人工智能习题参考答案
人工智能练习题答案

⼈⼯智能练习题答案1、什么是⼈⼯智能?⼈⼯智能有哪些研究领域?何时创建该学科,创始⼈是谁?(1)AI(Artificial Intelligence)是利⽤计算机技术、传感器技术、⾃动控制技术、仿⽣技术、电⼦技术以及其他技术仿制⼈类智能机制的学科(或技术),再具体地讲就是利⽤这些技术仿制出⼀些具有⼈类智慧(能)特点的机器或系统(2)⼈⼯智能的研究领域主要有专家系统、机器学习、模式识别、⾃然语⾔理解、⾃动定⼒证明、⾃动程序设计、机器⼈学、博弈、智能决策⽀持系统、⼈⼯神经⽹络等(3)⼈⼯智能于1956年夏季,由麦卡锡,明斯基、洛切斯特、⾹农等发起创建2、产⽣式系统的由哪三部分组成?各部分的功能是什么?课本29页(1)产⽣式系统由综合数据库、产⽣式规则和控制系统三部分组成(2)综合数据库⽤于存放当前信息,包括初始事实和中间结果;产⽣式规则⽤于存放相关知识;控制系统⽤于规则的解释或执⾏程序。
3、设有三枚硬币,其初始状态为(反,正,反),允许每次翻转⼀个硬币(只翻⼀个硬币,必须翻⼀个硬币)。
必须连翻三次。
⽤知识的状态空间表⽰法求出到达状态(反,反,反)的通路。
画出状态空间图。
课本51页问题求解过程如下:(1)构建状态⽤数组表⽰的话,显然每⼀硬币需占⼀维空间,则⽤三维数组状态变量表⽰这个知识:Q=(q1 , q2 , q3)取q=0 表⽰钱币的正⾯; q=1 表⽰钱币的反⾯构成的问题状态空间显然为:Q0=(0,0,0),Q1=(0,0,1),Q2=(0,1,0), Q3=(0,1,1),Q4=(1,0,0),Q5=(1,0,1),Q6=(1,1,0),Q7=(1,1,1)(2)引⼊操作f1:把q1翻⼀⾯。
f2:把q2翻⼀⾯。
f3:把q3翻⼀⾯。
显然:F={f1,f2,f3}⽬标状态:(找到的答案)Qg=(0,0,0)或(1,1,1)(3)画出状态图从状态图可知:从“反,正,反”(1,0,1)到“正,正,正”(0,0,0)没有解题路径;从“反,正,反”(1,0,1)到“反,反,反”(1,1,1)有⼏条解题路径f3 f2 f3,f1 f2 f1,…4、⼋数码问题:已知⼋数码的初始状态和⽬标状态如下:=>。
人工智能单选复习题及参考答案

人工智能单选复习题及参考答案一、单选题(共100题,每题1分,共100分)1、在scikit-learn中,DBSCAN算法对于()参数值的选择非常敏感A、epsB、pC、n_jobsD、algorithm正确答案:A2、下面的语句哪个会无限循环下去:A、for a in range(10): time.sleep(10)B、a = [3,-1,','] for i in a[:]: if not a: breakC、while True: breakD、while 1正确答案:D3、列表a=[1,2,[3,4]],以下的运算结果为True的是()。
A、len(a)==3B、length(a)==3C、length(a)==4D、len(a)==4正确答案:A4、自然语言中的词语需要转化为计算机可以记录处理的数据结构,通常会把自然语言中的词语转化为以下哪种数据结构:A、结构体B、向量C、有向图D、标量正确答案:B5、自然语言理解是人工智能的重要应用领域,下面列举中的()不是它要实现的目标A、机器翻译B、欣赏音乐C、对自然语言表示的信息进行分析概括或编辑D、理解别人讲的话正确答案:B6、LSTM单元中引入了哪些门来更新当前时刻的单元状态向量?A、任意门、输入门B、遗忘门、任意门C、输入门、遗忘门D、输出门、任意门正确答案:C7、PCA的步骤不包括()A、特征值排序B、矩阵分解得到特征值和特征向量C、构建协方差矩阵D、特征值归一化正确答案:D8、在中期图像识别技术(2003-2012)中,索引的经典模型是()。
A、口袋模型B、增量模型C、词袋模型D、胶囊模型正确答案:C9、SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的()无关。
