三角函数定义及其三角函数公式大全

合集下载

完整三角函数公式表

完整三角函数公式表

完整三角函数公式表三角函数公式表是数学中常用的一个工具,用于计算三角函数的数值。

它包含了各种三角函数的定义和性质,能够帮助我们在解决三角函数相关问题时,快速找到所需的公式和计算方法。

以下是一个完整的三角函数公式表,包含了常见的正弦、余弦、正切、余切、正割和余割函数的公式:1. 正弦函数(sin):- 定义:在单位圆上,从原点到圆上一点与x轴的正角对应的y坐标。

- 基本关系:sin θ = y/r,其中θ是角度,y是对应的y坐标,r是单位圆的半径(常为1)。

- 周期性:sin (θ + 2π) = sin θ。

- 奇偶性:sin (-θ) = -sin θ。

2. 余弦函数(cos):- 定义:在单位圆上,从原点到圆上一点与x轴的正角对应的x坐标。

- 基本关系:cos θ = x/r,其中θ是角度,x是对应的x坐标,r是单位圆的半径(常为1)。

- 周期性:cos (θ + 2π) = cos θ。

- 奇偶性:cos (-θ) = cos θ。

3. 正切函数(tan):- 定义:tan θ = sin θ / cos θ。

- 周期性:tan (θ + π) = tanθ。

- 奇偶性:tan (-θ) = -tan θ。

4. 余切函数(cot):- 定义:cot θ = 1 / tan θ = cos θ / sin θ。

- 周期性:cot (θ + π) = cot θ。

- 奇偶性:cot (-θ) = -cot θ。

5. 正割函数(sec):- 定义:sec θ = 1 / cos θ。

- 周期性:sec (θ + 2π) = sec θ。

- 奇偶性:sec (-θ) = sec θ。

6. 余割函数(csc):- 定义:csc θ = 1 / sin θ。

- 周期性:csc (θ + 2π) = csc θ。

- 奇偶性:csc (-θ) = -csc θ。

此外,三角函数还有一些重要的性质:1. 三角函数的范围:sin、cos、csc、sec的值在[-1, 1]之间,tan、cot的值在整个实数范围内。

三角函数公式(最全)

三角函数公式(最全)
tan( α+β+γ)=(tan α+tan β+tan γ-tan α· tanβ· tanγ) ÷ (1tan α· tanβ-tan β· tanγ-tan γ· tanα)
5 、幂级数
c0+c1x+c2x2+...+cnxn+...=
∑cnxn (n=0.. ∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=
90 ° -(60 ° -a)]sin[-90
° +(60 ° +a)] =-4cosacos(6
a)[-cos(60
° +a)] =4cosacos(60
° -a)cos(60
上述两式相比可得: tan3a=tana · tan(60 ° +a)
· tan(60 ° -a)
6、四倍角公式
sin4a=-4*[cosa*sina*(2*sina^2-1)] cos4a=1+(-8*cosa^2+8*cosa^4) tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)
1
三角函数公式
一、定义公式
锐角三角函数 任意角三角函数
正弦( sin ) 余弦( cos ) 正切( tan 或 tg ) 余切( cot 或 ctg ) 正割( sec ) 余割( csc) 正弦( sin ) 余弦( cos ) 正切( tan 或 tg ) 余切( cot 或 ctg ) 正割( sec ) 余割( csc)
在任意△ ABC 中,角 A 、 B 、 C 所对的边长分别为 a 、 b 、 c , 三角形 外接圆的半径为 R.则有:

