数字图像处理实验报告3

合集下载

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告实验一数字图像处理编程基础一、实验目的1. 了解MATLAB图像处理工具箱;2. 掌握MATLAB的基本应用方法;3. 掌握MATLAB图像存储/图像数据类型/图像类型;4. 掌握图像文件的读/写/信息查询;5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法;6. 编程实现图像类型间的转换。

二、实验内容1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。

2. 运行图像处理程序,并保存处理结果图像。

三、源代码I=imread('cameraman.tif')imshow(I);subplot(221),title('图像1');imwrite('cameraman.tif')M=imread('pout.tif')imview(M)subplot(222),imshow(M);title('图像2');imread('pout.bmp')N=imread('eight.tif')imview(N)subplot(223),imshow(N);title('图像3');V=imread('circuit.tif')imview(V)subplot(224),imshow(V);title('图像4');N=imread('C:\Users\Administrator\Desktop\1.jpg')imshow(N);I=rgb2gary(GRB)[X.map]=gary2ind(N,2)RGB=ind2 rgb(X,map)[X.map]=gary2ind(I,2)I=ind2 gary(X,map)I=imread('C:\Users\dell\Desktop\111.jpg');subplot(231),imshow(I);title('原图');M=rgb2gray(I);subplot(232),imshow(M);[X,map]=gray2ind(M,100);subplot(233),imshow(X);RGB=ind2rgb(X,map);subplot(234),imshow(X);[X,map]=rbg2ind(I);subplot(235),imshow(X);四、实验效果实验二 图像几何变换实验一、实验目的1.学习几种常见的图像几何变换,并通过实验体会几何变换的效果;2.掌握图像平移、剪切、缩放、旋转、镜像等几何变换的算法原理及编程实现;3.掌握matlab 编程环境中基本的图像处理函数。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。

2.掌握数字图像处理的基本方法。

3.掌握常用数字滤波器的性质和使用方法。

4.熟练应用数字图像处理软件进行图像处理。

实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。

% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。

图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。

在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。

RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。

% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。

数字图像处理中的滤波是一种常用的图像增强方法。

滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。

% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。

这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。

下面是数字图像处理在人脸识别应用中的一个简单例子。

% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告1一. 实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1.编程实现图像平移,要求平移后的图像大小不变;2.编程实现图像的镜像;3.编程实现图像的转置;4.编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架:3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:具体组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=”BM” bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIB Pixels DIB图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图, 用函数创建兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数 ,一般放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或打印机上显示DIB. 在显示时不进行缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI 位图.5. CreateDIBSection函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits 的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像处理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。

《数字图像处理》实验报告

《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。

在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。

首先,我们进行了图像的读取和显示实验。

通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。

这为我们后续的实验奠定了基础。

同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。

这使我们能够更好地理解后续实验中的算法和操作。

接下来,我们进行了图像的灰度化实验。

灰度化是将彩色图像转换为灰度图像的过程。

在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。

通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。

随后,我们进行了图像的直方图均衡化实验。

直方图均衡化是一种用于增强图像对比度的方法。

在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。

通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。

在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。

滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。

在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。

通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。

此外,我们还进行了图像的边缘检测实验。

边缘检测是一种用于提取图像边缘信息的方法。

在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。

通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。

最后,我们进行了图像的压缩实验。

图像压缩是一种将图像数据进行压缩以减小文件大小的方法。

数字图像处理实验报告

数字图像处理实验报告

实 验 内 容
3-2 根据直方图定义,通过结构化编程方式给出 3-1)中灰度图像像素点统计形式的直方图,并与利用 函数调用方式获得的直方图在两个不同窗口中进行比较,两窗口图像名称分别为”编程直方图”、”函 数调用直方图”; 参考函数 imread、size、bar、imhist、image I=imread('panda.jpg'); B=rgb2gray(I); A=uint8(B); [m n]=size(B); s=zeros(m,n); for i=1:m for j=1:n for rank=0:255 if B(i,j)==rank s(rank+1)=s(rank+1)+1; end
在水平和垂直方 列的方式同时显
I=imread('panda.jpg');
subplot(1,3,1);imshow(I)
subplot(1,3,2);imshow(I)
colorbar
subplot(1,3,3);imshow(I)
colorbar('horizontal')
实 验 1)、实验采用的原始图片要求是包含自己头像的照片,图片大小控制在 640×480 之内; 要 2)、实验中的当前工作目录采用 MATLAB 目录下的 work 文件夹。 求
学号
12109940423 指导教师
实验地点
1C06-329
实验成绩
图像灰度统计特性及其相关变换
12 级 1 班 杜云明
实 理解直方图的形成原理,掌握绘制灰度直方图的方法;熟悉图像灰度直方图的变换及直方图均衡化方 验 法;理解图像灰度变换处理在图像增强中的作用;熟悉图像灰度分布统计与图像视觉质量之间的关系; 目 通过工具箱函数调用和结构化编程两种方式实现图像的相关处理,在加深理解基本原理的同时,提高 的 编程实践的技巧和能力。

