连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,∴△AOM≌△BON,∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故答案为:72.8.(2020•遵义)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为37度.解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.9.(2020•贵阳)如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为.解:如图,作AQ⊥BC于点Q,交DG于点P,∵四边形DEFG是矩形,∴AQ⊥DG,GF=PQ,设GF=PQ=x,则AP=4﹣x,由DG∥BC知△ADG∽△ABC,∴=,即=,则EF=DG=(4﹣x),∴EG====,∴当x=时,EG取得最小值,最小值为,故答案为:.10.(2020•遵义)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为2.8.解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.11.(2020•安顺)如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为 π cm 2.(结果保留π)解:∵∠BOC=60°,△B′OC′是△BOC 绕圆心O 逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O ,∴∠B′OC=60°,∠C′B′O=30°, ∴∠B′OB=120°,∵AB=2cm ,∴OB=1cm ,OC′=, ∴B′C′=,∴S 扇形B′OB ==π,S 扇形C′OC ==, ∵∴阴影部分面积=S 扇形B′OB +S △B′C′O ﹣S △BCO ﹣S 扇形C′OC =S 扇形B′OB ﹣S 扇形C′OC =π﹣=π; 故答案为:π.12.(2020•黔西南州)已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是 2 . 解:依照题意画出图形,如图所示.在Rt△AOB中,AB=2,OB=,∴OA==1,∴AC=2OA=2,=AC•BD=×2×2=2.∴S菱形ABCD故答案为:2.13.(2020•铜仁市)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=4.解:∵CE所在直线垂直平分线段AD,∴CE平分∠ACD,∴∠ACE=∠DCE.∵CD平分∠BCE,∴∠DCE=∠DCB.∵∠ACB=90°,∴∠ACE=∠ACB=30°,∴∠A=60°,∴AB===4.故答案为:4.14.(2020•黔西南州)如图,已知在△ABC中,BC边上的高AD与AC边上的高BE交于点F,且∠BAC=45°,BD=6,CD=4,则△ABC的面积为60.解:∵AD⊥BC,BE⊥AC,∴∠AEF=∠BEC=∠BDF=90°,∵∠BAC=45°,∴AE=EB,∵∠EAF+∠C=90°,∠CBE+∠C=90°,∴∠EAF=∠CBE,∴△AEF≌△BEC,∴AF=BC=10,设DF=x.∵△ADC∽△BDF,∴=,∴=,整理得x2+10x﹣24=0,解得x=2或﹣12(舍弃),∴AD=AF+DF=12,=•BC•AD=×10×12=60.∴S△ABC故答案为60.三.解答题(共9小题)15.(2020•贵阳)如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.解:(1)∵AB与AG关于AE对称,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=,则EH=AE=、AH=,=××=.∴S△ADF16.(2020•遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE <BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.17.(2020•贵阳)如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.解:(1)∵△OPE的内心为M,∴∠MOP=∠MOC,∠MPO=∠MPE,∴∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣(∠EOP+∠OPE),∵PE⊥OC,即∠PEO=90°,∴∠PMO=180°﹣(∠EOP+∠OPE)=180°﹣(180°﹣90°)=135°,(2)如图,∵OP=OC,OM=OM,而∠MOP=∠MOC,∴△OPM≌△OCM,∴∠CMO=∠PMO=135°,所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上(和);点M在扇形BOC内时,过C、M、O三点作⊙O′,连O′C,O′O,在优弧CO取点D,连DA,DO,∵∠CMO=135°,∴∠CDO=180°﹣135°=45°,∴∠CO′O=90°,而OA=2cm,∴O′O=OC=×2=,∴弧OMC的长==π(cm),同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为πcm,所以内心M所经过的路径长为2×π=πcm.18.(2020•遵义)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.解:(1)如图1,连接OD,∵OA=OD=3,BC=2,∴AC=8,∵DE是AC的垂直平分线,∴AE=AC=4,∴OE=AE﹣OA=1,在Rt△ODE中,DE==2;在Rt△ADE中,AD==2;(2)当DP=DF时,如图2,点P与A重合,F与C重合,则AP=0;当DP=PF时,如图4,∴∠CDP=∠PFD,∵DE是AC的垂直平分线,∠DPF=∠DAC,∴∠DPF=∠C,∵∠PDF=∠CDP,∴△PDF∽△CDP,∴∠DFP=∠DPC,∴∠CDP=∠CPD,∴CP=CD,∴AP=AC﹣CP=AC﹣CD=AC﹣AD=8﹣2;当PF=DF时,如图3,∴∠FDP=∠FPD,∵∠DPF=∠DAC=∠C,∴△DAC∽△PDC,∴,∴,∴AP=5,即:当△DPF是等腰三角形时,AP的长为0或5或8﹣2.19.(2020•安顺)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A 作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.(1)证明:连接DF,∵E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴EF=BE,∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC;(2)四边形ADCF的形状是菱形,理由如下:∵AF=DC,AF∥BC,∴四边形ADCF是平行四边形,∵∴∵AD为中线∴AD=BC=DC,∴平行四边形ADCF是菱形;20.(2020•铜仁市)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.(1)证明:如图,连接OC,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴OD⊥DF,∴DF⊥AC;(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,S△ABC=,6×4=5BG,BG=,由勾股定理得:CG==,∴tan∠CBG=tan∠E===.21.(2020•安顺)如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;(2)若cos∠ABC=,AB=12,求半圆O所在圆的半径.解:(1)如图,作OE⊥AB于E,连接OD,OA,∵AB=AC,点O是BC的中点,∴∠CAO=∠BAO,∵AC与半圆O相切于D,∴OD⊥AC,∵OE⊥AB,∴OD=OE,∵AB径半圆O的半径的外端点,∴AB是半圆O所在圆的切线;(2)∵AB=AC,O是BC的中点,∴AO⊥BC,在Rt△AOB中,OB=AB•cos∠ABC=12×=8,根据勾股定理得,OA==4,=AB•OE=OB•OA,由三角形的面积得,S△AOB∴OE==,即:半圆O所在圆的半径为.22.(2020•贵阳)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条件下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)解:(1)依题意作出图形如图①所示,(2)EB是平分∠AEC,理由:∵四边形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=,∵点E是CD的中点,∴DE=CE=CD=1,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠AED=∠BEC,在Rt△ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC=,∴CP=,BP=,在Rt△CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP==,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE 折叠.23.(2020•黔西南州)如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s 的速度向点B运动,与点P同时结束运动.(1)点P到达终点O的运动时间是s,此时点Q的运动距离是cm;(2)当运动时间为2s时,P、Q两点的距离为6cm;(3)请你计算出发多久时,点P和点Q之间的距离是10cm;(4)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线y=过点D,问k 的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.解:(1)∵四边形AOCB是矩形,∴OA=BC=16,∵动点P从点A出发,以3cm/s的速度向点O运动,∴,此时,点Q的运动距离是cm(2)如图1,由运动知,AP=3×2=6cm,CQ=2×2=4cm,过点P作PE⊥BC于E,过点Q作QF⊥OA于F,∴四边形APEB是矩形,∴PE=AB=6,BE=6,∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,根据勾股定理得,PQ=6,故答案为6;(3)设运动时间为t秒时,由运动知,AP=3t,CQ=2t,同(2)的方法得,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P和点Q之间的距离是10cm,∴62+(16﹣5t)2=100,∴t=或t=;(4)k的值是不会变化,理由:∵四边形AOCB是矩形,∴OC=AB=6,OA=16,∴C(6,0),A(0,16),∴直线AC的解析式为y=﹣x+16①,设运动时间为t,∴AP=3t,CQ=2t,∴OP=16﹣3t,∴P(0,16﹣3t),Q(6,2t),∴PQ解析式为y=x+16﹣3t②,联立①②得,﹣x+16=x+16﹣3t,∴x+x=3t,∴5tx﹣16x+16x=3t,∴x=,∴y=,∴D(,)∴k=×=是定值.。

2020年全国各地中考数学压轴题按题型(几何综合)汇编(二)四边形中的计算和证明综合(解析版)

2020年全国各地中考数学压轴题按题型(几何综合)汇编(二)四边形中的计算和证明综合(解析版)