三角函数公式大全

三角函数公式大全

三角函数公式大全1.三角函数的基本定义:- 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边- 余切函数:cotθ = 1/tanθ- 正割函数:secθ = 1/cosθ- 余割函数:cscθ = 1/sinθ2.三角函数的周期性:- 正弦函数的周期为2π:sin(θ+2π) = sinθ- 余弦函数的周期为2π:cos(θ+2π) = cosθ- 正切函数的周期为π:tan(θ+π) = tanθ3.三角函数的平方和差公式:- 正弦函数的平方和差公式:sin(A±B) = sinAcosB ± cosAsinB - 余弦函数的平方和差公式:cos(A±B) = cosAcosB ∓ sinAsinB - 正切函数的平方和差公式:tan(A±B) = (tanA ± tanB)/(1 ∓tanAtanB)4.三角函数的倍角公式:- 正弦函数的倍角公式:sin2θ = 2sinθcosθ- 余弦函数的倍角公式:cos2θ = cos²θ - sin²θ- 正切函数的倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)5.三角函数的半角公式:- 正弦函数的半角公式:sin(θ/2) = ±√((1 - cosθ)/2)- 余弦函数的半角公式:cos(θ/2) = ±√((1 + cosθ)/2)- 正切函数的半角公式:tan(θ/2) = ±√((1 - cosθ)/(1 +cosθ))6.三角函数的和差化积公式:- 正弦函数的和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)- 余弦函数的和差化积公式:cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)- 正弦函数的差化积公式:sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)- 余弦函数的差化积公式:cosA - cosB = 2sin((A+B)/2)sin((A-B)/2)7.其他重要公式:- 三角函数的平方公式:sin²θ + cos²θ = 1- 三角函数的倒数公式:sin(π/2 - θ) = cosθ,cos(π/2 - θ) = sinθ,tan(π/2 - θ) = cotθ- 三角函数的和差化差公式:cos(A-B) = cosAcosB + sinAsinB,cos(A+B) = cosAcosB - sinAsinB这些是三角函数中一些重要的公式,对于理解和应用三角函数有很大的帮助。

三角函数定义及三角函数公式大全

三角函数定义及三角函数公式大全

三角函数定义及三角函数公式大全三角函数是数学中一类重要的函数,主要用于描述和分析三角形以及周期性现象。

三角函数的定义涵盖了正弦函数、余弦函数、正切函数、余切函数、割函数和余割函数等,它们在数学和物理等领域都有广泛的应用。

下面将对每个三角函数的定义及其公式进行详细介绍。

1. 正弦函数(sine function):正弦函数是一个周期性函数,在单位圆上定义。

它的定义域是所有实数,值域是[-1, 1]。

通常用sin(x)或者sinθ来表示,其中θ为角度值。

正弦函数的公式为:sin(x) = sinθ = y/r = 对边/斜边2. 余弦函数(cosine function):余弦函数同样也是一个周期性函数,也在单位圆上定义。

它的定义域是所有实数,值域也是[-1, 1]。

通常用cos(x)或者cosθ来表示。

余弦函数的公式为:cos(x) = cosθ = x/r = 邻边/斜边3. 正切函数(tangent function):正切函数是一个无界函数,定义于所有实数上。

它的定义域是除了π/2 + kπ(k=0,1,2,...)外的所有实数,值域是(-∞, ∞)。

正切函数通常用tan(x)或者ta nθ来表示。

正切函数的公式为:tan(x) = tanθ = y/x = 对边/邻边4. 余切函数(cotangent function):余切函数也是一个无界函数,定义于所有实数上。

它的定义域是除了kπ(k=0,1,2,...)外的所有实数,值域也是(-∞, ∞)。

余切函数通常用cot(x)或者cotθ来表示。

余切函数的公式为:cot(x) = cotθ = x/y = 邻边/对边5. 割函数(secant function):割函数是一个无界函数,在余弦函数的基础上定义。

它的定义域是除了π/2 + kπ(k=0,1,2,...)外的所有实数,值域是(-∞, -1]∪[1, ∞)。

割函数通常用sec(x)或者secθ来表示。

九年级数学:三角函数定义及三角函数公式大全(1)

九年级数学:三角函数定义及三角函数公式大全(1)

斜边 cba a 2 +b 2 =c 2三角函数定义及三角函数公式大全一:初中三角函数公式及其定理1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2、如下图,在 Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成 ∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余B角的正弦值。

