8高等数学课件(完整版)详细
合集下载
高等数学教学课件PPT

注 (1) 周期函数在每个周期上有相同的图形
(2) 通常周期函数的周期是指最小正周期
(3) 并非每个周期函数都有最小正周期
例:常量函数 f ( x) C
y
狄利克雷函数
1 f (x) 0
xQ x QC
1
概念
概念
集映
函
合射
逆映射
反函数
数
区邻 间域
构造 复合映射
构造
➢概念
设函数 f : D f (D) 是单射, 则它存在逆映射 f 1 : f (D) D 称映射 f 1 为函数f 的反函数. 一般地, y f ( x), x D的反函数记成 y f 1( x), x f (D)
1, x 0
y
sgn
x
0,
x0
1, x 0
y
1
o
x
1
y
注 分段函数不一定就是非初等函数!
2 1o 1 2 3 4 x
x x0
2
例5 设f(x)的定义域D=[0,1],求下述函数的定义域
当 x1 x2 时,恒有 f ( x1) f ( x2 )
那么称函数f (x)在区间I上是单调增加的 o
类似可定义函数f (x)在区间I上是单调减少的
x1 x2 x
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D
y
➢ 如果对于区间I上的任意两点x1及x2,
当 x1 x2 时,恒有 f ( x1) f ( x2 )
设f是从集合X到集合Y的映射
若
即Y中的任一元素y都是X中某元素的像,
则称f为X到Y上的映射或满射
若对X中任意两个不同的元素 则称f为X到Y的单射
高等数学课件详细

分学
多元微积分的应用实例
物理学:描述物理现象,如流体力学、电磁学等 工程学:解决工程问题,如结构分析、控制系统设计等 经济学:分析经济模型,如市场均衡、最优化问题等 计算机科学:用于图像处理、机器学习等领域
无穷级数与常微分
07
方程
无穷级数的概念和性质
性质:收敛性、发散 性、绝对收敛性、条
件收敛性等
数
常微分方程的概念和分类
常微分方程:描述函数在某点或某区 间上的变化规律的方程
一阶常微分方程:只含有一个未知函 数和一个自变量的方程
二阶常微分方程:含有两个未知函数 和两个自变量的方程
高阶常微分方程:含有多个未知函数 和多个自变量的方程
线性常微分方程:未知函数和自变量 之间的关系是线性的方程
非线性常微分方程:未知函数和自变 量之间的关系是非线性的方程
常微分方程的基本解法与实例
基本解法:分离变量法、积分因子法、常数变易法等 实例:求解一阶线性常微分方程、求解二阶线性常微分方程等 应用:在物理、化学、生物等领域有广泛应用 难点:求解高阶常微分方程、求解非线性常微分方程等
微分方程的应用实例
生物:描述生物种群增长、 生态平衡等现象
化学:描述化学反应速率、 物质扩散等现象
06
多元函数微积分
多元函数的极限与连续性
多元函数的极限:定义、性质、计算方法 多元函数的连续性:定义、性质、判断方法 多元函数的可微性:定义、性质、判断方法 多元函数的可导性:定义、性质、判断方法 多元函数的可积性:定义、性质、判断方法 多元函数的积分:定义、性质、计算方法
偏导数与全微分
性质。
函数连续性的 性质:连续函 数具有局部有 界性、局部保 号性、局部保 序性等性质。
多元微积分的应用实例
物理学:描述物理现象,如流体力学、电磁学等 工程学:解决工程问题,如结构分析、控制系统设计等 经济学:分析经济模型,如市场均衡、最优化问题等 计算机科学:用于图像处理、机器学习等领域
无穷级数与常微分
07
方程
无穷级数的概念和性质
性质:收敛性、发散 性、绝对收敛性、条
件收敛性等
数
常微分方程的概念和分类
常微分方程:描述函数在某点或某区 间上的变化规律的方程
一阶常微分方程:只含有一个未知函 数和一个自变量的方程
二阶常微分方程:含有两个未知函数 和两个自变量的方程
高阶常微分方程:含有多个未知函数 和多个自变量的方程
线性常微分方程:未知函数和自变量 之间的关系是线性的方程
非线性常微分方程:未知函数和自变 量之间的关系是非线性的方程
常微分方程的基本解法与实例
基本解法:分离变量法、积分因子法、常数变易法等 实例:求解一阶线性常微分方程、求解二阶线性常微分方程等 应用:在物理、化学、生物等领域有广泛应用 难点:求解高阶常微分方程、求解非线性常微分方程等
微分方程的应用实例
生物:描述生物种群增长、 生态平衡等现象
化学:描述化学反应速率、 物质扩散等现象
06
多元函数微积分
多元函数的极限与连续性
多元函数的极限:定义、性质、计算方法 多元函数的连续性:定义、性质、判断方法 多元函数的可微性:定义、性质、判断方法 多元函数的可导性:定义、性质、判断方法 多元函数的可积性:定义、性质、判断方法 多元函数的积分:定义、性质、计算方法
偏导数与全微分
性质。
函数连续性的 性质:连续函 数具有局部有 界性、局部保 号性、局部保 序性等性质。
高等数学完整版详细 ppt课件

h
lim f(0h)f(0)lim h 1,
h 0
h
h h 0
y y x
o
x
f(0h )f(0 ) h
lim
lim1.