2020全国各地中考数学压轴题按题型(几何综合)汇编二、四边形中的计算和证明综合题1.(2020安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=√2AG.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴AEDC =AF DF,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得a=1+√52或1−√52(舍去),∴AE=1+√5 2.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠P AG=∠P AD+∠DAG=∠P AD+∠EAP=∠DAE=90°,∴△P AG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=√2AG.2.(2020黑龙江七台河)以Rt△ABC的两边AB、AC为边,向外作正方形ABDE和正方形ACFG,连接EG,过点A作AM⊥BC于M,延长MA交EG于点N.(1)如图①,若∠BAC=90°,AB=AC,易证:EN=GN;(2)如图②,∠BAC=90°;如图③,∠BAC≠90°,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.【解答】解:(1)证明:∵∠BAC=90°,AB=AC,∴∠ACB=45°,∵AM⊥BC,∴∠MAC=45°,∴∠EAN=∠MAC=45°,同理∠NAG=45°,∴∠EAN=∠NAG,∵四边形ABDE和四边形ACFG为正方形,∴AE=AB=AC=AG,∴EN=GN.(2)如图1,∠BAC=90°时,(1)中结论成立.理由:过点E 作EP ⊥AN 交AN 的延长线于P ,过点G 作GQ ⊥AM 于Q ,∵四边形ABDE 是正方形,∴AB =AE ,∠BAE =90°,∴∠EAP +∠BAM =180°﹣90°=90°,∵AM ⊥BC ,∴∠ABM +∠BAM =90°,∴∠ABM =∠EAP ,在△ABM 和△EAP 中,{∠ABM =∠EAP∠AMB =∠P =90°AB =AE,∴△ABM ≌△EAP (AAS ),∴EP =AM ,同理可得:GQ =AM ,∴EP =GQ ,在△EPN 和△GQN 中,{∠P =∠NQG∠ENP =∠GNQ EP =GQ,∴△EPN ≌△GQN (AAS ),∴EN =NG .如图2,∠BAC ≠90°时,(1)中结论成立.理由:过点E 作EP ⊥AN 交AN 的延长线于P ,过点G 作GQ ⊥AM 于Q ,∵四边形ABDE 是正方形,∴AB =AE ,∠BAE =90°,∴∠EAP +∠BAM =180°﹣90°=90°,∵AM ⊥BC ,∴∠ABM +∠BAM =90°,∴∠ABM =∠EAP ,在△ABM 和△EAP 中,{∠ABM =∠EAP∠AMB =∠P =90°AB =AE,∴△ABM ≌△EAP (AAS ),∴EP =AM ,同理可得:GQ =AM ,∴EP =GQ ,在△EPN 和△GQN 中,{∠P =∠NQG∠ENP =∠GNQ EP =GQ,∴△EPN ≌△GQN (AAS ),∴EN =NG .3.(2020黑龙江绥化)如图,在正方形ABCD 中,AB =4,点G 在边BC 上,连接AG ,作DE ⊥AG 于点E ,BF ⊥AG 于点F ,连接BE 、DF ,设∠EDF =α,∠EBF =β,BG BC =k .(1)求证:AE =BF ;(2)求证:tan α=k •tan β;(3)若点G 从点B 沿BC 边运动至点C 停止,求点E ,F 所经过的路径与边AB 围成的图形的面积.【解答】解:(1)证明:在正方形ABCD 中,AB =BC =AD ,∠BAD =∠ABC =90°,∵DE ⊥AG ,BF ⊥AG ,∴∠AED =∠BF A =90°,∴∠ADE +∠DAE =90°,∵∠BAF +∠DAE =90°,∴∠ADE =∠BAF ,∴△ABF ≌△DAE (AAS ),∴AE =BF ;(2)在Rt △DEF 和Rt △EFB 中,tan α=EF DE ,tan β=EF BF ,∴tanαtanβ=EF DE ⋅BF EF =BF DE .由①可知∠ADE =∠BAG ,∠AED =∠GBA =90°,∴△AED ∽△GBA ,∴AE GB =DE AB ,由①可知,AE =BF ,∴BF GB=DE AB , ∴BF DE=GB AB , ∵BG BC=k ,AB =BC , ∴BF DE =BG AB =BG BC =k ,∴tanαtanβ=k .∴tan α=k tan β.(3)∵DE ⊥AG ,BF ⊥AG ,∴∠AED =∠BF A =90°,∴当点G从点B沿BC边运动至点C停止时,点E经过的路径是以AD为直径,圆心角为90°的圆弧,同理可得点F经过的路径,两弧交于正方形的中心点O,如图.∵AB=AD=4,∴所围成的图形的面积为S=S△AOB=14×4×4=4.4.(2020湖南长沙)在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=2√3,AD=4,求EC的长;(3)若AE﹣DE=2EC,记∠BAF=α,∠F AE=β,求tanα+tanβ的值.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,由翻折可知,∠D=∠AFE=90°,∴∠AFB+∠EFC=90°,∠EFC+∠CEF=90°,∴∠AFB=∠FEC,∴△ABF ∽△FCE .(2)设EC =x ,由翻折可知,AD =AF =4,∴BF =√AF 2−AB 2=√16−12=2,∴CF =BC ﹣BF =2,∵△ABF ∽△FCE ,∴AB CF =BF EC ,∴2√32=2x, ∴x =2√33,∴EC =2√33. (3)∵△ABF ∽△FCE ,∴AF EF =AB CF ,∴tan α+tan β=BF AB +EF AF =BF AB +CF AB =BF+CF AB =BC AB , 设AB =CD =a ,BC =AD =b ,DE =x ,∴AE =DE +2CE =x +2(a ﹣x )=2a ﹣x ,∵AD =AF =b ,DE =EF =x ,∠B =∠C =∠D =90°,∴BF =√b 2−a 2,CF =√x 2−(a −x)2=√2ax −a 2,∵AD 2+DE 2=AE 2,∴b 2+x 2=(2a ﹣x )2,∴a 2﹣ax =14b 2,∵△ABF ∽△FCE ,∴AB CF =BF EC, ∴22=√b 2−a 2a−x ,∴a 2﹣ax =√b 2−a 2•√2ax −a 2,∴14b 2=√b 2−a 2•√a 2−12b 2, 整理得,16a 4﹣24a 2b 2+9b 4=0,∴(4a 2﹣3b 2)2=0,∴b a =2√33, ∴tan α+tan β=BC AB =2√33.5.(2020江苏连云港)(1)如图1,点P 为矩形ABCD 对角线BD 上一点,过点P 作EF ∥BC ,分别交AB 、CD 于点E 、F .若BE =2,PF =6,△AEP 的面积为S 1,△CFP 的面积为S 2,则S 1+S 2= 12 ;(2)如图2,点P 为▱ABCD 内一点(点P 不在BD 上),点E 、F 、G 、H 分别为各边的中点.设四边形AEPH 的面积为S 1,四边形PFCG 的面积为S 2(其中S 2>S 1),求△PBD 的面积(用含S 1、S 2的代数式表示);(3)如图3,点P 为▱ABCD 内一点(点P 不在BD 上),过点P 作EF ∥AD ,HG ∥AB ,与各边分别相交于点E 、F 、G 、H .设四边形AEPH 的面积为S 1,四边形PGCF 的面积为S 2(其中S 2>S 1),求△PBD的面积(用含S1、S2的代数式表示);(4)如图4,点A、B、C、D把⊙O四等分.请你在圆内选一点P(点P不在AC、BD上),设PB、PC、BĈ围成的封闭图形的面积为S1,P A、PD、AD̂围成的封闭图形的面积为S2,△PBD的面积为S3,△P AC 的面积为S4,根据你选的点P的位置,直接写出一个含有S1、S2、S3、S4的等式(写出一种情况即可).【解答】解:(1)如图1中,过点P作PM⊥AD于M,交BC于N.∵四边形ABCD是矩形,EF∥BC,∴四边形AEPM,四边形MPFD,四边形BNPE,四边形PNCF都是矩形,∴BE=PN=CF=2,S△PFC=12×PF×CF=6,S△AEP=S△APM,S△PEB=S△PBN,S△PDM=S△PFD,S△PCN=S△PCF,S△ABD=S△BCD,∴S矩形AEPM=S矩形PNCF,∴S1=S2=6,∴S1+S2=12,故答案为12.(2)如图2中,连接P A,PC,在△APB中,∵点E是AB的中点,∴可设S△APE=S△PBE=a,同理,S△APH=S△PDH=b,S△PDG=S△PGC=c,S△PFC=S△PBF=d,∴S四边形AEPH+S四边形PFCG=a+b+c+d,S四边形PEBF+S四边形PHDG=a+b+c+d,∴S四边形AEPH+S四边形PFCG=S四边形PEBF+S四边形PHDG=S1+S2,∴S△ABD=12S平行四边形ABCD=S1+S2,∴S△PBD=S△ABD﹣(S1+S△PBE+S△PHD)=S1+S2﹣(S1+a+S1﹣a)=S2﹣S1.(3)如图3中,由题意四边形EBGP,四边形HPFD都是平行四边形,∴S四边形EBGP=2S△EBP,S四边形HPFD=2S△HPD,∴S△ABD=12S平行四边形ABCD=12(S1+S2+2S△EBP+2S△HPD)=12(S1+S2)+S△EBP+S△HPD,∴S△PBD=S△ABD﹣(S1+S△EBP+S△HPD)=12(S2﹣S1).(4)如图4﹣1中,结论:S2﹣S1=S3+S4.理由:设线段PB,线段P A,弧AB围成的封闭图形的面积为x,线段PC,线段PD,弧CD的封闭图形的面积为y.由题意:S1+x+S4=S1+y+S3,∴x﹣y=S3﹣S4,∵S1+S2+x+y=2(S1+x+S4),∴S2﹣S1=x﹣y+2S4=S3+S4.同法可证:图4﹣2中,有结论:S1﹣S2=S3+S4.图4﹣3中和图4﹣4中,有结论:|S1﹣S2|=|S3﹣S4|.6.(2020江苏苏州)问题1:如图①,在四边形ABCD中,∠B=∠C=90°,P是BC上一点,P A=PD,∠APD=90°.求证:AB+CD=BC.问题2:如图②,在四边形ABCD中,∠B=∠C=45°,P是BC上一点,P A=PD,∠APD=90°.