A、旋转B、大小和旋转C、缩放D、大小正确答案:B10、下列哪个不属于特征的类型(___)A、关键特征B、无关特征C、相关特征D、冗余特征正确答案:A11、将数值类型的属性值(如年龄)用区间标签(例如0~18、19-44、45~59和60~100等)或概念标签,称为数据()处理。
人工智能课后答案[参考]
![人工智能课后答案[参考]](https://img.taocdn.com/s3/m/cd29484fbf23482fb4daa58da0116c175e0e1e57.png)
第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。
2、对量水问题给出产生式系统描述,并画出状态空间图。
有两个无刻度标志的水壶,分别可装5升和2升的水。
设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌。
已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来。
3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。
相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。
和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。
问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。
求N=2时,求解该问题的产生式系统描述,给出其状态空间图。
讨论N为任意时,状态空间的规模。
4、对猴子摘香蕉问题,给出产生式系统描述。
一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。
设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉。
5、对三枚钱币问题给出产生式系统描述及状态空间图。
设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正"或"反、反、反"状态。
6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。
7、设可交换产生式系统的一条规则R可应用于综合数据库D来生成出D',试证明若R存在逆,则可应用于D'的规则集等同于可应用于D的规则集。
人工智能试题及答案

人工智能试题及答案一、单选题(每题2分,共20分)1. 人工智能的英文缩写是什么?A. AIB. MLC. DLD. NLP答案:A2. 下列哪项不是人工智能的主要应用领域?A. 语音识别B. 机器翻译C. 网络购物D. 自动驾驶答案:C3. 深度学习是人工智能的哪一种技术?A. 机器学习B. 神经网络C. 知识表示D. 专家系统答案:B4. 人工智能之父是谁?A. 艾伦·图灵B. 马文·明斯基C. 约翰·麦卡锡D. 艾伦·纽厄尔答案:C5. 下列哪项技术不属于自然语言处理?A. 文本分类B. 情感分析C. 机器翻译D. 图像识别答案:D6. 人工智能的发展历程中,第一次“人工智能的冬天”发生在哪个年代?A. 20世纪50年代B. 20世纪70年代C. 20世纪90年代D. 21世纪初答案:B7. 人工智能的三大支柱是什么?A. 数据、算法、计算力B. 知识、算法、硬件C. 计算力、算法、网络D. 数据、硬件、网络答案:A8. 下列哪项不是人工智能的伦理问题?A. 数据隐私B. 算法偏见C. 机器取代人类D. 机器的自我意识答案:D9. 人工智能的“图灵测试”是由谁提出的?A. 艾伦·图灵B. 马文·明斯基C. 约翰·麦卡锡D. 艾伦·纽厄尔答案:A10. 下列哪项是人工智能的典型应用?A. 搜索引擎B. 电子邮件C. 社交媒体D. 网络广告答案:A二、多选题(每题3分,共15分)1. 人工智能的应用可以包括以下哪些领域?A. 医疗健康B. 金融服务C. 教育D. 娱乐答案:ABCD2. 