数字图像处理实验报告(五个实验全)

数字图像处理实验报告(五个实验全)

数字图像处理实验报告(五个实验全)实验⼀ Matlab图像⼯具的使⽤1、读图I=imread('lena.jpg');imshow(I);2、读⼊⼀幅RGB图像,变换为灰度图像和⼆值图像,并在同⼀个窗⼝内分成三个⼦窗⼝来分别显⽰RGB图像和灰度图像。

a=imread('lena.jpg')i = rgb2gray(a)I = im2bw(a,0.5)subplot(3,1,1);imshow(a);subplot(3,1,2);imshow(i);subplot(3,1,3);imshow(I);原图像灰度图像⼆值图像实验⼆图像变换1、对⼀幅图像进⾏平移,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与平移后傅⾥叶频谱的对应关系。

s=imread('beauty.jpg');i=rgb2gray(s)i=double(i)j=fft2(i);k=fftshift(j); 原图像原图的傅⾥叶频谱l=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b)b=double(b) 平移后的图像平移后的傅⾥叶频谱c=fft2(b);e=fftshift(c);l=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);subplot(2,2,2);imshow(uint8(b));subplot(2,2,3);imshow(A);subplot(2,2,4);imshow(B);2、对⼀幅图像进⾏旋转,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与旋转后傅⾥叶频谱的对应关系。

数字图像处理实验报告实验三

数字图像处理实验报告实验三
2.设计一个检测图3-2中边缘的程序,要求结果类似图3-3,并附原理说明
代码:
I=imread('lines.png');
F=rgb2gray(I);
subplot(2,2,1);
imshow(I);
title('原始图像');
thread=130/255;
subplot(2,2,2);
imhist(F);
图5-2 添上一层(漆)
3.开运算open:
4.闭close:
5.HMT(Hit-Miss Transform:击中——击不中变换)
条件严格的模板匹配
模板由两部分组成。 :物体, :背景。
图5-3 击不中变换示意图
性质:
(1) 时,
(2)
6.细化/粗化
(1)细化(Thin)
去掉满足匹配条件的点。
图5-4 细化示意图
se = strel('ball',5,5);
I2 = imerode(I,se);
imshow(I), title('Original')
figure, imshow(I2), title('Eroded')
Matlab用imopen函数实现图像开运算。用法为:
imopen(I,se);
I为图像源,se为结构元素
构造一个中心具有菱形结构的结构元素,R为跟中心点的距离
SE = strel('rectangle',MN)
构造一个矩形的结构元素,MN可写在[3 4],表示3行4列
SE = strel('square',W)
构造一个正方形的矩阵。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告实验一数字图像的获取一、实验目的1、了解图像的实际获取过程。

2、巩固图像空间分辨率和灰度级分辨率、邻域等重要概念。

3、熟练掌握图像读、写、显示、类型转换等matlab函数的用法。

二、实验内容1、读取一幅彩色图像,将该彩色图像转化为灰度图像,再将灰度图像转化为索引图像并显示所有图像。

2、编程实现空间分辨率变化的效果。

三、实验原理1、图像读、写、显示I=imread(‘image.jpg’)Imview(I)Imshow(I)Imwrite(I,’wodeimage.jpg’)2、图像类型转换I=mat2gray(A,[amin,amax]);按指定的取值区间[amin,amax]将数据矩阵A转化为灰度图像I,amin对应灰度0,amax对应1,也可以不指定该区间。