求AB+CD的值.BC【解答】证明:(1)∵∠B=∠APD=90°,∴∠BAP +∠APB =90°,∠APB +∠DPC =90°,∴∠BAP =∠DPC ,又P A =PD ,∠B =∠C =90°,∴△BAP ≌△CPD (AAS ),∴BP =CD ,AB =PC ,∴BC =BP +PC =AB +CD ;(2)如图2,过点A 作AE ⊥BC 于E ,过点D 作DF ⊥BC 于F ,由(1)可知,EF =AE +DF ,∵∠B =∠C =45°,AE ⊥BC ,DF ⊥BC ,∴∠B =∠BAE =45°,∠C =∠CDF =45°,∴BE =AE ,CF =DF ,AB =√2AE ,CD =√2DF ,∴BC =BE +EF +CF =2(AE +DF ),∴AB+CD BC =√2(AE+DF)=√22. 7.(2020江苏泰州)如图,正方形ABCD 的边长为6,M 为AB 的中点,△MBE 为等边三角形,过点E 作ME 的垂线分别与边AD 、BC 相交于点F 、G ,点P 、Q 分别在线段EF 、BC 上运动,且满足∠PMQ =60°,连接PQ .(1)求证:△MEP ≌△MBQ .(2)当点Q在线段GC上时,试判断PF+GQ的值是否变化?如果不变,求出这个值,如果变化,请说明理由.(3)设∠QMB=α,点B关于QM的对称点为B',若点B'落在△MPQ的内部,试写出α的范围,并说明理由.【解答】证明:(1)∵正方形ABCD的边长为6,M为AB的中点,∴∠A=∠ABC=90°,AB=BC=6,AM=BM=3,∵△MBE是等边三角形,∴MB=ME=BE,∠BME=∠PMQ=60°,∴∠BMQ=∠PME,又∵∠ABC=∠MEP=90°,∴△MBQ≌△MEP(ASA);(2)PF+GQ的值不变,理由如下:如图1,连接MG,过点F作FH⊥BC于H,∵ME=MB,MG=MG,∴Rt△MBG≌Rt△MEG(HL),∴BG=GE,∠BMG=∠EMG=30°,∠BGM=∠EGM,∴MB=√3BG=3,∠BGM=∠EGM=60°,∴GE=√3,∠FGH=60°,∵FH⊥BC,∠C=∠D=90°,∴四边形DCHF是矩形,∴FH=CD=6,∵sin∠FGH=FHGF=√32=6FG,∴FG=4√3,∵△MBQ≌△MEP,∴BQ=PE,∴PE=BQ=BG+GQ,∵FG=EG+PE+FP=EG+BG+GQ+PF=2√3+GQ+PF,∴GQ+PF=2√3;(3)如图2,当点B'落在PQ上时,∵△MBQ≌△MEP,∴MQ=MP,∵∠QMP=60°,∴△MPQ是等边三角形,当点B'落在PQ上时,点B关于QM的对称点为B',∴△MBQ≌△MB'Q,∴∠MBQ=∠MB'Q=90°∴∠QME=30°∴点B'与点E重合,点Q与点G重合,∴∠QMB=∠QMB'=α=30°,如图3,当点B'落在MP上时,同理可求:∠QMB=∠QMB'=α=60°,∴当30°<α<60°时,点B'落在△MPQ的内部.8.(2020江苏无锡)如图,在矩形ABCD中,AB=2,AD=1,点E为边CD上的一点(与C、D不重合),四边形ABCE关于直线AE的对称图形为四边形ANME,延长ME交AB于点P,记四边形P ADE的面积为S.(1)若DE=√33,求S的值;(2)设DE=x,求S关于x的函数表达式.【解答】解:(1)当DE=√3 3,∵AD=1,∴tan∠AED=√3,AE=2√3 3,∴∠AED=60°,∵AB∥CD,∴∠BAE=60°,∵四边形ABCE关于直线AE的对称图形为四边形ANME,∴∠AEC=∠AEM,∵∠PEC=∠DEM,∴∠AEP=∠AED=60°,∴△APE为等边三角形,∴S=√34×(2√33)2+12×√33×1=√32;(2)过E作EF⊥AB于F,由(1)可知,∠AEP=∠AED=∠PEA,∴AP=PE,设AP=PE=a,AF=ED=x,则PF=a﹣x,EF=AD=1,在Rt△PEF中,(a﹣x)2+1=a2,解得:a=x2+1 2x,∴S=12⋅x×1+12×x2+12x×1=12x+x2+14x.9.(2020辽宁营口)如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.(1)如图1,若k=1,则AF与AE之间的数量关系是AF=AE;(2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)(3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.【解答】解:(1)AE=AF.∵AD=AB,四边形ABCD矩形,∴四边形ABCD是正方形,∴∠BAD=90°,∵AF⊥AE,∴∠EAF=90°,∴∠EAB=∠F AD,∴△EAB≌△F AD(AAS),∴AF=AE;故答案为:AF=AE.(2)AF=kAE.证明:∵四边形ABCD是矩形,∴∠BAD=∠ABC=∠ADF=90°,∴∠F AD+∠F AB=90°,∵AF⊥AE,∴∠EAF=90°,∴∠EAB+∠F AB=90°,∴∠EAB=∠F AD,∵∠ABE+∠ABC=180°,∴∠ABE=180°﹣∠ABC=180°﹣90°=90°,∴∠ABE=∠ADF.∴△ABE∽△ADF,∴AB AD =AE AF ,∵AD =kAB ,∴AB AD=1k , ∴AE AF =1k, ∴AF =kAE .(3)解:①如图1,当点F 在DA 上时,∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,∵AD =2AB =4,∴AB =2,∴CD =2,∵CF =1,∴DF =CD ﹣CF =2﹣1=1.在Rt △ADF 中,∠ADF =90°,∴AF =√AD 2+DF 2=√42+12=√17,∵DF ∥AB ,∴∠GDF =∠GBA ,∠GFD =∠GAB ,∴△GDF ∽△GBA ,∴GF GA =DF BA =12,∵AF =GF +AG ,∴AG =23AF =23√17.∵△ABE ∽△ADF ,∴AE AF =AB AD =24=12, ∴AE =12AF =12×√17=√172.在Rt △EAG 中,∠EAG =90°,∴EG =√AE 2+AG 2=(172)2+(2173)2=5√176, ②如图2,当点F 在DC 的延长线上时,DF =CD +CF =2+1=3,在Rt △ADF 中,∠ADF =90°,∴AF =√AD 2+DF 2=√42+32=5.∵DF ∥AB ,∵∠GAB =∠GFD ,∠GBA =∠GDF ,∴△AGB ∽△FGD ,∴AG FG =AB FD =23,∵GF +AG =AF =5,∴AG =2,∵△ABE ∽△ADF ,∴AE AF =AB AD =24=12, ∴AE =12AF =12×5=52,在Rt △EAG 中,∠EAG=90°, ∴EG =√AE 2+AG 2=√(52)2+22=√412.综上所述,EG 的长为5√176或√412. 10.(2020山东菏泽)如图1,四边形ABCD 的对角线AC ,BD 相交于点O ,OA =OC ,OB =OD +CD .(1)过点A 作AE ∥DC 交BD 于点E ,求证:AE =BE ;(2)如图2,将△ABD 沿AB 翻折得到△ABD '.①求证:BD '∥CD ;②若AD '∥BC ,求证:CD 2=2OD •BD .【解答】(1)证明:∵AE ∥DC ,∴∠CDO=∠AEO,∠EAO=∠DCO,又∵OA=OC,∴△AOE≌△COD(AAS),∴CD=AE,OD=OE,∵OB=OE+BE,OB=OD+CD,∴BE=CD,∴AE=BE;(2)①证明:如图1,过点A作AE∥DC交BD于点E,由(1)可知△AOE≌△COD,AE=BE,∴∠ABE=∠AEB,∵将△ABD沿AB翻折得到△ABD',∴∠ABD'=∠ABD,∴∠ABD'=∠BAE,∴BD'∥AE,又∵AE∥CD∴BD'∥CD.②证明:如图2,过点A作AE∥DC交BD于点E,延长AE交BC于点F,∵AD '∥BC ,BD '∥AE ,∴四边形AD 'BF 为平行四边形.∴∠D '=∠AFB ,∵将△ABD 沿AB 翻折得到△ABD '.∴∠D '=∠ADB ,∴∠AFB =∠ADB ,又∵∠AED =∠BEF ,∴△AED ∽△BEF ,∴AE DE =BE EF ,∵AE =CD ,∴CD DE =BE EF ,∵EF ∥CD ,∴△BEF ∽△BDC ,∴BE EF=BD DC , ∴CD DE =BD CD ,∴CD 2=DE •BD ,∵△AOE ≌△COD ,∴OD =OE ,∴DE =2OD ,∴CD 2=2OD •BD .11.(2020山东济宁)如图,在菱形ABCD 中,AB =AC ,点E ,F ,G 分别在边BC ,CD 上,BE =CG ,AF 平分∠EAG ,点H 是线段AF 上一动点(与点A 不重合).(1)求证:△AEH ≌△AGH ;(2)当AB =12,BE =4时.①求△DGH 周长的最小值;②若点O 是AC 的中点,是否存在直线OH 将△ACE 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出AH AF 的值;若不存在,请说明理由.【解答】(1)证明:∵四边形ABCD 是菱形,∴AB =BC ,∵AB =AC ,∴AB =BC =AC ,∴△ABC 是等边三角形,∴∠ABC=60°,∴∠BCD=120°,∵AC是菱形ABCD的对角线,∴∠ACD=12∠BCD=60°=∠ABC,∵BE=CG,∴△ABE≌△ACG(SAS),∴AE=AG,∵AF平分∠EAG,∴∠EAF=∠GAF,∵AH=AH,∴△AEH≌△AGH(SAS);(2)①如图1,过点D作DM⊥BC交BC的延长线于M,连接DE,∵AB=12,BE=4,∴CG=4,∴CE=DG=12﹣4=8,由(1)知,△AEH≌△AGH,∴EH=HG,∴l△DGH=DH+GH+DG=DH+HE+8,要是△AEH的周长最小,则EH+DH最小,最小为DE,在Rt △DCM 中,∠DCM =180°﹣120°=60°,CD =AB =12,∴CM =6,∴DM =√3CM =6√3,在Rt △DME 中,EM =CE +CM =14,根据勾股定理得,DE =√EM 2+DM 2=√142+(6√3)2=2√51,∴△DGH 周长的最小值为2√51+8;②Ⅰ、当OH 与线段AE 相交时,交点记作点N ,如图2,连接CN ,∴点O 是AC 的中点,∴S △AON =S △CON =12S △ACN ,∵三角形的面积与四边形的面积比为1:3,∴S △AONS △AEC =14, ∴S △CEN =S △ACN ,∴AN =EN ,∵点O 是AC 的中点,∴ON ∥CE ,∴AH AF =12;Ⅱ、当OH 与线段CE 相交时,交点记作Q ,如图3,连接AQ ,FG ,∵点O 是AC 的中点,∴S △AOQ =S △COQ =12S △ACQ ,∵三角形的面积与四边形的面积比为1:3,∴S △COQS △ACE =14,∴S △AEQ =S △ACQ ,∴CQ =EQ =12CE =12(12﹣4)=4,∵点O 是AC 的中点,∴OQ ∥AE ,设FQ =x ,∴EF =EQ +FQ =4+x ,CF =CQ ﹣FQ =4﹣x ,由(1)知,AE =AG ,∵AF 是∠EAG 的角平分线,∴∠EAF =∠GAF ,∵AF =AF ,∴△AEF ≌△AGF (SAS ),∴FG =EF =4+x ,过点G 作GP ⊥BC 交BC 的延长线于P ,在Rt △CPG 中,∠PCG =60°,CG =4,∴CP =12CG =2,PG =√3CP =2√3,∴PF =CF +CP =4﹣x +2=6﹣x ,在Rt △FPG 中,根据勾股定理得,PF 2+PG 2=FG 2,∴(6﹣x )2+(2√3)2=(4+x )2,∴x =85,∴FQ =85,EF =4+85=285, ∵OQ ∥AE ,∴AH AF=EQ EF =4285=57, 即AH AF 的值为12或57.12.