由∠A + ∠B = 90︒得∠B = 90︒ - ∠AAC邻边4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余 角的正切值。

由∠A + ∠B = 90︒得∠B = 90︒ - ∠A5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)sin A = cos Bcos A = sin Bsin A = cos(90︒ - A ) cos A = sin(90︒ - A ) tan A = cot B cot A = tan Btan A = cot(90︒ - A )cot A = tan(90︒ - A )对边sin α 0 1 22 23 21 cos α 1 32 2 21 20 tan α 03 313 - cot α-313 3当 0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

7、正切、余切的增减性:当 0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。

1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知 的边和角。

依据:①边的关系: a 2 + b 2 = c 2 ;②角的关系:A+B=90°;③边角关系: 三角函数的定义。

(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

三角函数公式大全(很详细)

三角函数公式大全(很详细)

高中三角函数公式大全[图]1 三角函数的定义1.1 三角形中的定义图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数:•正弦函数•余弦函数•正切函数•余切函数•正割函数•余割函数1.2 直角坐标系中的定义图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数:•正弦函数r•余弦函数•正切函数•余切函数•正割函数•余割函数2 转化关系2.1 倒数关系2.2 平方关系2 和角公式3 倍角公式、半角公式3.1 倍角公式3.2 半角公式3.3 万能公式4 积化和差、和差化积4.1 积化和差公式证明过程首先,sin(α+β)=sinαcosβ+sinβcosα〔已证。

证明过程见?和角公式与差角公式的证明?〕因为sin(α+β)=sinαcosβ+sinβcosα〔正弦和角公式〕那么sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα于是sin(α-β)=sinαcosβ-sinβcosα〔正弦差角公式〕将正弦的和角、差角公式相加,得到sin(α+β)+sin(α-β)=2sinαcosβ那么sinαcosβ=sin(α+β)/2+sin(α-β)/2〔“积化和差公式〞之一〕同样地,运用诱导公式cosα=sin(π/2-α),有cos(α+β)=sin[π/2-(α+β)]=sin(π/2-α-β)=sin[(π/2-α)+(-β)]=sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α)=cosαcosβ-sinαsinβ于是cos(α+β)=cosαcosβ-sinαsinβ〔余弦和角公式〕那么cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβcos(α-β)=cosαcosβ+sinαsinβ〔余弦差角公式〕将余弦的和角、差角公式相减,得到cos(α+β)-cos(α-β)=-2sinαsinβ那么sinαsinβ=cos(α-β)/2-cos(α+β)/2〔“积化和差公式〞之二〕将余弦的和角、差角公式相加,得到cos(α+β)+cos(α-β)=2cosαcosβ那么cosαcosβ=cos(α+β)/2+cos(α-β)/2〔“积化和差公式〞之三〕这就是积化和差公式:sinαcosβ=sin(α+β)/2+sin(α-β)/2sinαsinβ=cos(α-β)/2-cos(α+β)/2cosαcosβ=cos(α+β)/2+cos(α-β)/24.2 和差化积公式局部证明过程:sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosαcos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαs inβcos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβtan(α+β)=sin(α+β)/cos(α+β)=(sinαcosβ+sinβcosα)/(cosαcosβ-sinαsinβ)=(cosαtanαcosβ+cosβtanβcosα)/(cosαcosβ-cosαtanαcosβtanβ)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=tan[α+(-β)]=[tanα+tan(-β)]/[1-tanαtan(-β)]=(tanα-tanβ)/(1+tanαtanβ)诱导公式•sin(-a)=-sin(a)•cos(-a)=cos(a)•sin(pi/2-a)=cos(a)•cos(pi/2-a)=sin(a)•sin(pi/2+a)=cos(a)•cos(pi/2+a)=-sin(a)•sin(pi-a)=sin(a)•cos(pi-a)=-cos(a)•sin(pi+a)=-sin(a)•cos(pi+a)=-cos(a)•tgA=tanA=sinA/cosA两角和与差的三角函数•sin(a+b)=sin(a)cos(b)+cos(α)sin(b)•cos(a+b)=cos(a)cos(b)-sin(a)sin(b)•sin(a-b)=sin(a)cos(b)-cos(a)sin(b)•cos(a-b)=cos(a)cos(b)+sin(a)sin(b)•tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))•tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))三角函数和差化积公式•sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)•sin(a)−sin(b)=2cos((a+b)/2)sin((a-b)/2)•cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)•cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)积化和差公式•sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]•cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]•sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]二倍角公式•sin(2a)=2sin(a)cos(a)•cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a) 半角公式•sin^2(a/2)=(1-cos(a))/2•cos^2(a/2)=(1+cos(a))/2•tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))万能公式•sin(a)= (2tan(a/2))/(1+tan^2(a/2))•cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))•tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式•a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]•a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]• 1+sin(a)=(sin(a/2)+cos(a/2))^2 • 1-sin(a)=(sin(a/2)-cos(a/2))^2 其他非重点三角函数• csc(a)=1/sin(a) •sec(a)=1/cos(a)双曲函数• sinh(a)=(e^a-e^(-a))/2 • cosh(a)=(e^a+e^(-a))/2 •tgh(a)=sinh(a)/cosh(a)常用公式表〔一〕1。