h 0
h
h h 0
即 f (0 )f (0 ), 函y数 f(x)在 x0点不 . 可
四、导数的几何意义
y
f (x0 )表示曲线y f (x) 在点M(x0, f (x0 ))处的 切线的斜率,即
4
4
2. 2
例3 求函 yx数 n(n为正 )的 整导 .数数
解 (xn)lim (xh)nxn
h 0
h
li[n m n 1 x n (n 1 )x n 2 h h n 1 ]nxn1
h 0
2 !
即(xn)nn x 1.
更一般地 (x ) x 1 . ( R )
例如,
y x
f(x0)
0( x 0 ) y f(x 0 ) x x
l x 0 i y m l x 0 i [ f m ( x 0 ) x x ] 0
函f(数 x )在x 0连 点 . 续
注意: 该定理的逆定理不成立.
★ 连续函数不存在导数举例
1. 函 数 f(x)连 续 ,若f(x0)f(x0)则 称x0点 为函f(数 x)的角,函 点数在角点 . 不
xx0
切线 MT的斜率为 ktan lim f(x)f(x0). x x0 xx0
二、导数的定义
定义 设函数 y f ( x)在点 x0的某个邻域内 有定义, 当自变量 x在 x0处取得增量 x (点 x0 x 仍在该邻域内)时, 相应地函数 y取 得增量y f ( x0 x) f ( x0 ); 如果y与 x之比当x 0时的极限存在, 则称函数 y f ( x)在点 x0处可导, 并称这个极限为函 数 y f ( x)在点 x0处的导数, 记为y x x0 ,
第8章高等数学PPT课件

定义6 对于函数y = f (x)在x0附近有定义(在x0可以没有定义),如果当x
无限地趋近于x0(始终不等于x0)时,函数值f (x)无限趋近于一个确定的常
数A,则称函数y = f (x)当
x →x0时以A为极限,记作f (x) = A 或f (x)
→ A (x →x0)。
lim
xx0
第21页/共40页
余弦函数y = cos x的性质:
定义域是R,值域是[-1, 1],是偶函数, 是周期函数,最小正周期是2π
正切函数y = tan x的性质:
定义域是{x
x
R, 且x
2
k
,
k
Z}
,
值域是R,是奇函数,是周期函数,最小正周
期是π
第15页/共40页
余切函数y = cot x的性质:
定义域是{x x R,且x k , k Z} ,值
第19页/共40页
二、函数极限的定义
定义3 对于函数y = f (x),如果当x无限地增 大时,函数值f (x)无限趋近于一个确定的常 数limA,则称函数y = f (x)当x → +∞ 时以A为
x
极限,记作
f (x) = A或 f (x) → A (x → +∞)。
定义4 对于函数y = f (x),如果当lixm无限地 x 变小(x的绝对值无限地增大)时,函数值f (x)无限趋近于一个确定的常数A,则称函数y = f (x)当x → -第∞20页时/共4以0页A为极限,记作
lim
x x0
第22页/共40页
定义8 对于函数y = f (x)在x0附近有定义(在x0可以没有定义),如果当x 从小于x0的方向无限地趋近于x0(始终不等于x0)时,函数值f (x)无限趋近 于一个确定的常数A,则称A是函数y = f (x)当x →x0时的左极限,记为 f (x) = A或f (x) → A (x →x0-)。
高等数学课件(完整版)详细

M L ( x , y )ds ; ( 2) 当 f ( x , y ) 1时, L弧长 Lds ;
z f ( x, y)
( 3) 当 f ( x , y )表示立于L上的 柱面在点( x , y )处的高时,
S柱面面积 f ( x , y )ds.