(2020四川南充)如图,边长为1的正方形ABCD 中,点K 在AD 上,连接BK ,过点A ,C 作BK 的垂线,垂足分别为M ,N ,点O 是正方形ABCD 的中心,连接OM ,ON .(1)求证:AM =BN .(2)请判定△OMN 的形状,并说明理由.(3)若点K 在线段AD 上运动(不包括端点),设AK =x ,△OMN 的面积为y ,求y 关于x 的函数关系式(写出x 的范围);若点K 在射线AD 上运动,且△OMN 的面积为110,请直接写出AK 长.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABM+∠CBM=90°,∵AM⊥BM,CN⊥BN,∴∠AMB=∠BNC=90°,∴∠MAB+∠MBA=90°,∴∠MAB=∠CBM,∴△ABM≌△BCN(AAS),∴AM=BN;(2)△OMN是等腰直角三角形,理由如下:如图,连接OB,∵点O是正方形ABCD的中心,∴OA=OB,∠OBA=∠OAB=45°=∠OBC,AO⊥BO,∵∠MAB=∠CBM,∴∠MAB﹣∠OAB=∠CBM﹣∠OBC,∴∠MAO=∠NBO,又∵AM=BN,OA=OB,∴△AOM≌△BON(SAS),∴MO=NO,∠AOM=∠BON,∵∠AON+∠BON=90°,∴∠AON+∠AOM=90°,∴∠MON=90°,∴△MON是等腰直角三角形;(3)在Rt△ABK中,BK=√AK2+AB2=√x2+1,∵S△ABK=12×AK×AB=12×BK×AM,∴AM=AK⋅ABBK=x√x2+1,∴BN=AM=x√x2+1,∵cos∠ABK=BMAB=ABBK,∴BM=AB⋅ABBK=1√x2+1,∴MN=BM﹣BN=x2+1∵S△OMN=14MN2=(1−x)24x2+4,∴y=x2−2x+14x2+4(0<x<1);当点K 在线段AD 上时,则110=x 2−2x+14x 2+4, 解得:x 1=3(不合题意舍去),x 2=13,当点K 在线段AD 的延长线时,同理可求y =x 2−2x+14x 2+4(x >1), ∴110=x 2−2x+14x 2+4, 解得:x 1=3,x 2=13(不合题意舍去),综上所述:AK 的值为3或13时,△OMN 的面积为110.13.(2020浙江杭州)如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,∠DAE 的平分线AG 与CD 边交于点G ,与BC 的延长线交于点F .设CE EB =λ(λ>0).(1)若AB =2,λ=1,求线段CF 的长.(2)连接EG ,若EG ⊥AF ,①求证:点G 为CD 边的中点.②求λ的值.【解答】解:(1)∵在正方形ABCD 中,AD ∥BC ,∴∠DAG =∠F ,又∵AG 平分∠DAE ,∴∠DAG =∠EAG ,∴∠EAG =∠F ,∴EA =EF ,∵AB =2,∠B =90°,点E 为BC 的中点,∴BE =EC =1,∴AE =√AB 2+BE 2=√5,∴EF =√5,∴CF =EF ﹣EC =√5−1;(2)①证明:∵EA =EF ,EG ⊥AF ,∴AG =FG ,在△ADG 和△FCG 中{∠D =∠GCF ∠AGD =∠FGC AG =FG,∴△ADG ≌△FCG (AAS ),∴DG =CG ,即点G 为CD 的中点;②设CD =2a ,则CG =a ,由①知,CF =DA =2a ,∵EG ⊥AF ,∠GDF =90°,∴∠EGC +∠CGF =90°,∠F +∠CGF =90°,∠ECG =∠GCF =90°,∴∠EGC =∠F ,∴△EGC ∽△GFC ,∴EC GC =GC FC ,∵GC =a ,FC =2a ,∴GC FC=12, ∴EC GC =12,∴EC =12a ,BE =BC ﹣EC =2a −12a =32a ,∴λ=CE EB =12a 32a =13.14.(2020浙江金华)如图,在平面直角坐标系中,正方形ABOC 的两直角边分别在坐标轴的正半轴上,分别过OB ,OC 的中点D ,E 作AE ,AD 的平行线,相交于点F ,已知OB =8.(1)求证:四边形AEFD 为菱形.(2)求四边形AEFD 的面积.(3)若点P 在x 轴正半轴上(异于点D ),点Q 在y 轴上,平面内是否存在点G ,使得以点A ,P ,Q ,G 为顶点的四边形与四边形AEFD 相似?若存在,求点P 的坐标;若不存在,试说明理由.【解答】(1)证明:如图1中,∵AE∥DF,AD∥EF,∴四边形AEFD是平行四边形,∵四边形ABCD是正方形,∴AC=AB=OC=OB,∠ACE=∠ABD=90°,∵E,D分别是OC,OB的中点,∴CE=BD,∴△CAE≌△ABD(SAS),∴AE=AD,∴四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S△ADB=S△ACE=12×8×4=16,S△EOD=12×4×4=8,∴S△AED=S正方形ABOC﹣2S△ABD﹣S△EOD=64﹣2×16﹣8=24,∴S菱形AEFD=2S△AED=48.(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK⊥DE,∴KE=KD,∴OK=KE=KD=2√2,∵AO=8√2,∴AK=6√2,∴AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形:如图2中,设AG交PQ于H,过点H作HN⊥x轴于N,交AC于M,设AM=t.∵菱形P AQG∽菱形ADFE,∴PH=3AH,∵HN∥OQ,QH=HP,∴ON=NP,∴HN是△PQO的中位线,∴ON=PN=8﹣t,∵∠MAH =∠PHN =90°﹣∠AHM ,∠PNH =∠AMH =90°,∴△HMA ∽△PNH ,∴AM NH =MH PN =AH PH =13,∴HN =3AM =3t ,∴MH =MN ﹣NH =8﹣3t ,∵PN =3MH ,∴8﹣t =3(8﹣3t ),∴t =2,∴OP =2ON =2(8﹣t )=12,∴P (12,0).如图3中,过点H 作HI ⊥y 轴于I ,过点P 作PN ⊥x 轴交IH 于N ,延长BA 交IN 于M .同法可证:△AMH ∽△HNP ,∴AM HN =MH PN =AH HP =13,设MH =t ,∴PN =3MH =3t ,∴AM=BM﹣AB=3t﹣8,∵HI是△OPQ的中位线,∴OP=2IH,∴HIHN,∴8+t=9t﹣24,∴t=4,∴OP=2HI=2(8+t)=24,∴P(24,0).②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形:如图4中,QH=3PH,过点H作HM⊥OC于M,过D点P作PN⊥MH于N.∵MH是△QAC的中位线,∴MH=12AC=4,同法可得:△HPN∽△QHM,∴NPHM =HNMQ=PHQH=13,∴PN=13HM=43,∴OM =PN =43,设HN =t ,则MQ =3t , ∵MQ =MC ,∴3t =8−43,∴t =209, ∴OP =MN =4+t =569,∴点P 的坐标为(569,0).如图5中,QH =3PH ,过点H 作HM ⊥x 轴于M 交AC 于I ,过点Q 作QN ⊥HM 于N .∵IH 是△ACQ 的中位线,∴CQ =2HI ,NQ =CI =4,同法可得:△PMH ∽△HNQ ,∴MH NQ =PM HN =PH HQ =13,则MH =13NQ =43, 设PM =t ,则HN =3t ,∵HN =HI ,∴3t =8+43,∴t =289, ∴OP =OM ﹣PM =QN ﹣PM =4﹣t =89,∴P (89,0). ③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM ⊥y 轴于于点M ,交AB 于I ,过点P 作PN ⊥HM 于N .∵HI ∥x 轴,AH =HP ,∴AI =IB =4,∴PN =IB =4,同法可得:△PNH ∽△HMQ ,∴PN HM =HN MQ =PH HQ =13,∴MH =3PN =12,HI =MH ﹣MI =4,∵HI 是△ABP 的中位线,∴BP =2IH =8,∴OP =OB +BP =16,∴P (16,0),综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或(569,0)或(89,0)或(16,0).15.(2020浙江宁波)【基础巩固】 (1)如图1,在△ABC 中,D 为AB 上一点,∠ACD =∠B .求证:AC 2=AD •AB .【尝试应用】(2)如图2,在▱ABCD 中,E 为BC 上一点,F 为CD 延长线上一点,∠BFE =∠A .若BF =4,BE =3,求AD 的长.【拓展提高】(3)如图3,在菱形ABCD 中,E 是AB 上一点,F 是△ABC 内一点,EF ∥AC ,AC =2EF ,∠EDF =12∠BAD ,AE =2,DF =5,求菱形ABCD 的边长.【解答】解:(1)证明:∵∠ACD =∠B ,∠A =∠A ,∴△ADC ∽△ACB ,∴AD AC =AC AB ,∴AC 2=AD •AB .(2)∵四边形ABCD 是平行四边形, ∴AD =BC ,∠A =∠C ,又∵∠BFE =∠A ,∴∠BFE =∠C ,又∵∠FBE =∠CBF ,∴△BFE ∽△BCF ,∴BF BC =BE BF ,∴BF 2=BE •BC ,∴BC =BF 2BE =423=163,∴AD =163.(3)如图,分别延长EF ,DC 相交于点G ,∵四边形ABCD 是菱形,∴AB ∥DC ,∠BAC =12∠BAD ,∵AC ∥EF ,∴四边形AEGC 为平行四边形,∴AC =EG ,CG =AE ,∠EAC =∠G ,∵∠EDF =12∠BAD , ∴∠EDF =∠BAC , ∴∠EDF =∠G ,又∵∠DEF =∠GED , ∴△EDF ∽△EGD , ∴ED EG =EF DE , ∴DE 2=EF •EG , 又∵EG =AC =2EF , ∴DE 2=2EF 2, ∴DE =√2EF ,又∵DG DF =DE EF , ∴DG =√2DF =5√2, ∴DC =DG ﹣CG =5√2−2.。