以下哪些是人工智能的核心技术?A. 机器学习B. 深度学习C. 知识图谱D. 强化学习答案:ABCD3. 人工智能面临的挑战包括哪些?A. 技术难题B. 伦理问题C. 法律限制D. 社会接受度答案:ABCD4. 人工智能的发展历程中,有哪些重要的里程碑?A. 达特茅斯会议B. 深蓝战胜国际象棋冠军C. 谷歌自动驾驶汽车D. AlphaGo战胜围棋世界冠军答案:ABCD5. 人工智能的伦理原则通常包括哪些?A. 透明度B. 公平性C. 隐私保护D. 可解释性答案:ABCD三、判断题(每题1分,共10分)1. 人工智能是计算机科学的一个分支。
(完整版)人工智能(部分习题答案及解析)

1.什么是人类智能?它有哪些特征或特点?定义:人类所具有的智力和行为能力。
特点:主要体现为感知能力、记忆与思维能力、归纳与演绎能力、学习能力以及行为能力。
2.人工智能是何时、何地、怎样诞生的?解:人工智能于1956年夏季在美国Dartmouth大学诞生。
此时此地举办的关于用机器模拟人类智能问题的研讨会,第一次使用“人工智能”这一术语,标志着人工智能学科的诞生。
3.什么是人工智能?它的研究目标是?定义:用机器模拟人类智能。
研究目标:用计算机模仿人脑思维活动,解决复杂问题;从实用的观点来看,以知识为对象,研究知识的获取、知识的表示方法和知识的使用。
4.人工智能的发展经历了哪几个阶段?解:第一阶段:孕育期(1956年以前);第二阶段:人工智能基础技术的研究和形成(1956~1970年);第三阶段:发展和实用化阶段(1971~1980年);第四阶段:知识工程和专家系统(1980年至今)。
5.人工智能研究的基本内容有哪些?解:知识的获取、表示和使用。
6.人工智能有哪些主要研究领域?解:问题求解、专家系统、机器学习、模式识别、自动定论证明、自动程序设计、自然语言理解、机器人学、人工神经网络和智能检索等。
7.人工智能有哪几个主要学派?各自的特点是什么?主要学派:符号主义和联结主义。
特点:符号主义认为人类智能的基本单元是符号,认识过程就是符号表示下的符号计算,从而思维就是符号计算;联结主义认为人类智能的基本单元是神经元,认识过程是由神经元构成的网络的信息传递,这种传递是并行分布进行的。
8.人工智能的近期发展趋势有哪些?解:专家系统、机器人学、人工神经网络和智能检索。
9.什么是以符号处理为核心的方法?它有什么特征?解:通过符号处理来模拟人类求解问题的心理过程。
特征:基于数学逻辑对知识进行表示和推理。
11.什么是以网络连接为主的连接机制方法?它有什么特征?解:用硬件模拟人类神经网络,实现人类智能在机器上的模拟。
特征:研究神经网络。
人工智能单选练习题库含参考答案

人工智能单选练习题库含参考答案一、单选题(共100题,每题1分,共100分)1、人工智能诞生在1955年,50年代末第一款神经网络-()将人工智能推向了第一个高潮。
A、感知机B、无人机C、费曼机D、机器人正确答案:A2、GooLeNet中使用较多小tricks,其中全局平局池化GAP就是一个,使用GAP的优点是()A、加速模型收敛B、提供更好的分类C、增加网络深度D、减少参数量,实现任意大小的输入正确答案:D3、学习器的实际预测输出与样本的真实输出之间的差异称为(___)。
A、误差B、精度C、查准率D、错误率正确答案:A4、华为的芯片支持 HUAWEI HiAI 的哪一个模块?A、HiAI FrameworkB、HiAI ServiceC、HiAI FoundationD、HiAI Engine正确答案:C5、有统计显示,在未来,非结构化数据的占比将达到()以上。
A、$0.90B、0.8C、0.6D、0.7正确答案:A6、我国人工智能的发展战略是()。
A、12320工业互联B、“1438”战略C、新一代人工智能发展规划D、国家制造创新正确答案:C7、()就是指分类任务中不同类别的训练样例数目差别很大的情况A、类别不相同B、类别不对等C、类别不平衡D、类别数不同正确答案:C8、以下哪个关键字是与 try 语句一起使用来处理异常的?A、&catch(a)&B、catch&C、&exception&D、&except正确答案:D9、深度学习中的“深度”是指()A、计算机对问题的处理更加灵活B、中间神经元网络的层次很多C、计算机的求解更加精准D、计算机理解的深度正确答案:B10、增强现实领域(AR)大量应用了(),典型的就是微软的HoLolens。
