单位脉冲函数δ(t)及其性质
常用的拉氏变换表

常用的拉氏变换表在工程技术和科学研究中,拉氏变换是一种非常重要的数学工具。
它能够将时域中的函数转换为复频域中的函数,从而使得许多问题的分析和求解变得更加简便。
而要熟练运用拉氏变换,掌握常用的拉氏变换表是必不可少的。
拉氏变换的定义为:对于一个定义在0, +∞)上的实值函数 f(t),其拉氏变换 F(s)定义为:\F(s) =\int_{0}^{\infty} f(t) e^{st} dt\其中,s =σ +jω 是一个复变量。
下面我们来介绍一些常用的函数的拉氏变换:1、单位阶跃函数 u(t)单位阶跃函数在 t < 0 时,函数值为 0;在t ≥ 0 时,函数值为 1。
其拉氏变换为:\Lu(t) =\frac{1}{s}\2、单位脉冲函数δ(t)单位脉冲函数在 t = 0 时,函数值为无穷大,且在整个时间轴上的积分值为 1。
其拉氏变换为:\Lδ(t) = 1\3、指数函数 e^(at) (a 为常数)其拉氏变换为:\Le^{at} =\frac{1}{s + a}\4、正弦函数sin(ωt)其拉氏变换为:\Lsin(ωt) =\frac{\omega}{s^2 +\omega^2}\5、余弦函数cos(ωt)其拉氏变换为:\Lcos(ωt) =\frac{s}{s^2 +\omega^2}\6、 t 的幂函数 t^n (n 为正整数)其拉氏变换为:\Lt^n =\frac{n!}{s^{n + 1}}\7、斜坡函数 t其拉氏变换为:\Lt =\frac{1}{s^2}\8、二次斜坡函数 t^2其拉氏变换为:\Lt^2 =\frac{2!}{s^3} =\frac{2}{s^3}\掌握这些常用函数的拉氏变换,可以帮助我们在解决各种问题时快速进行变换和求解。
例如,在电路分析中,通过拉氏变换可以将时域中的电路方程转换为复频域中的方程,从而更方便地求解电路的响应。
在控制系统中,拉氏变换也有着广泛的应用。
通过对系统的输入和输出进行拉氏变换,可以得到系统的传递函数,从而对系统的性能进行分析和设计。
单位冲激函数

单位冲激函数单位冲激函数,也被称为狄拉克δ函数(Dirac delta function),是一种特殊的数学函数,其特性是在零点处取无穷大的值,而在其他点上则等于零。
单位冲激函数在信号处理、概率论、物理学等领域都有广泛的应用。
一、定义单位冲激函数可以定义为:δ(t) = 0, t ≠ 0δ(t) = ∞, t = 0其中,t是时间变量。
这个函数的图形是一个垂直线段,其长度等于1,起点在原点上。
这个函数在除了原点之外的所有点上的值都是零,而在原点上的值则无穷大。
二、性质1.积分的性质:对于任何函数f(t),如果在其定义域内某点t=a上有一个单位冲激函数,那么该函数在a点的积分等于f(a)。
2.期望的性质:如果一个随机变量的概率分布函数在原点处有一个单位冲激函数,那么这个随机变量的期望值就等于0。
3.微分的性质:单位冲激函数的导数等于零。
三、应用1.信号处理:在信号处理中,单位冲激函数被用来表示一个瞬时的、幅值无穷大的信号,这个信号在时间上无限接近于零时刻。
这种信号通常被称为“脉冲信号”。
2.概率论:在概率论中,单位冲激函数被用来描述随机事件在某一时刻发生的概率。
例如,在泊松分布中,单位冲激函数被用来描述在每个固定时间间隔内事件发生的概率。
3.物理学:在物理学中,单位冲激函数被用来描述某个物理量在某个时刻突然发生变化的情况。
例如,在连续介质力学中,单位冲激函数被用来描述液体在某个时刻突然出现或突然消失的情况。
四、总结单位冲激函数是一种非常重要的数学函数,它具有非常独特的性质和应用。
它是一种描述瞬时事件或突然变化的工具,被广泛应用于信号处理、概率论、物理学等领域。
虽然它的定义和性质看起来非常奇特,但是它在很多实际应用中都有着非常重要的意义。
通过对单位冲激函数的深入研究和学习,我们可以更好地理解和掌握各种领域中的基础知识和技能,提高自身的学术水平和实践能力。
冲激信号δ(t)的三种定义与有关性质的简单讨论