三角函数公式全解

三角函数公式全解

视线
仰角 水平线 俯角
h
i h:l
视线
二:初中三角函数公式及其定理 ‫ﻩ‬
1、勾股定理:直角三角形两直角边 a 、 b 的平方和等于斜边 c 的平方。 a2 b2 c2
2、如下图,在 Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):


表达式
取值范围
关系
正 弦
sin
A
A的对边 斜边
sin A a c
0 sin A 1
(∠A为锐角)
余 弦
cos
A
A的邻边 斜边
cos A b c
0 cosA 1
(∠A 为锐角)
正 切
tan
A
A的对边 A的邻边∠A 为锐角)
余 切
cot
A
A的邻边 A的对边
cot A b a
cot A 0
(∠A 为锐角)
sin A cosB cos A sin B sin 2 A cos2 A 1
ss= +ciαnα-o‫)(ﻫ‬stπi(cn=/α2πo-‫ﻫ‬/cs+2(to+αaπt)nαα/()2=πc+o/2α)c ot αcso a oαtn(sπ((π++πα+)α)α=)==co-ttcaαn
=-tanα
两角和与差的三角函数公式
万能公式
sin(α+β)=sinαcosβ+cosαsinβ‫ ﻫ‬s in(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ‫ ﻫ‬cos
三角函数