L
s
L
(4) 曲线弧对x轴及 y轴的转动惯量,
f ( x , y )ds f ( x , y )ds f ( x , y )ds.
L1 L2
2. 函数f ( x , y )在闭曲线 L上对弧长的 曲线积分记为L f ( x , y )ds.
4.性质
(1) [ f ( x , y ) g( x , y )]ds f ( x , y )ds g( x , y )ds.
I x x 2 ds,
L
I y y 2 ds.
L
(5) 曲线弧的重心坐标
xds x , ds
L L
yds y . ds
L L
五、小结
1、对弧长曲线积分的概念
2、对弧长曲线积分的计算
3、对弧长曲线积分的应用
思考题
对弧长的曲线积分的定义中 S i 的符号 可能为负吗?
f ( x , y , z )ds
2 2 2 f [ ( t ), ( t ), ( t )] ( t ) ( t ) ( t )dt
( )
x a cos t , 例1 求 I xyds, L : 椭圆 (第象限). L y b sin t ,
( )
注意:
1. 定积分的下限 一定要小于上限 ; 2. f ( x, y )中 x, y 不彼此独立, 而是相互有关的 .
z f ( x, y)
( 3) 当 f ( x , y )表示立于L上的 柱面在点( x , y )处的高时,
S柱面面积 f ( x , y )ds.
L
s
L
(4) 曲线弧对x轴及 y轴的转动惯量,
f ( x , y )ds f ( x , y )ds f ( x , y )ds.
L1 L2
2. 函数f ( x , y )在闭曲线 L上对弧长的 曲线积分记为L f ( x , y )ds.
4.性质
(1) [ f ( x , y ) g( x , y )]ds f ( x , y )ds g( x , y )ds.
I x x 2 ds,
L
I y y 2 ds.
L
(5) 曲线弧的重心坐标
xds x , ds
L L
yds y . ds
L L
五、小结
1、对弧长曲线积分的概念
2、对弧长曲线积分的计算
3、对弧长曲线积分的应用
思考题
对弧长的曲线积分的定义中 S i 的符号 可能为负吗?
f ( x , y , z )ds
2 2 2 f [ ( t ), ( t ), ( t )] ( t ) ( t ) ( t )dt
( )
x a cos t , 例1 求 I xyds, L : 椭圆 (第象限). L y b sin t ,
( )
注意:
1. 定积分的下限 一定要小于上限 ; 2. f ( x, y )中 x, y 不彼此独立, 而是相互有关的 .
高等数学(完整版)详细(课堂PPT)

因此
Sn
a, 0,
n 为奇数 n 为偶数
从而
lim
n
Sn
不存在
,
因此级数发散.
综合 1)、2)可知, q 1 时, 等比级数收敛 ;
q 1 时, 等比级数发散 .
例2. 判别下列级数的敛散性:
(1)
ln
n1
n
n
1
;
解: (1)
(2) n1n(n11) .
Sn
ln 2 1
ln 3 2
ln 4 3
的敛散性.
证: 将级数 un 的前 k 项去掉, 所得新级数 uk n
n1
n1
的部分和为
n
n uk l Sk n Sk
l 1
由于n 时, n 与Sk n 极限状况相同, 故新旧两级
数敛散性相同.
当级数收敛时, 其和的关系为 S Sk .
类似可证前面加上有限项的情况 .
性质4. 收敛级数加括弧后所成的级数仍收敛于原级数
将各项依
n1
un u1 u2 u3
n1
un
称上式为无穷级数,其中第 n 项 un 叫做级数的一般项,
级数的前 n 项和
n
Sn uk u1 u2 u3 un
k 1
称为级数的部分和. 若 lim Sn S 存在, 则称无穷级数
n
收敛 , 并称 S 为级数的和, 记作
S un
1 n (n 1)n
34
二 、交错级数及其审敛法
设 un 0 , n 1, 2, , 则各项符号正负相间的级数 u1 u2 u3 (1)n1un
称为交错级数 .