2020年全国各地中考数学压轴题按题型(几何综合)汇编(二)四边形中的计算和证明综合(原卷版)

2020年全国各地中考数学压轴题按题型(几何综合)汇编(二)四边形中的计算和证明综合(原卷版)

图1@2 图3 二、四边形中的计算和证明综合题1. (2020安徽)如图1,已知四边形ABCD 是矩形,点E 在的延长线上,AE=AD. EC 与8D 相交于点 G,与A 。

相交于点F, AF=AB.求证:BDREC ;2. (2020黑龙江七台河)以Rt&BC 的两边AB 、AC 为边,向外作正方形ABDE 和正方形ACFG,连接EG, 过点A 作AMLBC 于M,延长MA 交EG 于点N.(1)如图①,若ZBAC=90° , AB=AC,易证:EN=GN :(2)如图②,ZBAC=90c :如图③,匕8ACK90° , (1)中结论, 形进行证明;若不成立,写出你的结论,并说明理由.(2) 若AB=1,求AE 的长:如图2,连接AG,求证:EG ・DG= y/^AG.是否成立,若成立,选择一个图 (3) ® 1ENGB M C3.(2020黑龙江绥化)如图,在正方形A8CD中,A8=4,点G在边8C上,连接AG,作。

EVAG于点E,BGBFA.AG 于点、F,连接BE、OF,设ZEDF=a. ZEBF=B,— =k.BC(1)求证:AE=BF;(2)求证:tana=k・tai】。

:(3)若点G从点B沿8C边运动至点C停止,求点E, F所经过的路径与边A8围成的图形的面积.4. (2020湖南长沙)在矩形ABCD中,E为DC边上一点,把左ADE沿AE翻折,使点。

恰好落在BC边上的点F.(1)求证:△ABFs/^FCE;(2)若AB=2V5, AO=4,求EC 的长:(3)若AE・DE=2EC,记N8AF=a, ZME=p.求tana+tanp 的值.5. (2020江苏连云港)(1)如图1,点P为矩形ABCD对角线上一点,过点P作EF〃BC,分别交A8、CD 于点、E、F.若BE=2, PF=6, ZkAEP 的面积为Si, 的面积为则Si+S2=:(2)如图2,点P为"ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH的面积为Si,四边形PFCG的面积为S2 (其中S2>Si),求△P8O的面积(用含Si、S?的代数式表示):(3)如图3,点P为"BCD内一点(点P不在BD上),过点P作EF〃A。

专题14 几何综合(25题压轴题)(解析版)

专题14 几何综合(25题压轴题)(解析版)

2020年上海市16区中考数学二模汇编专题14 几何综合(25题压轴题)1.(2020闵行二模)2.(2020嘉定二模)3.(2020松江二模)4.(2020宝山二模)5.(2020奉贤二模)6.(2020金山二模)7.(2020静安二模)8.(2020长宁二模)9.(2020崇明二模) 10.(2020浦东二模) 11.(2020徐汇二模) 12.(2020青浦二模)13.(2020虹口二模) 14(2020杨浦二模) 15(2020黄浦二模) 16.(2020普陀二模)1.(2020闵行二模)如图,已知圆O是正六边形ABCDEF外接圆,直径BE=8,点G、H分别在射线CD、EF上(点G不与点C、D重合),且∠GBH=60°,设CG=x,EH=y.(1)如图①,当直线BG经过弧CD的中点Q时,求∠CBG的度数;(2)如图②,当点G在边CD上时,试写出y关于x的函数关系式,并写出x的取值范围;(3)联结AH、EG,如果△AFH与△DEG相似,求CG的长.【整体分析】(1)连接OQ,根据正六边形的特点和内角和求出∠EBC =60°,然后通过弧之间的关系得出∠BOQ=∠EOQ=90°,又因为BO=OQ,得出∠OBQ=∠BQO=45°,最后利用∠CBG=∠EBC-∠OBQ即可求出答案;(2)在BE上截取EM=HE,连接HM,首先根据正六边形的性质得出EHM是等边三角形,则有EM=HE=HM=y,∠HME=60°,从而有∠C=∠HMB=120°,然后通过等量代换得出∠GBC=∠HBE,由此可证明△BCG∽△BMH,则有,即,则y关于x的函数关系式可求,因为点Q在边CD上,则x的取值范围可求;(3)分两种情况:①当点G在边CD上时:又分当时和当时两种情况;②当点G在CD的延长线上时,同样分当时和当时两种情况,分别建立方程求解并检验即可得出答案.【详解】解:(1)如图,连接OQ.∵六边形ABCDEF是正六边形,∴BC=DE,∠ABC=120°.∴BC DE=,∠EBC=∠ABC=60°.∵点Q是CD的中点,∴CQ DQ=.∴,即.∴∠BOQ=∠EOQ,又∵∠BOQ+∠EOQ=180°,∴∠BOQ=∠EOQ=90°.又∵BO=OQ,∴∠OBQ=∠BQO=45°,∴∠CBG=60°45°=15°.(2)如图,在BE上截取EM=HE,连接HM.∵六边形ABCDEF是正六边形,直径BE=8,∴BO=OE=BC=4,∠C=∠FED=120°,∴∠FEB=∠FED=60°.∵EM=HE,∴EHM是等边三角形,∴EM=HE=HM=y,∠HME=60°,∴∠C=∠HMB=120°.∵∠EBC=∠GBH=60°,∴∠EBC∠GBE=∠GBH∠GBE,即∠GBC=∠HBE.∴△BCG∽△BMH,∴.又∵CG= x,BE=8,BC=4,∴,∴y与x的函数关系式为().(3)如图,当点G在边CD上时.由于△AFH∽△EDG,且∠CDE=∠AFE=120°,①当时,∵AF=ED,∴FH=DG,,∴CG EH即:,解分式方程得.经检验是原方程的解,但不符合题意舍去.②当时,即:,解分式方程得.经检验是原方程的解,但不符合题意舍去.如图,当点G在CD延长线上时.由于△AFH∽△EDG,且∠EDG=∠AFH=60°,①当时,∵AF=ED,∴FH=DG,,∴CG EH即:,解分式方程得.经检验是原方程的解,但不符合题意舍去.②当时,即:,解分式方程得.经检验是原方程的解,且符合题意.∴综上所述,如果△AFH与△DEG相似,那么CG的长为12.【点睛】本题主要考查正六边形的性质,等边三角形的判定及性质,相似三角形的判定及性质,解分式方程,做出辅助线并分情况讨论是解题的关键.2.(2020嘉定二模)如图8,在△ABC中,,AB=5cm,.动点D从点A出发沿着射线AC的方向以每秒1cm 的速度移动,动点E从点B出发沿着射线BA的方向以每秒2cm的速度移动.已知点D和点E同时出发,设它们运动的时间为t秒. 联结BD.(1)当AB AD =时,求ABD ∠tan 的值;(2)以A 为圆心,AD 为半径画⊙A ;以点B 为圆心、BE 为半径画⊙B .讨论⊙A 与⊙B 的位置关系,并写出相对应的t 的值.(3)当△BDE 为直角三角形时,直接写出的值.【考查内容】 两圆位置关系、锐角三角形比的应用、等腰三角形的性质、直角三角形存在性问题【解析】(1)等腰三角形三线合一的性质、等积法求高、锐角三角比的意义;(2)由内切和外切分别求出对应的t 的值,再根据两圆位置关系确定t 的取值范围;(3)按照直角进行分类讨论,由一线三等角求解非常方便。

教育部2020年中考数学必考压轴题及答案

教育部2020年中考数学必考压轴题及答案

教育部2020年中考数学必考压轴题及答案教育部2020年中考数学必考压轴题及答案一、函数与几何综合的压轴题1.如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D且AD与B相交于E点.已知:A(-2,-6),C(1,-3)求证:E点在y轴上;如果有一抛物线经过A,E,C三点,求此抛物线方程.如果AB位置不变,再将DC水平向右移动k(k>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于k的函数解析式.[解](1)(本小题介绍二种方法,供参考)方法一:过E作EO′⊥x轴,垂足O′∴AB∥EO′∥DC∴又∵DO′+BO′=DB∴∵AB=6,DC=3,∴EO′=2又∵,∴∴DO′=DO,即O′与O重合,E在y轴上方法二:由D(1,0),A(-2,-6),得DA直线方程:y=2x-2①再由B(-2,0),C(1,-3),得BC直线方程:y=-x-2②联立①②得∴E点坐标(0,-2),即E点在y轴上(2)设抛物线的方程y=ax2+bx+c(a≠0)过A(-2,-6),C(1,-3)E(0,-2)三点,得方程组解得a=-1,b=0,c=-2∴抛物线方程y=-x2-2(3)(本小题给出三种方法,供参考)由(1)当DC水平向右平移k后,过AD与BC的交点E′作E′F⊥x 轴垂足为F。