冲激信号δ(t)的三种定义与相关性质的简单讨论信息科学与工程学院1132班 樊列龙 学号:0909113224有一些物理现象,如理学中的爆炸、冲击、碰撞··,电学中的放电、闪电雷击等,它们都有共同特点: ① 持续时间短. ② 取值极大.冲击函数(或冲击信号)就是对这些物理现象的科学抽象与描述。
通常用δ(t)表示冲激信号,它是一个具有有限面积的窄而高的尖峰信号,它也可以被称作δ函数或狄拉克(Dirac )函数,在信号领域中占有非常重要的地位. 由于冲激函数的特殊性,现给出其两种不严格的定义如下:定义一:用脉冲函数极限定义冲激信号. 如图1-1(a)的矩形脉冲,宽为τ,高为τ1,其面积为A.当A=1称之为单位冲激信号. 现保持脉冲面积不变,逐渐减小τ,则脉冲的幅度逐渐增大,当0→τ时,矩形脉冲的极限成为单位冲激函数,即:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=→221lim )(0τετετδτt t t (1-1)冲击信号的波形就如1-1(b)所示.δ(t)只表示在t=0点有“冲激”,在t=0点以外的各处函数值图1-2均为0,其冲激强度(冲激面积)为1,若为A 则表示一个冲击强度为E 倍单位值得函数δ,描述为A=E δ(t),图形表示时,在箭头旁边注上E 。
也可以用抽样函数的极限来定义δ(t)。
有⎥⎦⎤⎢⎣⎡=∞→)(lim )(kt Sa kt k πδ (1-2)对式(1-2)作如下说明:Sa(t)是抽样信号,表达式为ttt a sin )(S = (1-3) 其波形如图1-2所示,Sa(t)∝1/t, 1/t 随t 的增大而减小,sint 是周 期振荡的,因而Sa(t)呈衰减振荡; 并且是一个偶函数,当t=±π,±2π, ·,sint=0,从而Sa(t)=0,是其(a)τ逐渐减小的脉冲函数(b)冲激信号图1-1图 1-3零点. 把原点两侧两个第一个零点之间的曲线部分称为“主瓣”, 其余的衰减部分称为“旁瓣”。
单位脉冲函数

单位脉冲函数
单位脉冲函数(Unit Impulse Function)是数学中常用的一类函数,它经常用于信
号处理,特别是在数字信号处理中,主要用于滤波、卷积等操作。
它具有以下几个特点:
一、定义:单位脉冲函数δ(t)表示一类特殊的函数,它在t=0处具有无穷大的数值,其他任何时刻t处的值都为零,即:
δ(t)=
\begin{cases}
无穷大,& t=0 \\
0,& t\neq0
\end{cases}
二、表示:单位脉冲函数的图形表示如下:
三、性质:
1. δ(t)的定义域和值域都为R;
2. 在t=0处,函数δ(t)的定义极限为∞,而一般函数的定义极限为有限数值;
3. δ(t)的积分(积分不可分的绝对值)在所有t处都为1,即
$$∫_{-∞}^{+∞}\delta(t)dt=1$$
四、应用:
1. 单位脉冲函数δ(t)被广泛用于电路分析、信号处理、滤波和统计分析中;
2. 主要用在滤波器中,用单位脉冲函数来进行滤波操作,可以将信号函数通过一定
的滤波操作,滤除噪声或其它有害的因素,从而可以使信号函数变得清楚;
3. 在傅里叶变换中,单位脉冲函数δ(t)是一个核心概念,δ(t)可以通过一个无穷
级数表示,这也是傅里叶变换的基础;
4. 在现代电路理论中,单位脉冲函数也可以用来表示一类电磁波。
在无线电信号传
输中,当我们需要传输一个电磁波时,可以用这个单位脉冲函数来表示,从而可以高效地
传输电磁波信息,方便利用。
单位脉冲函数与其他函数的卷积关系