A、计算机视觉B、语音识别C、图像处理D、虚拟现实技术正确答案:A11、DBSCAN在最坏情况下的时间复杂度是()A、O(m2)B、O(m*logm)C、O(logm)D、O(m)正确答案:A12、多义现象可以被定义为在文本对象中一个单词或短语的多种含义共存。
人工智能基础概念习题(含答案)

人工智能基础概念习题(含答案)一、单选题(共60题,每题1分,共60分)1、在数据产品研发的过程中,以下()属于低层次数据。
A、一次数据B、三次数据C、二次数据D、零次数据正确答案:D2、在人工神经网络算法中,不属于实现“人工神经元”的方法的有()。
A、感知器B、线性单元C、Sigmoid单元D、Untied单元正确答案:D3、下列哪项不是构建知识图谱用到的主要技术()A、关系抽取B、命名实体识别C、词性标注D、实体链接正确答案:C4、以下关于机器学习说法错误的是A、机器学习可以解决图像识别问题B、监督学习和非监督学习都属于机器学习C、机器学习在一定程度上依赖于统计学习D、目前机器学习已经可以代替人类正确答案:D5、图像识别任务可以分为三个层次,根据处理内容的抽象性,从低到高依次为A、图像分析,图像处理,图像理解B、图像分析,图像理解,图像处理C、图像理解,图像分析,图像处理D、图像处理,图像分析,图像理解正确答案:D6、2010年谷歌推出以顶点为中心的图处理系统(),其专为大规模图数据处理而设计,将图数据保存在主存储器中并采用并行计算的BSP模型A、PregelB、DregelC、CregelD、Aregel正确答案:A7、()是人工智能地核心,是使计算机具有智能地主要方法,其应用遍及人工智能地各个领域。
A、深度学习B、智能芯片C、机器学习D、人机交互正确答案:C8、标准AdaBoost只适用于()任务A、二分类B、分类C、回归D、多分类正确答案:D9、阿尔法狗是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,它的主要工作原理是什么?A、深度学习B、卷积神经网络C、机器学习D、BP神经网络正确答案:A10、下列选项中,不属于生物特征识别技术的是()A、声纹识别B、文本识别C、步态识别D、虹膜识别正确答案:B11、对学习器的泛化性能进行评估,不仅需要有效可行的实验估计方法,还需要有衡量模型泛化能力的评价标准,这就是()。
人工智能习题参考答案

• 神经网络主要通过指导式(有师)学习算法和非指导式(无师)学习 算法。此外,还存在第三种学习算法,即强化学习算法;可把它看做 有师学习的一种特例。 • (1)有师学习 • 有师学习算法能够根据期望的和实际的网络输出(对应于给定输入) 间的差来调整神经元间连接的强度或权。因此,有师学习需要有个老 师或导师来提供期望或目标输出信号。有师学习算法的例子包括 Delta规则、广义Delta规则或反向传播算法以及LVQ算法等。 • (2)无师学习 • 无师学习算法不需要知道期望输出。在训练过程中,只要向神经网络 提供输入模式,神经网络就能够自动地适应连接权,以便按相似特征 把输入模式分组聚集。无师学习算法的例子包括Kohonen算法和 Carpenter-Grossberg自适应谐振理论(ART)等。 • (3)强化学习 • 强化(增强)学习是有师学习的特例。它不需要老师给出目标输出。 强化学习算法采用一个“评论员”来评价与给定输入相对应的神经网 络输出的优度(质量因数)。强化学习算法的一个例子是遗传算法 (GA)。
• • • • • • • • • •
• 6-2专家系统由哪些部分构成?各部分的作用为何? • 答: •