同(1)可得:得:E′F=2方法一:又∵E′F∥AB,∴S△AE′C=S△ADC-S△E′DC===DB=3+kS=3+k为所求函数解析式方法二:∵BA∥DC,∴S△BCA=S△BDA∴S△AE′C=S△BDE′∴S=3+k为所求函数解析式.证法三:S△DE′C∶S△AE′C=DE′∶AE′=DC∶AB=1∶2同理:S△DE′C∶S△DE′B=1∶2,又∵S△DE′C∶S△ABE′=DC2∶AB2=1∶4∴∴S=3+k为所求函数解析式.2.已知:如图,在直线坐标系中,以点M(1,0)为圆心、直径AC为的圆与y轴交于A、D两点.求点A的坐标;设过点A的直线y=x+b与x轴交于点B.探究:直线AB是否⊙M 的切线?并对你的结论加以证明;连接BC,记△ABC的外接圆面积为S1、⊙M面积为S2,若,抛物线y=ax2+bx+c经过B、M两点,且它的顶点到轴的距离为.求这条抛物线的解析式.解:由已知AM=,OM=1,在Rt△AOM中,AO=,∴点A的坐标为A(0,1)证:∵直线y=x+b过点A(0,1)∴1=0+b即b=1∴y=x+1令y=0则x=-1∴B(—1,0),AB=在△ABM中,AB=,AM=,BM=2∴△ABM是直角三角形,∠BAM=90°∴直线AB是⊙M的切线解法一:由⑵得∠BAC=90°,AB=,AC =2,∴BC=∵∠BAC=90°∴△ABC的外接圆的直径为BC,∴而,设经过点B(—1,0)、M(1,0)的抛物线的解析式为:y=a(+1)(x-1),(a≠0)即y=ax2-a,∴-a=±5,∴a =±5∴抛物线的解析式为y=5x2-5或y=-5x2+5解法二:(接上)求得∴h=5由已知所求抛物线经过点B(—1,0)、M(1、0),则抛物线的对称轴是y轴,由题意得抛物线的顶点坐标为(0,±5)∴抛物线的解析式为y=a(x-0)2±5又B(-1,0)、M(1,0)在抛物线上,∴a±5=0,a=±5∴抛物线的解析式为y=5x2-5或y=-5x2+5解法三:(接上)求得∴h=5因为抛物线的方程为y=ax2+bx+c(a≠0)由已知得∴抛物线的解析式为y=5x2-5或y=-5x2+5.3.如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线过点A、B,且顶点C在⊙P上.(1)求⊙P上劣弧的长;(2)求抛物线的解析式;(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由如图,连结PB,过P 作PM⊥x轴,垂足为M.在Rt△PMB中,PB=2,PM=1,∴∠MPB=60°,∴∠APB=120°的长=(2)在Rt△PMB中,PB=2,PM=1,则MB=MA=.又OM=1,∴A(1-,0),B(1+,0),由抛物线及圆的对称性得知点C在直线PM上,则C(1,-3).点A、B、C在抛物线上,则解之得抛物线解析式为(3)假设存在点D,使OC与PD互相平分,则四边形OPCD为平行四边形,且PC∥OD.又PC∥y轴,∴点D在y轴上,∴OD=2,即D(0,-2).又点D(0,-2)在抛物线上,故存在点D(0,-2),使线段OC与PD互相平分.如图,在平面直角坐标系内,Rt△ABC的直角顶点C(0,)在轴的正半轴上,A、B是轴上是两点,且OA∶OB=3∶1,以OA、OB为直径的圆分别交AC于点E,交BC于点F.直线EF交OC于点Q.求过A、B、C三点的抛物线的解析式;请猜想:直线EF与两圆有怎样的位置关系?并证明你的猜想.在△AOC中,设点M是AC边上的一个动点,过M作MN∥AB交OC于点N.试问:在轴上是否存在点P,使得△PMN是一个以MN为一直角边的等腰直角三角形?若存在,求出P点坐标;若.[解](1)在Rt△AB C中,OC⊥AB,∴△AOC≌△COB.∴OC2=OA·OB.∵OA∶OB=3∶1,C(0,),∴∴OB=1.∴OA=3.∴A(-3,0),B(1,0).设抛物线的解析式为则解之,得∴经过A、B、C三点的抛物线的解析式为(2)EF与⊙O1、⊙O2都相切.证明:连结O1E、OE、OF.∵∠ECF=∠AEO=∠BFO=90°,∴四边形EOFC为矩形.∴QE=QO.∴∠1=∠2.∵∠3=∠4,∠2+∠4=90°,∴EF与⊙O1相切.同理:EF理⊙O2相切.(3)作MP⊥OA于P,设MN=a,由题意可得MP=MN=a.∵MN∥OA,∴△CMN∽△CAO.∴∴解之,得此时,四边形OPMN是正方形.∴∴考虑到四边形PMNO此时为正方形,∴点P在原点时仍可满足△PNN是以MN为一直角边的等腰直角三角形.故轴上存在点P使得△PMN是一个以MN为一直角边的等腰直角三角形且或5.如图,已知点A(0,1)、C(4,3)、E(,),P是以AC为对角线的矩形ABCD内部(不在各边上)的—个动点,点D在y轴,抛物线y =ax2+bx+1以P为顶点.(1)说明点A、C、E在一条条直线上;(2)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由;(3)设抛物线y=ax2+bx+1与x轴有交点F、G(F在G的左侧),△GAO与△FAO的面积差为3,且这条抛物线与线段AE有两个不同的交点.这时能确定a、b的值吗?若能,请求出a、b的值;若不能,请确定a、b的取值范围.(本题图形仅供分析参考用)x+1.将点E的坐标E(,)代入y=x+1中,左边=,右边=×+1=,∵左边=右边,∴点E在直线y=x+1上,即点A、C、E在一条直线上.(2)解法一:由于动点P在矩形ABCD内部,∴点P的纵坐标大于点A的纵坐标,而点A与点P都在抛物线上,且P为顶点,∴这条抛物线有最高点,抛物线的开口向下解法二:∵抛物线y=ax2+bx+c的顶点P的纵坐标为,且P在矩形ABCD内部,∴1<<3,由1<1—得—>0,∴a<0,∴抛物线的开口向下.(3)连接GA、FA,∵S△GAO—S△FAO=3∴GO·AO—FO·AO=3∵OA=1,∴GO—FO=6.设F(x1,0)、G(x2,0),则x1、x2为方程ax2+bx+c=0的两个根,且x1<x2,又∵a<0,∴x1·x2=<0,∴x1<0<x2,∴GO=x2,FO=—x1,∴x2—(—x1)=6,即x2+x1=6,∵x2+x1=—∴—=6,∴b=—6a,∴抛物线解析式为:y=ax2—6ax+1,其顶点P的坐标为(3,1—9a),∵顶点P在矩形ABCD内部,∴1<1—9a<3,∴—<a<0.∴x=0或x==6+.当x=0时,即抛物线与线段AE交于点A,而这条抛物线与线段AE有两个不同的交点,则有:0<6+≤,解得:—≤a<—综合得:—<a<—∵b=—6a,∴<b<6.已知两点O(0,0)、B(0,2),⊙A过点B且与x轴分别相交于点O、C,⊙A被y轴分成段两圆弧,其弧长之比为3∶1,直线l与⊙A切于点O,抛物线的顶点在直线l上运动.求⊙A的半径;若抛物线经过O、C两点,求抛物线的解析式;过l上一点P的直线与⊙A交于C、E两点,且PC=CE,求点E的坐标;若抛物线与x轴分别相交于C、F两点,其顶点P的横坐标为m,求△PEC的面积关于m的函数解析式.(1)由弧长之比为3∶1,可得∠BAO=90o再由AB=AO=r,且OB=2,得r=(2)⊙A的切线l过原点,可设l为y=kx任取l上一点(b,kb),由l与y轴夹角为45o可得:b=-kb或b=kb,得k=-1或k=1,∴直线l的解析式为y=-x或y=x又由r=,易得C(2,0)或C(-2,0)由此可设抛物线解析式为y=ax(x-2)或y=ax(x+2)再把顶点坐标代入l的解析式中得a=1∴抛物线为y=x2-2x或y=x2+2x ……6分(3)当l的解析式为y=-x时,由P在l上,可设P(m,-m)(m >0)过P作PP′⊥x轴于P′,∴OP′=|m|,PP′=|-m|,∴OP=2m2,又由切割线定理可得:OP2=PC.PE,且PC=CE,得PC=PE=m=PP′7分∴C与P′为同一点,即PE⊥x轴于C,∴m=-2,E(-2,2) (8)分同理,当l的解析式为y=x时,m=-2,E(-2,2)(4)若C(2,0),此时l为y=-x,∵P与点O、点C不重合,∴m≠0且m≠2,当m<0时,FC=2(2-m),高为|yp|即为-m,∴S =同理当0<m<2时,S=-m2+2m;当m>2时,S=m2-2m;∴S=又若C(-2,0),此时l为y=x,同理可得;S=.如图,直线与函数的交于A、B两点,且与x、y轴分别交于C、D两点.(1)若的面积的倍,求与之间的函数关系式;(2)在(1)的条件下,是否存在和,使得以为直径的圆经过点.若存在,求出和的值;若不存在,请说明理由.[解](1)设,(其中),由,得∴··(····),,又,∴,即,由可得,代入可得①∴,,∴,即.又方程①的判别式,∴所求的函数关系式为.(2)假设存在,,使得以为直径的圆经过点.则,过、分别作轴的垂线,垂足分别为、.∵与都与互余,∴.∴Rt∽Rt,∴.∴,∴,∴,即②由(1)知,,代入②得,∴或,又,∴或,∴存在,,使得以为直径的圆经过点,且或.8.已知抛物线与x轴交于两点、,与y轴交于点C,且AB=6.(1)求抛物线和直线BC的解析式.(2)在给定的直角坐标系中,画抛物线和直线BC.(3)若过A、B、C三点,求的半径.(4)抛物线上是否存在点M,过点M作轴于点N,使被直线BC 分成面积比为1)由题意得:解得经检验m=1,∴抛物线的解析式为:或:由得,或抛物线的解析式为由得∴A(-50),B(1,0),C(0,-5.设直线BC的解析式为则∴直线BC的解析式为(2)图象略.(3)法一:在中,.又∴的半径法二:由题意,圆心P在AB的中垂线上,即在抛物线的对称轴直线上,设P(-2-hh>0),连结PB、PC,则,由,即,解得h=2.的半径.法三:延长CP交于点F.为的直径,又又的半径为(4)设MN交直线BC于点E,点M的坐标为则点E的坐标为若则解得(不合题意舍去),若则解得(不合题意舍去),存在点M,点M的坐标为或(15,280).9.如图,⊙M与x轴交于A、B两点,其坐标分别为、,直径CD⊥x轴于N,直线CE切⊙M于点C,直线FG切⊙M于点F,交CE于G,已知点G的横坐标为3.若抛物线经过A、B、D三点,求m的值及点D的坐标.求直线DF的解析式.是否存在过点G的直线,使它与(1)中抛物线的两个交点的横坐标之和等于4?若存在,请求出满足条件的直线的解析式;若不存在,请说明理由.[解](1)∵抛物线过A、B两点,∴,m=3.∴抛物线为.又抛物线过点D,由圆的对称性知点D为抛物线的顶点. ∴D点坐标为.(2)由题意知:AB=4.∵CD⊥x轴,∴NA=NB=2.∴ON=1.由相交弦定理得:NA·NB=ND·NC,∴NC×4=2×2.∴NC=1.∴C点坐标为.设直线DF交CE于P,连结CF,则∠CFP=90°.∴∠2+∠3=∠1+∠4=90°.∵GC、GF是切线,∴GC=GF.∴∠3=∠4.∴∠1=∠2.∴GF=GP.∴GC=GP.可得CP=8.∴P点坐标为设直线DF的解析式为则解得∴直线DF的解析式为:(3)假设存在过点G的直线为,则,∴.由方程组得由题意得,∴.当时,,∴方程无实数根,方程组无实数解.∴满足条件的直线不存在.10.已知二次函数的图象经过点A(-3,6),并与x轴交于点B (-1,0)和点C,顶点为P.求这个二次函数的解析式,并在下面的坐标系中画出该二次函数的图象;设D为线段OC上的一点,满足∠DPC=∠BAC,求点D的坐标;在x轴上是否存在一点M,使以M为圆心的圆与AC、PC所在的直线及y轴都相切?如果存在,请求出点M的坐标;若不存在,请说明理由.(1)解:∵二次函数的图象过点A(-3,6),B(-1,0)得解得∴这个二次函数的解析式为:由解析式可求P(1,-2),C(3,0)画出二次函数的(2)解法一:易证:∠ACB=∠PCD=45°又已知:∠DPC=∠BAC∴△DPC∽△BAC∴易求∴∴∴解法二:过A作AE⊥x轴,垂足为E.设抛物线的对称轴交x轴于F.亦可证△AEB∽△PFD、∴.易求:AE=6,EB=2,PF=2∴∴∴(3)存在.(1°)过M作MH⊥AC,MG⊥PC垂足分别为H、G,设AC交y轴于S,CP的延长线交y轴于T∵△SCT是等腰直角三角形,M是△SCT的内切圆圆心,∴MG=MH=OM又∵且OM+MC=OC∴∴(2°)在x轴的负半轴上,存在一点M′同理OM′+OC=M′C,得∴M′即在x轴上存在满足条件的两个点.在平面直角坐标系中,A(-1,0),B(3,0).(1)若抛物线过A,B两点,且与y轴交于点(0,-3),求此抛物线的顶点坐标;(2)如图,小敏发现所有过A,B两点的抛物线如果与y轴负半轴交于点C,M为抛物线的顶点,那么△ACM与△ACB的面积比不变,请你求出这个比值;(3)若对称轴是AB的中垂线l的抛物线与x轴交于点E,F,与y轴交于点C,过C作CP∥x轴交l于点P,M为此抛物线的顶点.若四边形PEMF是有一个内角为60°的菱形,求次抛物线的解析式.(1),顶点坐标为(1,-4).(2)由题意,设y=a(x+1)(x-3),即y=ax2-2ax-3a,∴A(-1,0),B(3,0),C(0,-3a),M(1,-4a),∴S△ACB=×4×=6,而a>0,∴S△ACB=6A、作MD⊥x轴于D,又S△ACM=S△ACO+SOCMD-S△AMD=·1·3a+(3a+4a)-·2·4a=a,∴S△ACM:S△ACB=1:6.(3)①当抛物线开口向上时,设y=a(x-1)2+k,即y=ax2-2ax+a+k,有菱形可知=,a+k>0,k<0,∴k=,∴y=ax2-2ax+,∴.记l与x轴交点为D,若∠PEM=60°,则∠FEM=30°,MD=DE·tan30°=,∴k=-,a=,∴抛物线的解析式为.若∠PEM=120°,则∠FEM=60°,MD=DE·tan60°=,∴k=-,a=,∴抛物线的解析式为.②当抛物线开口向下时,同理可得,.已知:在平面直角坐标系xOy中,一次函数的图象与x轴交于点A,抛物线经过O、A两点。