一、概述单位脉冲函数是信号与系统理论中的重要概念,也是许多信号处理问题的基础。
在信号处理中,卷积运算是一种重要的数学工具,可以用来描述系统对信号的响应。
本文将探讨单位脉冲函数与其他函数的卷积关系,分析单位脉冲函数在卷积中的作用,以及与其他函数的卷积结果。
二、单位脉冲函数的定义单位脉冲函数在连续时间中通常用δ(t)表示,在离散时间中通常用δ[n]表示。
其定义如下:1. 连续时间单位脉冲函数:δ(t) = {1, t = 0;0, t ≠ 0.}2. 离散时间单位脉冲函数:δ[n] = {1, n = 0;0, n ≠ 0.}单位脉冲函数在t=0(或n=0)处取值为1,其余位置处取值为0。
三、单位脉冲函数与其他函数的卷积在信号处理中,卷积运算描述了两个信号之间的响应关系。
对于连续时间信号f(t)和g(t)的卷积定义如下:(f * g)(t) = ∫f(τ)g(t-τ)dτ对于离散时间信号f[n]和g[n]的卷积定义如下:(f * g)[n] = ∑f[k]g[n-k]现在我们来探讨单位脉冲函数与其他函数的卷积关系。
四、单位脉冲函数与自身的卷积对于连续时间单位脉冲函数δ(t),与自身进行卷积运算的结果如下:(δ * δ)(t) = ∫δ(τ)δ(t-τ)dτ= δ(t)可见,连续时间单位脉冲函数与自身卷积的结果仍为单位脉冲函数。
对于离散时间单位脉冲函数δ[n],与自身进行卷积运算的结果如下:(δ * δ)[n] = ∑δ[k]δ[n-k]= δ[n]同样地,离散时间单位脉冲函数与自身卷积的结果仍为单位脉冲函数。
五、单位脉冲函数与其他信号的卷积1. 单位脉冲函数与连续时间矩形信号的卷积考虑连续时间矩形信号r(t),其表达式为:r(t) = {1, |t| < a;0, |t| > a.}其中a为常数,表示矩形信号的宽度。
与单位脉冲函数进行卷积运算,可得:(δ * r)(t) = ∫δ(τ)r(t-τ)dτ= r(t)这表明,单位脉冲函数与连续时间矩形信号卷积的结果仍为矩形信号。
《机械工程测试技术》课后习题答案机工版

2 44, 724,500, 600 2 22,362, 250,300 11,181,125,150
所以该信号的周期为 0.25s。
1-7 求正弦信号 x(t) Asin( 2 t) 的单边、双边频谱,如果该信号延时 T 后,其频谱如何变
T
4
化?
0 ea jwt dt ea jwdt
0
11 a jω a jω
2a a2 ω2
双边指数信号的傅里叶变换是一个正实数,相频谱等于零。由于双边指数信号为实偶对
称函数,因此 X ω 为 ω 的实偶对称函数。
5
1-5 设有一组合信号,有频率分别为 724Hz, 44 Hz,500 Hz,600 Hz 的同相正弦波叠加而 成,求该信号的周期。
答:在时域范围内,实现不失真的条件是:输出信号 y t 与输入信号 x t 相比,只要是幅
值上扩大 A0 ,时间上滞后 t0 ,即 y t A0x t t0 。
2-6 从频域说明测量系统不失真测量条件是什么? 答:在频域内实现不失真测试的条件即为幅频特性是一条平行于 轴的直线,相频特性
1
在教学环节中安排与本课程相关的必要的实验及习题,学习中学生必须主动积极地参加 实验及完成相应的习题才能受到应有的实验能力的训练,才能在潜移默化中获得关于动态测 试工作的比较完整的概念,也只有这样,才能初步具有处理实际测试工作的能力。
2
思考题与习题
1-1 信号的分哪几类以及特点是什么? 答:按信号随时间的变化规律分为确定性信号和分确定性信号,确定信号分为周期信号
则 有 输 出 y1 t , 且 y1 t
2
2
11
1
cos 10t
冲激函数取样性质证明