30°
45°
60°
90°

(完整版)三角函数公式汇总

(完整版)三角函数公式汇总

(完整版)三角函数公式汇总介绍三角函数是数学中重要的概念,可用来描述角的性质和在各个学科中的应用。

三角函数包括正弦(sin)、余弦(cos)、正切(tan)等,它们之间存在一系列的基本关系和公式。

本文档将详细介绍常见的三角函数公式,以帮助读者更好地理解和应用三角函数。

正弦函数(sin)定义正弦函数是一个周期为2π的周期函数,定义域为实数集,值域为[-1, 1]。

公式1. 正弦函数的周期性公式为:sin(x + 2kπ) = sin(x),其中 k ∈ Z。

2. 正弦函数的关系公式有:- 反正弦函数:x = arcsin(y),其中 y ∈ [-1, 1]。

- 正弦函数的平方和公式:sin^2(x) + cos^2(x) = 1。

余弦函数(cos)定义余弦函数是一个周期为2π的周期函数,定义域为实数集,值域为[-1, 1]。

公式1. 余弦函数的周期性公式为:cos(x + 2kπ) = cos(x),其中 k ∈Z。

2. 余弦函数的关系公式有:- 反余弦函数:x = arccos(y),其中 y ∈ [-1, 1]。

- 余弦函数的平方和公式:sin^2(x) + cos^2(x) = 1。

正切函数(tan)定义正切函数是一个周期为π的周期函数,定义域为实数集。

公式1. 正切函数的周期性公式为:tan(x + kπ) = tan(x),其中 k ∈ Z。

2. 正切函数的关系公式有:- 反正切函数:x = arctan(y),其中 y ∈ R。

其他三角函数公式1. 余切函数(cot)与正切函数的关系式:cot(x) = 1/tan(x)。

2. 正割函数(sec)与余弦函数的关系式:sec(x) = 1/cos(x)。

3. 余割函数(csc)与正弦函数的关系式:csc(x) = 1/sin(x)。

应用领域三角函数广泛应用于工程、物理、计算机图形学等领域。

例如,在三角形的计算中,可以利用正弦、余弦、正切等函数来求解各种角度和边长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 tan tan
tan( ) tan tan 1 tan tan
五、二倍角公式
sin 2 2sin cos cos2 cos2 sin2 2cos2 1 1 2sin2 … ()
tan 2
2 tan 1 tan2
二倍角的余弦公式 () 有以下常用变形:(规律:降幂扩角,升幂缩角)
⑤ cos x sin ctg

r
csc r 1 ctg sec y sin
⑵倒数关系: sin csc cos sec tg ctg 1
⑶平方关系: sin2 cos2 sec2 tg2 csc2 ctg2 1
⑷ a sin bcos a2 b2 sin( ) (其中辅助角 与点(a,b)在同
2
2
③ cos cos 2 cos cos
2
2
② sin sin 2 cos sin
2
2
④ cos cos 2 sin sin
2
2
⒖反三角函数:
名称
函数式 定义域 值域 性质
反 正 弦 函 y arcsin x 1,1增

反 余 弦 函 y arccosx 1,1减
⒔积化和差公式:
sin cos 1 sin( ) sin( )
2
cos sin 1 sin( ) sin( )
2
cos cos 1 cos( ) cos( ) sin sin 1 cos( ) cos
2
2
⒕和差化积公式:
① sin sin 2 sin cos
符号看象限
2 2 3 2 3 2
sin con tg ctg + cos + sin + ctg + tg + cos - sin - ctg - tg - cos - sin + ctg + tg - cos + sin - ctg - tg
三角函数值等于 的异名 三角函数值,前面加上一个 把 看作锐角时,原三角函 数值的符号;即:函数名改 变,符号看象限 ⒐和差角公式
正 切
tan
A
A的对边 A的邻边
sin A a c
cos A b c
tan A a b
0 sin A 1
(∠A 为锐角)
0 cosA 1
(∠A 为锐角)
tan A 0
(∠A 为锐角)
余 切
cot
A
A的邻边 A的对边
cot A b a
cot A 0
(∠A 为锐角)
sin A cosB cos A sin B sin 2 A cos2 A 1
一象限,且 tg b )
a
⒍函数 y= Asin( x ) k 的图象及性质:( 0, A 0 )
振幅 A,周期 T= 2 , 频率 f= 1 , 相位 x ,初相
T
⒎五点作图法:令x 依次为 0 , , 3 ,2 求出 x 与 y,
22
x, y作图
依点
⒏诱导公试
sin cos tg ctg
①边的关系: a2 b2 c2 ;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注
意:尽量避免使用中间数据和除法)
2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
铅垂线
视线
仰角 水平线 俯角
视线
h
i h:l
α
l
(2)坡面的铅直高度 h 和水平宽度 l 的比叫做坡度(坡比)。用字母 i 表示,即 i h 。坡度 l
方程
sin x a
cos x a
a 1 a 1 a 1
方程的解集
x | x 2k arcsin a, k Z
x | x k 1k arcsin a, k Z
x | x 2k arccos a, k Z
tgx a ctgx a
a 1
x | x 2k arccos a, k Z x | x k arctga, k Z x | x k arcctga, k Z
② cos 3 3cos 4 cos3 4 cos cos(60 ) cos(60 )
③ tg3
3tg tg3 1 3tg 2
tg tg(60 ) tg(60 )
⒓半角公式:(符号的选择由 所在的象限确定)
2
① sin 1 cos
2
2
④ cos2 1 cos
四、和角公式和差角公式
sin( ) sin cos cos sin sin( ) sin cos cos sin cos( ) cos cos sin sin cos( ) cos cos sin sin tan( ) tan tan
-
- sin + cos - tg - ctg
-
+ sin - cos - tg - ctg
+ 2 - 2k +
- sin - cos + tg - sin + cos - tg + sin + cos + tg
+ ctg - ctg + ctg
三角函数值等于 的同名三 角函数值,前面加上一个把 看作锐角时,原三角函数 值的符号;即:函数名不变,
a边
cos A sin B
cos A sin(90 A) A
b
邻边
C
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切