2020年中考数学5.几何综合选择填空压轴题(含解析)

2020年中考数学5.几何综合选择填空压轴题(含解析)

几何综合-填空选择压轴题51、以正方形ABCD勺边AD作等边△ ADE则/ BEC勺度数是 __________2、如图.在厶ABC中, / ACB=60 , AC=1, D是边AB的中点,E是边BC上一点.若DE平分△ ABC的周长,则DE的长是 ____ .3、已知CD是△ ABC的边AB上的高,若CD・3,AD=1AB=2AC则BC的长为__4、如图,将面积为32V2的矩形ABCC沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=J,贝U AP的长为____ .p5、如图,△ ABC是等边三角形,△ ABD是等腰直角三角形,/ BAD=90 , AE L BD 于点E,连CD分别交AE AB于点F, G过点A作AH L CD交BD于点H.则下列结论:①/ ADC=15 :② AF=AG ③ AH=DF ④厶AF3A CBQ ⑤AF= (V3 - 1)EF.其中正确结论的个数为()A. 5 B . 4 C . 3 D . 26 已知O 0的半径为10cm AB CD是O O的两条弦,AB// CD AB=16cm CD=12cm则弦AB和CD之间的距离是cm513 13 13 7 77、如图,将矩形ABCD 沿 EF 折叠,使点B 落在AD 边上的点G 处,点C 落在点H 处,已知/ DGH=30,连接BG 则/ AGB ________ .8、如图,?ABCD 勺对角线相交于点 0,且A 》CD 过点0作OM L AC,交AD 于点 M.如果△ CDM 勺周长为8,那么?ABCD 勺周长是 _____ .9、如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为 49,则 sin a - COS a =( ) A 13 B10、如图,P是厶ABC的内心,连接PA PB PC, △ PAB △ PBG △ PAC的面积分别为S、S、S.则Si ____ S2+S3.(填“v” 或“二”或“〉”)11、如图,△ ABC中, AB=AC AD L BC 于D点,DEL AB 于点E, BF 丄AC 于点F,DE=3cryi 则BF= ______ cm12、如图,已知半圆O与四边形ABCD勺边AD AB BC都相切,切点分别为DE、C,半径OC=1 则AE?BE=_.13、《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,冋该直角二角形能容纳的正方形边长最大是多少步?”该问题的答案是____________ 步.14、如图,以AB为直径的。

2020年中考数学几何压轴题训练及答案

2020年中考数学几何压轴题训练及答案

2020年中考几何压轴题训练及答案几何压轴题(一)1、面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m>0,四边形ABCD是矩形。

(1)如图1,当四边形ABCD为正方形时,求m,n的值;(2)在图2中,画出矩形ABCD,简要说明点C,D的位置是如何确定的,并直接用含m的代数式表示点C的坐标;(3)探究:当m为何值时,矩形ABCD的对角线AC的长度最短。