定理6 . ( Leibnitz 判别法 ) 若交错级数满足条件:
高等数学ppt课件

05
常微分方程初步
常微分方程基本概念
1 2
常微分方程定义
明确常微分方程的定义,包括独立变量、未知函 数、方程阶数等概念。
初始条件和边界条件
解释初始条件和边界条件在解常微分方程中的作 用和意义。
3
常微分方程的解
阐述通解、特解、隐式解、显式解等概念,并举 例说明。
一阶常微分方程解法
分离变量法
介绍分离变量法的原理、步骤和适用范围,通 过实例演示其应用。
向量积定义
两向量按照右手定则所构成的平行四边形的面积,结果为一向量,可用于计算法向量、判断三向量共 面等。
平面和直线方程求解方法
要点一
平面方程求解方法
包括点法式、一般式等,用于确定平面在空间中的位置。
要点二
直线方程求解方法
包括点向式、参数式等,用于确定直线在空间中的位置和 方向。
常见曲面方程及其图形特征
为未来职业生涯打基础
许多行业都需要具备一定的数学基础 ,学习高等数学有助于为未来职业生 涯打下坚实基础。
02
函数与极限
函数概念与性质
函数定义
详细解释函数的定义,包括函数值、定义域、值域等概念。
函数性质
介绍函数的单调性、奇偶性、周期性等基本性质,并举例说明。
初等函数及其图像
基本初等函数
详细讲解幂函数、指数函数、对数函数、三角函数等基本初等函数的定义、性质和图像。
隐函数求导法
阐述隐函数存在定理,介绍隐函数求导方法及应用实例。
二重积分定义和计算方法
二重积分定义
阐述二重积分概念、性质及实际意义,介绍 二重积分在物理、工程等领域的应用。
二重积分计算方法
分别介绍直角坐标系和极坐标系下二重积分 的计算方法,包括累次积分法、换元积分法
高数课件1-8PPT课件

证 lim lim( )
lim lim lim
lim
.
函数与极限
6
例3 求 lim tan2 2x . x0 1 cos x
解 当x 0时, 1 cos x ~ 1 x2 , 2
原式
lim x0
(2 x )2 1 x2
8.
2
tan 2x ~ 2x.
注意 不能滥用等价无穷小代换.
解
lim
x0
tan
x x3
sin
x
lim(x0Leabharlann tan xx1
cos x2
x
)
1, 2
tan x sin x为x的三阶无穷小.
函数与极限
4
常用等价无穷小: 当x 0时,
sin x ~ x, arcsin x ~ x,
tan x ~ x, arctan x ~ x,
ln(1 x) ~ x, e x 1 ~ x, 1 cos x ~ 1 x2 . 2
1 x
不存在.
不可比.
极限不同, 反映了趋向于零的“快慢”程度不
同.
函数与极限
2
定义:设,是同一过程中的两个无穷小,且 0.
(1) 如果lim 0,就说是比高阶的无穷小,
记作 o();
(2) 如果 lim C(C 0), 就说与是同阶的无穷小;
特殊地 如果lim 1,则称与是等价的无穷小;
原式 lim
2
x0
3x o( x)
o( x) 1 o( x 2 )
5 x lim x 2
x
5.
x0
3 o( x)
3
x
函数与极限
9
三、小结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
也 表 示 它 的 面 积 , 在 每 个 i 上 任 取 一 点
(i ,i ),
作乘积 f (i ,i ) i ,
(i 1,2, , n),
n
并作和 f (i ,i ) i ,
i 1
如果当各小闭区域的直径中的最大值 趋近于零
时,这和式的极限存在,则称此极限为函数
f ( x, y)在闭区域 D 上的二重积分,
又当 x y 1时, ln( x2 y2 ) 0,
于是 ln( x2 y2 )dxdy 0.
r x y 1
例 4 比较积分 ln( x y)d 与[ln( x y)]2 d
D
D
的大小, 其中 D 是三角形闭区域, 三顶点各为(1,0),
(1,1), (2,0).
y
解 三角形斜边方程 x y 2
的极限必存在,即二重积分必存在.
二重积分的几何意义 当被积函数大于零时,二重积分是柱体的体积. 当被积函数小于零时,二重积分是柱体的体积的 负值.
在直角坐标系下用平 y 行于坐标轴的直线网来划 分区域D,
则面积元素为 d dxdy
o
故二重积分可写为
D
x
f ( x, y)d f ( x, y)dxdy
记为 f ( x, y)d ,
D
n
即
D
f
( x,
y)d
lim
0 i1
f
(i ,i ) i.
积被 积 分积 分 区函 变 域数 量
被面 积积 积 表元 分 达素 和 式
对二重积分定义的说明:
(1) 在二重积分的定义中,对闭区域的划分是 任意的.
(2)当 f ( x, y)在闭区域上连续时,定义中和式
f ( x, y)d f ( x, y)d f ( x, y)d .