冲激函数取样性质证明冲激函数是一种特殊的函数,也称为单位脉冲函数或Dirac函数。
它在数学分析和信号处理中有着重要的应用。
冲激函数取样性质是指冲激函数作为取样信号时,保持原信号的性质。
在这篇文章中,我将详细阐述冲激函数取样性质的证明。
首先,我们需要明确冲激函数的定义。
冲激函数通常用符号δ(t)表示,它满足以下条件:1.δ(t)在t=0时的取值为无穷大,其他时间点的取值为零:δ(0)=∞,δ(t)=0,t≠0。
2. δ(t)的面积等于1:∫δ(t)dt=1我们可以将冲激函数定义为一个函数序列的极限形式,即:δ(t) = lim(n→∞) gn(t)其中gn(t)是一系列脉冲函数。
例如,gn(t)可以是一个高度为n,宽度为1/n的矩形函数,使得gn(t)在0附近的面积为1,其他位置的面积为零。
假设我们有一个信号x(t),我们用冲激函数对其进行取样。
取样信号可以表示为s(t)=x(t)δ(t-T),其中T是取样时刻。
我们的目标是证明冲激函数取样信号的性质与原信号相同。
首先,我们可以推导冲激函数取样信号的时域表达式。
由于δ(t)在t=T时的取值为无穷大,假设在t=T时,x(T)的取值为X。
那么,我们可以得到:s(t)=x(t)δ(t-T)=x(t)δ(t-T),t=T=x(T)δ(t-T)=Xδ(t-T)。
因此,冲激函数取样信号的时域表达式为s(t)=Xδ(t-T)。
这意味着取样信号在t=T时的取值为X,其他时间点的取值为零。
这与原信号在t=T时的取值相同,因此冲激函数取样信号在时域上保持了原信号的性质。
接下来,我们证明冲激函数取样信号的频域性质与原信号相同。
我们可以使用傅里叶变换来分析信号的频域特性。
假设原信号x(t)的傅里叶变换为X(ω),即X(ω)=F{x(t)},其中F表示傅里叶变换操作。
根据冲激函数的定义,我们可以得到取样信号的傅里叶变换为:S(ω)=F{s(t)}=F{Xδ(t-T)}。
我们可以利用傅里叶变换的性质,将傅里叶变换和冲激函数的性质结合起来。
冲激信号δ(t)的三种定义与相关性质的简单讨论

冲激信号δ(t)的三种定义与相关性质的简单讨论信息科学与工程学院1132班 樊列龙 学号:0909113224有一些物理现象,如理学中的爆炸、冲击、碰撞······,电学中的放电、闪电雷击等,它们都有共同特点: ① 持续时间短. ② 取值极大.冲击函数(或冲击信号)就是对这些物理现象的科学抽象与描述。
通常用δ(t)表示冲激信号,它是一个具有有限面积的窄而高的尖峰信号,它也可以被称作δ函数或狄拉克(Dirac )函数,在信号领域中占有非常重要的地位. 由于冲激函数的特殊性,现给出其两种不严格的定义如下:定义一:用脉冲函数极限定义冲激信号. 如图1-1(a)的矩形脉冲,宽为τ,高为τ1,其面积为A.当A=1称之为单位冲激信号. 现保持脉冲面积不变,逐渐减小τ,则脉冲的幅度逐渐增大,当0→τ时,矩形脉冲的极限成为单位冲激函数,即:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=→221lim )(0τετετδτt t t (1-1)冲击信号的波形就如1-1(b)所示.δ(t)只表示在t=0点有“冲激”,在t=0点以外的各处函数值均为0,其冲激强度(冲激面积)为1,若为A 则表示一个冲击强度为E 倍单位值得函数δ,描述为A=E δ(t),图形表示时,在图1-2箭头旁边注上E 。
也可以用抽样函数的极限来定义δ(t)。
有⎥⎦⎤⎢⎣⎡=∞→)(lim )(kt Sa kt k πδ (1-2)对式(1-2)作如下说明:Θ Sa(t)是抽样信号,表达式为ttt a sin )(S = (1-3) 其波形如图1-2所示,Sa(t)∝1/t, 1/t 随t 的增大而减小,sint 是周 期振荡的,因而Sa(t)呈衰减振荡;并且是一个偶函数,当t=±π,±2π···,sint=0,从而Sa(t)=0,是其零点. 把原点两侧两个第一个零点之间的曲线部分称为“主瓣”, 其余的衰减部分称为“旁瓣”。