• 5-7遗传算法、进化策略和进化编程的关系如何?有何区别? • 遗传算法是一种基于空间搜索的算法,它通过自然选择、遗传、变异 等操作以及达尔文适者生存的理论,模拟自然进化过程来寻找所求问 题的解答。 • 进化策略(Evolution Strategies,ES)是一类模仿自然进化原理以求 解参数优化问题的算法。 • 进化编程根据正确预测的符号数来度量适应值。通过变异,为父代群 体中的每个机器状态产生一个子代。父代和子代中最好的部分被选择 生存下来。 • 进化计算的三种算法即遗传算法、进化策略和进化编程都是模拟生物 界自然进化过程而建立的鲁棒性计算机算法。在统一框架下对三种算 法进行比较,可以发现它们有许多相似之处,同时也存在较大的差别。 • 进化策略和进化编程都把变异作为主要搜索算子,而在标准的遗传算 法中,变异只处于次要位置。交叉在遗传算法中起着重要作用,而在 进化编程中却被完全省去,在进化策略中与自适应结合使用,起了很 重要的作用。 • 标准遗传算法和进化编程都强调随机选择机制的重要性,而从进化策 略的角度看,选择(复制)是完全确定的。进化策略和进化编程确定 地把某些个体排除在被选择(复制)之外,而标准遗传算法一般都对 每个个体指定一个非零的选择概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 它们的本质都是对一具体事实知识表示,只是表示的方法不同。
❖ 2-2 设有3个传教士和3个野人来到河边,打算乘一只船从 右岸渡到左岸去。该船的负载能力为两人。在任何时候, 如果野人人数超过传教士人数,那么野人就会把传教士吃 掉。他们怎样才能用这条船安全地把所有人都渡过河去?
❖ 1-6人工智能的主要研究和应用领域是什么?其中, 哪些是新的研究热点?
❖ 研究和应用领域:问题求解 (下棋程序),逻辑推 理与定理证明 (四色定理证明),自然语言理解, 自动程序设计,专家系统,机器学习,神经网络, 机器人学 (星际探索机器人),模式识别 (手写识别, 汽车牌照识别,指纹识别),机器视觉 (机器装配, 卫星图像处理),智能控制,智能检索,智能调度 与指挥 (汽车运输高度,列车编组指挥),系统与 语言工具。
❖ 场景二 看电影
❖ 1放映员开始放映 2观众看电影
❖ 场景三 离开电影院
❖
1电影放映完 2离开
❖ 结果:
❖ 我花钱买票看了电影,知道了电影的情节。
❖ 电影院工作人员播放了电影,付出了劳动。
❖ 电影院获得了收入。
第三章 搜索推理技术
❖ 3-9比较宽度优先搜索、有界深度优先搜索及有序搜索的搜索效率,并以实例数据加以说明。 ❖ 宽度优先搜索是一种盲目搜索,时间和空间复杂度都比较高,当目标节点距离初始节点较远时会产生许
❖ 2-8 把下列语句表示成语义网络描述 ❖ (1) All man are mortal. ❖ (2) Every cloud has a silver lining. ❖ (3) All branch managers of DEC
participate in a profit-sharing plan.
❖ 新的研究热点:概率图模型(隐马尔可夫模型、 贝叶斯网络)、统计学习理论(SLT) & 支持向量 机(SVM)、数据挖掘与知识发现 (超市市场商品数 据分析),人工生命。
第二章 知识表示方法
❖ 2-1状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么? 它们有何本质上的联系及异同点?
❖ 状态空间法是基于解答空间的问题表示和求解方法,是以状态和操作符 为基础的。需要扩展过多的节点,容易出现“组合爆炸”,因而只适用 于表示比较简单的问题。
❖ 2-9 作为一个电影观众,请你编写一个去电影院看电影的剧本。
❖ 开场条件:1 我想去看电影
❖
2 我有买电影票的钱
❖
3 我能去看电影
❖
4 电影院有电影放映
❖ 角色:
❖
我 电影放映员 售票员 检票员
❖ 道具:
❖
电影院 放映机 电影票 钱 银幕 椅子
❖ 场景一 进入电影院
❖ 1 走进电影院 2买票 3检票 4找到自己的座位
❖ 3-15在什么情况下需要采用不确定推理 ? 不确定 推理的主要方法有哪些?