2、△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.3、如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.4、如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.5、以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x轴,已知A(﹣4,0),B(0,﹣2),M(0,4),P为折线BCD上一动点,作PE⊥y轴于点E,设点P的纵坐标为a.(1)求BC边所在直线的解析式;(2)设y=MP2+OP2,求y关于a的函数关系式;(3)当△OPM为直角三角形时,求点P的坐标.6、如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.7、如图,一次函数y=k1x+5(k1<0)的图象与坐标轴交于A,B两点,与反比例函数y=(k2>0)的图象交于M,N两点,过点M作MC⊥y轴于点C,已知CM=1.(1)求k2﹣k1的值;(2)若=,求反比例函数的解析式;(3)在(2)的条件下,设点P是x轴(除原点O外)上一点,将线段CP绕点P按顺时针或逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果不能,请说明理由.8、已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.9、(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE 是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.10、边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C 不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE= BC;(3)猜想PF与EQ的数量关系,并证明你的结论.11、如图在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q 为圆心,PQ长为半径作⊙Q.(1)求证:直线AB是⊙Q的切线;(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M.若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由.参考答案1、【解答】解:(1)如图1,过点D作DE⊥y轴于E,∴∠AED=∠AOB=90°,∴∠ADE+∠DAE=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAE+∠BAO=90°,∴∠ADE=∠BAO,在△ABO和△ADE中,,∴△ABO≌△ADE,∴DE=OA,AE=OB,∵A(0,3),B(m,0),D(n,4),∴OA=3,OB=m,OE=4,DE=n,∴n=3,∴OE=OA+AE=OA+OB=3+m=4,∴m=1;(2)画法:如图2,①过点A画AB的垂线l1,过点B画AB的垂线l2,②过点E(0,4),画y轴的垂线l3交l1于D,③过点D画直线l1的垂线交直线l2于点C,所以,四边形ABCD是所求作的图形,过点C作CF⊥x轴于F,∴∠CBF+∠BCF=90°,∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BAD=90°,∴∠ABO+∠CBF=90°,∴∠BCF=∠ABO,同理:∠ABO=∠DAE,∴∠BCF=∠DAE,在△ADE和△CBF中,,∴△ADE≌△CBF,∴DE=BF=n,AE=CF=1,易证△AOB∽△DEA,∴,∴,∴n=,∴OF=OB+BF=m+,∴C(m+,1);(3)如图3,由矩形的性质可知,BD=AC,∴BD最小时,AC最小,∵B(m,0),D(n,4),∴当BD⊥x轴时,BD有最小值4,此时,m=n,即:AC的最小值为4,连接BD,AC交于点M,过点A作AE⊥BD于E,由矩形的性质可知,DM=BM=BD=2,∵A(0,3),D(n,4),∴DE=1,∴EM=DM﹣DE=1,在Rt△AEM中,根据勾股定理得,AE=,∴m=,即:当m=时,矩形ABCD的对角线AC的长最短为4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020各地中考几何综合压轴题汇总一.解答题(共50小题)1.(2020•天水)性质探究如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为4+2 ,则它的面积为;(2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示)2.(2020•青海)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC 于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)3.(2020•河北)如图1和图2,在△ABC中,AB=AC,BC=8,tan C .点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK ,请直接写出点K被扫描到的总时长.4.(2020•襄阳)在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE.(1)特例发现:如图1,当AD=AF时,①求证:BD=CF;②推断:∠ACE=°;(2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;(3)拓展运用:如图3,在(2)的条件下,当 时,过点D作AE的垂线,交AE于点P,交AC 于点K,若CK ,求DF的长.5.(2020•牡丹江)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC,交射线CA于点F.请解答下列问题:(1)当点E在线段AB上,CD是△ACB的角平分线时,如图①,求证:AE+BC=CF;(提示:延长CD,FE交于点M.)(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,如图②;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若DE=2AE=6,则CF=.6.(2020•辽阳)如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB=CB.点D 是射线CB上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;(3)当α=120°,tan∠DAB 时,请直接写出 的值.7.(2020•凉山州)如图,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.(1)如图1,连接AQ、CP.求证:△ABQ≌△CAP;(2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数;(3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数.8.(2020•泰安)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD⊥DF.你认为此结论是否成立?.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.9.(2020•常德)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF 使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.10.(2020•黔东南州)如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.11.(2020•金华)如图,在△ABC中,AB=4 ,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.12.(2020•江西)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2 ,DE=2,点P 在AE上,∠ABP=30°,PE ,求五边形ABCDE的面积.13.(2020•衡阳)如图1,平面直角坐标系xOy中,等腰△ABC的底边BC在x轴上,BC=8,顶点A在y 的正半轴上,OA=2,一动点E从(3,0)出发,以每秒1个单位的速度沿CB向左运动,到达OB的中点停止.另一动点F从点C出发,以相同的速度沿CB向左运动,到达点O停止.已知点E、F同时出发,以EF为边作正方形EFGH,使正方形EFGH和△ABC在BC的同侧,设运动的时间为t秒(t≥0).(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与△ABC重叠面积为S,请问是否存在t值,使得S ?若存在,求出t值;若不存在,请说明理由;(3)如图2,取AC的中点D,连结OD,当点E、F开始运动时,点M从点O出发,以每秒2 个单位的速度沿OD﹣DC﹣CD﹣DO运动,到达点O停止运动.请问在点E的整个运动过程中,点M可能在正方形EFGH内(含边界)吗?如果可能,求出点M在正方形EFGH内(含边界)的时长;若不可能,请说明理由.14.(2020•青岛)已知:如图,在四边形ABCD和Rt△EBF中,AB∥CD,CD>AB,点C在EB上,∠ABC=∠EBF=90°,AB=BE=8cm,BC=BF=6cm,延长DC交EF于点M.点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s.过点P作GH⊥AB于点H,交CD于点G.设运动时间为t(s)(0<t<5).解答下列问题:(1)当t为何值时,点M在线段CQ的垂直平分线上?(2)连接PQ,作QN⊥AF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;(4)点P在运动过程中,是否存在某一时刻t,使点P在∠AFE的平分线上?若存在,求出t的值;若不存在,请说明理由.15.(2020•山西)综合与实践问题情境:如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.猜想证明:(1)试判断四边形BE'FE的形状,并说明理由;(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;解决问题:(3)如图①,若AB=15,CF=3,请直接写出DE的长.16.(2020•内江)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.(1)连结CQ,求证:AP=CQ;(2)若AP AC,求CE:BC的值;(3)求证:PF=EQ17.(2020•郴州)如图1,在等腰直角三角形ADC中,∠ADC=90°,AD=4.点E是AD的中点,以DE为边作正方形DEFG,连接AG,CE.将正方形DEFG绕点D顺时针旋转,旋转角为α(0°<α<90°).(1)如图2,在旋转过程中,①判断△AGD与△CED是否全等,并说明理由;②当CE=CD时,AG与EF交于点H,求GH的长.(2)如图3,延长CE交直线AG于点P.①求证:AG⊥CP;②在旋转过程中,线段PC的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.18.(2020•湘西州)问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN 绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.19..2020•扬州)如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.(1)求证:OC∥AD;(2)如图2,若DE=DF,求 的值;(3)当四边形ABCD的周长取最大值时,求 的值.20.(2020•临沂)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?21.(2020•岳阳)如图1,在矩形ABCD中,AB=6,BC=8,动点P,Q分别从C点,A点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿C→A,A→B的方向运动,当点Q运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t(s),连接PQ,过点P作PE⊥PQ,PE与边BC相交于点E,连接QE.(1)如图2,当t=5s时,延长EP交边AD于点F.求证:AF=CE;(2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;(3)如图3,当t> s时,延长EP交边AD于点F,连接FQ,若FQ平分∠AFP,求 的值.22.(2020•天津)将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B重合).(Ⅰ)如图①,当OP=1时,求点P的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ=OP,点O的对应点为O',设OP=t.①如图②,若折叠后△O'PQ与△OAB重叠部分为四边形,O'P,O'Q分别与边AB相交于点C,D,试用含有t的式子表示O'D的长,并直接写出t的取值范围;②若折叠后△O'PQ与△OAB重叠部分的面积为S,当1≤t≤3时,求S的取值范围(直接写出结果即可).23.(2020•南京)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.24.(2020•河南)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D 作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为,连接BD,可求出 ᙦ 的值为;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出 ᙦ 的值.25.(2020•达州)(1)[阅读与证明]如图1,在正△ABC的外角∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.①完成证明:∵点E是点C关于AM的对称点,∴∠AGE=90°,AE=AC,∠1=∠2.∵正△ABC中,∠BAC=60°,AB=AC,∴AE=AB,得∠3=∠4.在△ABE中,∠1+∠2+60°+∠3+∠4=180°,∴∠1+∠3=°.在△AEG中,∠FEG+∠3+∠1=90°,∴∠FEG=°.②求证:BF=AF+2FG.(2)[类比与探究]把(1)中的“正△ABC”改为“正方形ABDC”,其余条件不变,如图2.类比探究,可得:①∠FEG=°;②线段BF、AF、FG之间存在数量关系.(3)[归纳与拓展]如图3,点A在射线BH上,AB=AC,∠BAC=α(0°<α<180°),在∠CAH内引射线AM,作点C 关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.则线段BF、AF、GF之间的数量关系为.26.(2020•齐齐哈尔)综合与实践在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF 上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM(填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答:;进一步计算出∠MNE=°;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=°;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD 边于点S,把纸片展平,连接AA'交ST于点O,连接AT.求证:四边形SATA'是菱形.解决问题:(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值.27.(2020•济宁)如图,在菱形ABCD中,AB=AC,点E,F,G分别在边BC,CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).(1)求证:△AEH≌△AGH;(2)当AB=12,BE=4时.①求△DGH周长的最小值;②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出 的值;若不存在,请说明理由.28.(2020•泰州)如图,正方形ABCD的边长为6,M为AB的中点,△MBE为等边三角形,过点E作ME 的垂线分别与边AD、BC相交于点F、G,点P、Q分别在线段EF、BC上运动,且满足∠PMQ=60°,连接PQ.(1)求证:△MEP≌△MBQ.(2)当点Q在线段GC上时,试判断PF+GQ的值是否变化?如果不变,求出这个值,如果变化,请说明理由.(3)设∠QMB=α,点B关于QM的对称点为B',若点B'落在△MPQ的内部,试写出α的范围,并说明理由.29.(2020•安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG AG.30.(2020•绥化)如图,在正方形ABCD中,AB=4,点G在边BC上,连接AG,作DE⊥AG于点E,BF ⊥AG于点F,连接BE、DF,设∠EDF=α,∠EBF=β, k.(1)求证:AE=BF;(2)求证:tanα=k•tanβ;(3)若点G从点B沿BC边运动至点C停止,求点E,F所经过的路径与边AB围成的图形的面积.31.(2020•德州)问题探究:小红遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,AD是中线,求AD的取值范围.她的做法是:延长AD到E,使DE=AD,连接BE,证明△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小红证明△BED≌△CAD的判定定理是:;(2)AD的取值范围是;方法运用:(3)如图2,AD是△ABC的中线,在AD上取一点F,连结BF并延长交AC于点E,使AE=EF,求证:BF=AC.(4)如图3,在矩形ABCD中, ,在BD上取一点F,以BF为斜边作Rt△BEF,且 ,点G是DF的中点,连接EG,CG,求证:EG=CG.32.(2020•乐山)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.(1)如图1,当点P与点O重合时,线段OE和OF的关系是;(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.33.(2020•成都)在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F 处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF•FD=10时,求BC的长;(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求 的值.34.(2020•贵阳)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.35.(2020•黑龙江)以Rt△ABC的两边AB、AC为边,向外作正方形ABDE和正方形ACFG,连接EG,过点A作AM⊥BC于M,延长MA交EG于点N.(1)如图①,若∠BAC=90°,AB=AC,易证:EN=GN;(2)如图②,∠BAC=90°;如图③,∠BAC≠90°,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.36.(2020•衢州)【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当 时,求 的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD 面积的 时,请直接写出tan∠BAE的值.37.(2020•嘉兴)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF =4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.38.(2020•孝感)已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A的切线交于点F,记∠BAC=α.(1)如图1,若α=60°,①直接写出 的值为;②当⊙O的半径为2时,直接写出图中阴影部分的面积为;(2)如图2,若α<60°,且 ,DE=4,求BE的长.39.(2020•鄂州)如图所示:⊙O与△ABC的边BC相切于点C,与AC、AB分别交于点D、E,DE∥OB.DC 是⊙O的直径.连接OE,过C作CG∥OE交⊙O于G,连接DG、EC,DG与EC交于点F.(1)求证:直线AB与⊙O相切;(2)求证:AE•ED=AC•EF;(3)若EF=3,tan∠ACE 时,过A作AN∥CE交⊙O于M、N两点(M在线段AN上),求AN的长.40.(2020•长沙)如图,半径为4的⊙O中,弦AB的长度为4 ,点C是劣弧 上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;(2)当点C沿着劣弧(3)分别记△ODE,△CDE的面积为S1,S2,当S12﹣S22=21时,求弦AC的长度.41.(2020•广元)在Rt△ABC中,∠ACB=90°,OA平分∠BAC交BC于点O,以O为圆心,OC长为半径作圆交BC于点D.(1)如图1,求证:AB为⊙O的切线;(2)如图2,AB与⊙O相切于点E,连接CE交OA于点F.①试判断线段OA与CE的关系,并说明理由.②若OF:FC=1:2,OC=3,求tan B的值.42.(2020•连云港)(1)如图1,点P为矩形ABCD对角线BD上一点,过点P作EF∥BC,分别交AB、CD于点E、F.若BE=2,PF=6,△AEP的面积为S1,△CFP的面积为S2,则S1+S2=;(2)如图2,点P为▱ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH的面积为S1,四边形PFCG的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);(3)如图3,点P为▱ABCD内一点(点P不在BD上),过点P作EF∥AD,HG∥AB,与各边分别相交于点E、F、G、H.设四边形AEPH的面积为S1,四边形PGCF的面积为S2(其中S2>S1),求△PBD 的面积(用含S1、S2的代数式表示);(4)如图4,点A、B、C、D把⊙O四等分.请你在圆内选一点P(点P不在AC、BD上),设PB、PC、 围成的封闭图形的面积为S1,PA、PD、 围成的封闭图形的面积为S2,△PBD的面积为S3,△PAC 的面积为S4,根据你选的点P的位置,直接写出一个含有S1、S2、S3、S4的等式(写出一种情况即可).43.(2020•内江)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4 ,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.44.(2020•哈尔滨)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.(1)如图1,求证:∠BFC=3∠CAD;(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为 ,求线段CG的长.45.(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tan B ,求⊙O的半径;(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.46.(2020•遂宁)如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC 于点E,交AC于点F,过点C作CG⊥AB交AB于点G,交AE于点H,过点E的弦EP交AB于点Q (EP不是直径),点Q为弦EP的中点,连结BP,BP恰好为⊙O的切线.(1)求证:BC是⊙O的切线..(2)求证:(3)若sin∠ABC═ ,AC=15,求四边形CHQE的面积.47.(2020•台州)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.48.(2020•杭州)如图,已知AC,BD为⊙O的两条直径,连接AB,BC,OE⊥AB于点E,点F是半径OC的中点,连接EF.(1)设⊙O的半径为1,若∠BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,①求证:PE=PF.②若DF=EF,求∠BAC的度数.49.(2020•宁波)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.,四边形ABCD的外角平分线DF交⊙O于点F,连(2)如图2,四边形ABCD内接于⊙O,结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.50.(2020•苏州)如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=8cm.动点P从点A出发,以1cm/s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1cm/s 的速度沿ON竖直向上作匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT于点C,连接PC、QC.设运动时间为t(s),其中0<t<8.(1)求OP+OQ的值;(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由.(3)求四边形OPCQ的面积.。

相关文档
最新文档