D
D1
D2
性质4 若 为D的面积, 1 d d .
D
D
性质5 若在D上 f ( x, y) g( x, y),
则有 f ( x, y)d g( x, y)d .
D
D
特殊地 f ( x, y)d f ( x, y)d .
•
(i ,i )
看作均匀薄片, 所有小块质量之和 近似等于薄片总质量
i
o
n
x
M lim 0
(i ,i ) i .
i 1
二、二重积分的概念
定义 设 f ( x, y) 是有界闭区域D 上的有界 函
数,将闭区域D 任意分成n 个小闭区域 1 ,
2 , , n ,其中 i 表示第i 个小闭区域,
练习题
一、填空题:
1、当函数 f ( x, y) 在闭区域D 上______________时, 则其在D 上的二重积分必定存在 .
2、二 重 积 分 f ( x, y)d 的 几 何 意 义 是
D
___________________________________.
3、若 f ( x, y) 在 有 界 闭 区 域 D 上 可 积 , 且
一、问题的提出
1.曲顶柱体的体积 柱体体积=底面积×高 特点:平顶.
z f (x, y) D
柱体体积=? 特点:曲顶.
求曲顶柱体的体积采用 “分割、求和 、取极限”的方法,如下动画演示.
播放
步骤如下:
先分割曲顶柱体的底,z
并取典型小区域,
z f (x, y)
用若干个小平
顶柱体体积之
和近似表示曲
将二重积分定义与定积分定义进行比较, 找出它们的相同之处与不同之处.
思考题解答
定积分与二重积分都表示某个和式的极限 值,且此值只与被积函数及积分区域有关.不 同的是定积分的积分区域为区间,被积函数为 定义在区间上的一元函数,而二重积分的积分 区域为平面区域,被积函数为定义在平面区域 上的二元函数.
D
(二重积分中值定理)
例 1 不作计算,估计 I e( x2 y2 )d 的值,
D
其中D
是椭圆闭区域:
x2 a2
y2 b2
1
(0 b a).
解 区域 D 的面积 ab , 在D上 0 x2 y2 a2, 1 e0 ex2 y2 ea2 ,
由性质 6 知 e d ( x2 y2 ) ea2 ,
1
在 D 内有 1 x y 2 e,
故 ln( x y) 1,
D
o
12x
于是ln( x y) ln( x y)2,
因此 ln( x y)d [ln( x y)]2 d .
D
D
四、小结
二重积分的定义 (和式的极限) 二重积分的几何意义(曲顶柱体的体积) 二重积分的性质
思考题
D
D
三、二重积分的性质
(二重积分与定积分有类似的性质)
性质1 当k为常数时,
kf ( x, y)d k f ( x, y)d .
D
D
性质2
[ f ( x, y) g( x, y)]d
D
f ( x, y)d g( x, y)d .
D
D
性质3 对区Hale Waihona Puke 具有可加性 ( D D1 D2 )
o
顶柱体的体积,x
D
•
n
i
曲顶柱体的体积 V lim 0
f (i ,i ) i .
i 1
y
(i ,i )
2.求平面薄片的质量
设有一平面薄片,占有 xoy 面上的闭区域
D ,在点( x, y)处的面密度为 ( x, y) ,假定 ( x, y)在D 上连续,平面薄片的质量为多少?
将薄片分割成若干小块, y 取典型小块,将其近似
f ( x, y)的最小值 m 1 1 ( x 1, y 2) 32 42 5
故2 I 2 0.4 I 0.5.
5
4
例 3 判断 ln( x2 y2 )dxdy 的符号.
r x y 1
解 当r x y 1时, 0 x2 y2 ( x y )2 1,
故 ln( x2 y2 ) 0;
D
ab e d ( x2 y2 ) abea2 .
D
例 2 估计I
d
的值,
D x2 y2 2 xy 16
其中 D: 0 x 1, 0 y 2.
解 f (x, y)
1
,
( x y)2 16
区域面积 2,
在D上 f ( x, y)的最大值 M 1 ( x y 0) 4
D
D
性质6 设M 、m 分别是 f ( x, y)在闭区域 D 上的
最大值和最小值, 为 D 的面积,则
m f ( x, y)d M
D
(二重积分估值不等式)
性质7 设函数 f ( x, y)在闭区域D 上连续, 为D 的面积,则在 D 上至少存在一点( , ) 使得
f ( x, y)d f (,)