❖ 一般推理方法在许多情况下,往往无法解决面临 的现实问题,因而需要应用不确定性推理等高级 知识推理方法。
❖ 不确定推理是研究复杂系统不完全性和不确定性 的有力工具。有两种不确定性,即关于证据的不 确定性和关于结论的不确定性。
多无用的节点,搜索效率低。 ❖ 有界深度优先搜索,主要是深度限制值的选取。如果dm取得太小,有可能找不到一个解,太大,搜索
过程会产生过多的无用节点。
❖ 有序搜索,是选择OPEN表上具有最小F值的节点作为下一个要扩展的节点,利用问题自身的一些特 征、信息来指导搜索过程,则可以缩小搜索范围,提高搜索效率。
❖ 关于证据的不确定性主要包括:以模糊集理论为 基础的方法、以概率为基础的方法。关于结论的 不确定性推理的主要方法有:可信度方法、证据 理论、主观概率论(又称主观Bayes方法)等。
第四章 计算智能(1)
❖ 4-4简述生物神经元及人工神经网络的结构和主要学习算法。
❖ 生物神经系统是一个有高度组织和相互作用的数量巨大的细胞组织群 体。人类大脑的神经细胞大约在1011-1013个左右。神经细胞也称神 经元,是神经系统的基本单元,它们按不同的结合方式构成了复杂的 神经网络。通过神经元及其联接的可塑性,使得大脑具有学习、记忆 和认知等各种智能。
❖ 设(m,n)表示左岸上有m个野人,n个传教士。
❖ x(m,n)表示船上有m个野人,n个传教士(L-R)
❖ y(m,n) 表示船上有m个野人,n个传教士(R-L)
❖ (3,3) x(2,0) (1,3) y(1,0) (2,3) x (2,0) (0,3) y(1,0) (1,3) x(0,2) (1,1)
❖ 问题归约法是从目标(要解决的问题)出发逆向推理,建立子问题以及子 问题的子问题,直至最后把初始问题归约为一个平凡的本原问题集合。 状态空间法是问题归纳法的一种特例。这些本原问题的解可以直接得到, 从而解决了初始问题,用与或图来有效地说明问题归约法的求解途径。
❖ 谓词逻辑法是采用谓词合式公式和一阶谓词演算把要解决的问题变为一 个有待证明的问题,然后采用消解定理和消解反演来证明一个新语句是 从已知的正确语句导出的,从而证明这个新语句也是正确的
第一章 绪论
❖ 1-4 现在人工智能有哪些学派?它们的认知 观是什么?
❖ (1)符号主义(symbolicism) ❖ (2)连接主义(connectionism) ❖ (3)行为主义(actionism) ❖ 符号主义认为人工智能起源于数理逻辑;
连接主义认为人工智能起源于仿生学,特别 是对人脑模型的研究;行为主义认为人工智 能源于控制论
❖
1
❖
❖ 23
4Leabharlann ❖5❖67 8 11 12
设搜索结点9
❖ 9 10 ❖ 1:宽度1-2-3-4-5-6-7-8-9 ❖ 2 有界深度优先dm=0 失败 ❖ dm=1 1-2-3-4 失败 ❖ dm=2 1-2-3-5-6-4-7-8失败 ❖ dm=3 1-2-3-5-6-9 成功 ❖ 3 有序搜索 1-3-6-9
❖
Y(1,1) (2,2) x(0,2) (2,0) y(1,0) (1,0) x(2,0) (0,0)
❖ 2野人过河----1野人划船回来----2野人过河----1野人回来--2传教士过河----1野人和1传教士回来---2传教士过河---1 野人回来---2野人过河---1野人回来---2野人过河