由A B 90
得B 90 A sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
二、同角三角函数的基本关系式
倒数关系: sin csc 1, cos sec 1, tan cot 1。
商数关系: tan sin , cot cos 。
cos
sin
平方关系: sin2 cos2 1,1 tan2 sec2 ,1 cot2 csc2 。
三、诱导公式
三角函数定义及其三角函数公式汇总
1、勾股定理:直角三角形两直角边 a 、 b 的平方和等于斜边 c 的平方。 a2 b2 c2
2、如下图,在 Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):
定义
表达式
取值范围
关系
正 弦
sin
A
A的对边 斜边
余 弦
cos
A
A的邻边 斜边
2
,
2
0,
arcsin(-x) -arcsinx 奇
arccos(x) arccosx
数 反 正 切 函 y arctgx R
数 反 余 切 函 y arcctgx R

2
,
2
arctg(-x) - arctgx 奇
减 0,
arcctg(x) arcctgx

⒗最简单的三角方程
1 tg tg tg tg tg tg
i). tgA tgB tgC tgA tgB tgC
ii). tg A tg B tg A tg C tg B tg C 1
22 22 22
⒑二倍角公式:(含万能公式)
① sin 2
2 sin
cos
2tg 1 tg2
② cos 2
cos2
1 cos2 2cos2
1 cos2 2sin2
1 sin 2 (sin cos)2
1 sin 2 (sin cos)2
cos2 1 cos2 , sin2 1 sin 2 , tan 1 cos2 sin 2 。
⑴ 2k (k Z) 、 、 、 、 2 的三角函数值,等于 的
同名函数值,前面加上一个把 看.成.锐角时原函数值的符号。(口诀:函数名不 变,符号看象限)
⑵ 、 、 3 、 3 的三角函数值,等于 的异名函数值,
2
2
2
2
前面加上一个把 看.成.锐角时原函数值的符号。(口诀:函数名改变,符号看象 限)
c 2 =a 2 +b 2 -2ab cosC
cos A b2 c2 a2 2bc
⒋S⊿=
1 2
a
ha
=
1 2
ab sinC
=
1 2
bc sin
A=
1 2
acsin B
=
abc 4R
=2R
2
sin
A
sin B
sin C
= a2 sin B sin C = b2 sin Asin C = c2 sin Asin B =pr= p( p a)(p b)(p c)
cos(α-β)=cosαcosβ+sinαsinβ
6、正弦、余弦的增减性: 当 0°≤ ≤90°时,sin 随 的增大而增大,cos 随 的增大而减小。
7、正切、余切的增减性: 当 0°< <90°时,tan 随 的增大而增大,cot 随 的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。依据:
三角公式汇总 2
一、任意角x, y) ,记: r x2 y2 ,
正弦: sin y 余弦: cos x
r
r
正切: tan y 余切: cot x
x
y
正割: sec r 余割: csc r
x
y
注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单 位圆有关的有.向.线段 MP 、OM 、 AT 分别叫做角 的正弦线、余弦线、正切线。
相关文档
最新文档