[x,map]=gray2ind(I,n);按指定的灰度级n将灰度图像转化为索引图像,n默认为64I=ind2gray(x,map);索引图像转化为灰度图像I=grb2gray(RGB);真彩色图像转化为灰度图像[x,map]=rgb2ind(RGB);真彩色图像转化为索引图像RGB=ind2rgb(x,map);索引图像转化为真彩色图像BW=im2bw(I,level);将灰度图像转化为二值图像,level取值在[0,1]之间BW=im2bw(x,map,level);将索引图像转化为二值图像,level取值在[0,1]之间BW=im2bw(RGB,level);将真彩色图像转化为二值图像,level取值在[0,1]之间四、实验代码及结果1、in=imread('peppers.png');i=rgb2gray(in);[x,map]=gray2ind(i,128);subplot(131),imshow(in)subplot(132),imshow(i)subplot(133),imshow(x),colormap(map)2、%空间分辨率变化的效果clc,close all,cleari=imread('cameraman.tif');i=imresize(i,[256,256]);i1=i(1:2:end,1:2:end);[m1,n1]=size(i)i2=i1(1:2:end,1:2:end);[m2,n2]=size(i2)i3=i2(1:2:end,1:2:end);[m3,n3]=size(i3)subplot(221),imshow(i),xlabel('256x256')subplot(222),imshow(i1),xlabel('128x128')subplot(223),imshow(i2),xlabel('64x64')subplot(224),imshow(i3),xlabel('32x32')256 x 256128 x 12864 x 6432 x 32实验二图像的几何变换一、实验目的掌握图像的基本几何变换的方法1、图像的平移2、图像的旋转二、实验内容练习用matalb 命令实现图像的平移、旋转操作1、.编写实现图像平移的函数2、用imread 命令从你的硬盘读取一幅256×256灰度图;3、调用平移函数,将256×256灰度图平移100行200列,在同一个窗口中显示平移前和平移后的图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三数字图像的空间域滤波
院(系):电气学院姓名:刘丽霞学号:200902050068
实验时间:2012/11/20 实验地点:A07-602 指导老师:李静
一、实验目的
1)掌握图像滤波的基本定义及目的。

2)理解空间域滤波的基本原理及方法。

3)掌握进行图像的空域滤波的方法。

二、实验环境
1)在MATLAB的环境下进行实验;
2)复制若干图形文件至MATLAB目录下work文件夹中。

三、实验方法
1.平滑空间滤波:
1)读出eight.tif这幅图像,给这幅图像分别加入椒盐噪声和高
斯噪声后并与前一张图显示在同一图像窗口中。

I1=imnoise(I,'salt & pepper',0.02); %加入椒盐噪声
I2=imnoise(I,'gaussian',0,0.005); %加入高斯噪声
2)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不
同模板所形成的效果,要求在同一窗口中显示。

Hs = fspecial('sobel');
Sobel = imfilter(I,Hs,'replicate'); %选用不同的平滑模板
3)使用函数imfilter时,分别采用不同的填充方法(或边界选
项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。

4)运用for循环,将加有椒盐噪声的图像进行10次,20次均值
滤波,查看其特点,显示均值处理后的图像。

II1=rgb2gray(I1);
a=1/9.*[1 1 1
1 1 1
1 1 1];
b=conv2(a,II1); %均值处理
5)对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对
有噪声的图像做处理,要求在同一窗口中显示结果。

2.锐化空间滤波
读出moon.tif这幅图像,采用3×3的拉普拉斯算子w = [ 1, 1, 1; 1 – 8 1; 1, 1,
1]对其进行滤波。

w =[1,1,1;
1,-8,1;
1,1,1];
K=conv2(T,w,'same');%3×3的拉普拉斯算子滤波
四、实验结果
不同尺寸梯度算子的锐化滤波1 不同尺寸梯度算子的锐化滤波2
不同尺寸梯度算子的锐化滤波3 不同尺寸梯度算子的锐化滤波4
5
不同尺寸梯度算子的锐化滤波5
I=imread('moon.tif');
T=double(I);
subplot(1,2,1),imshow(T,[]);title('设计原图');
domain=[8 8 0 8 8;
8 8 0 8 8;
0 0 0 0 0;
8 8 0 8 8;
8 8 0 8 8];
K1= ordfilt2(T,5,domain);
subplot(1,2,2),imshow(K1,[]);title('自行设计图');
'设计原图自行设计图
五、实验结果分析和结论
六、参考文献
[1] R.C. Gonzalez & R.E Woods. Digital Image Processing(2E). Prentice Hall PTR,2002 中译本:阮秋琦等译. 数字图像处理(第二版). 北京:电子工业出版社,2005.3
[2] 冈萨雷斯. 数字图像处理(MA TLAB版). 北京:电子工业出版社,2005.9
[3] K.R. Castleman. 数字图像处理. 朱志刚等译. 北京:电子工业出版社,1998.9
[4] 章毓晋. 图象工程(上册)—图象处理和分析. 北京:清华大学出版社,2003.7
[5] 何斌. Visual C++数字图像处理(第二版). 北京:人民邮电出版社,2002.1。

相关文档
最新文档