线性系统的频率特性实验报告

合集下载

实验三 系统频率特性曲线的绘制及系统分析资料

实验三  系统频率特性曲线的绘制及系统分析资料

《自动控制原理》实验报告题目:系统频率特性曲线的绘制及系统分析专业:电子信息工程班级:姓名:学号:实验三系统频率特性曲线的绘制及系统分析一、实验目的1.熟练掌握使用MATLAB软件绘制Bode图及Nyquist曲线的方法;2.进一步加深对Bode图及Nyquist曲线的了解;3.利用所绘制Bode图及Nyquist曲线分析系统性能。

二、实验内容已知系统开环传递函数分别为如下形式,(1))2)(5(50)(++=s s s G (2) )15)(5(250)(++=s s s s G (3)210()(21)s G s s s s +=++ (4))12.0)(12(8)(++=s s s s G (5)23221()0.21s s G s s s s ++=+++ (6))]105.0)125.0)[(12()15.0(4)(2++++=s s s s s s G 1.绘制其Nyquist 曲线和Bode 图,记录或拷贝所绘制系统的各种图形; (1))2)(5(50)(++=s s s G g=tf(50,conv([1 5],[1 2]));bode(g);g=tf(50,[conv([1 5],[1 2])]);nyquist(g);Nyquist DiagramReal Axis I m a g i n a r y A x i s-80-60-40-20020M a g n i t u d e (d B)101010101010P h a s e (d e g )Bode DiagramFrequency (rad/sec)(2))15)(5(250)(++=s s s s G num=[250];den=conv(conv([1 0],[1 5]),[1 15]);>> nyquist(num,den);>> bode(num,den)Nyquist DiagramReal Axis I m a g i n a r y A x i s-150-100-50050M a g n i t u d e (d B)10-1100101102103P h a s e (d e g )Bode DiagramFrequency (rad/sec)(3)210()(21)s G s s s s +=++ num=[1 10];den=conv([1 0],[2 1 1]);nyquist(num,den);-25-20-15-10-50-200-150-100-50050100150200Nyquist DiagramReal Axis I m a g i n a r y A x i s -150-100-50050100M a g n i t u d e (d B)10-210-1100101102103P h a s e (d e g )Bode DiagramFrequency (rad/sec)(4.))12.0)(12(8)(++=s s s s Gg=tf([8],[conv(conv([1 0],[2 1]), [0.2 1])]);nyquist(g);bode(g)-250-200-150-100-50050100150200250Nyquist DiagramReal AxisI m a g i n a r y A x is M a g n i t u d e (d B )1010101010P h a s e (d e g )Bode DiagramFrequency (rad/sec)(5).23221()0.21s s G s s s s ++=+++ g=tf([1 2 1],[1 0.2 1 1]);nyquist(g);bode(g)-3-2-1123Nyquist DiagramReal Axis I m a g i n a r y A x i sM a g n i t u d e (d B )10-210-1100101102P h a s e (d e g )Bode DiagramFrequency (rad/sec)(6))]105.0)125.0)[(12()15.0(4)(2++++=s s s s s s G g=tf([conv([4],[0.5 1])],[conv(conv([1,0],[ 2 1]),[0.015625 0.05 1])]);nyquist(g);bode(g)-7-6-5-4-3-2-10-150-100-5050100150Nyquist DiagramReal Axis I m a g i n a r y A x i sM a g n i t u d e (d B )10-210-1100101102P h a s e (d e g )Bode DiagramFrequency (rad/sec)2.利用所绘制出的Nyquist 曲线及Bode 图对系统的性能进行分析:(1)利用以上任意一种方法绘制的图形判断系统的稳定性;①用奈氏图判断稳定性:(1)Z=P-N=0,故该系统稳定。

实验四 控制系统频率特性的测试 实验报告

实验四 控制系统频率特性的测试 实验报告

实验四控制系统频率特性的测试一.实验目的认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。

二.实验装置(1)微型计算机。

(2)自动控制实验教学系统软件。

三.实验原理及方法(1)基本概念一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下:幅频特性相频特性(2)实验方法设有两个正弦信号:若以)(y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以)(t化,)(y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和)(t曲线(通常是一个椭圆)。

这就是所谓“李沙育图形”。

由李沙育图形可求出Xm ,Ym,φ,四.实验步骤(1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。

(2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K(3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点五.数据处理(一)第一种处理方法:(1)得表格如下:(2)作图如下:(二)第二种方法:由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。

(三)误差分析两图形的大体趋势一直,从而验证了理论的正确性。

在拐点处有一定的差距,在某些点处也存在较大的误差。

分析:(1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。

(2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。

(3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异六.思考讨论(1)是否可以用“李沙育”图形同时测量幅频特性和想频特性答:可以。

在实验过程中一个频率可同时记录2Xm,2Ym,2y0。

(2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。

线性度实验报告

线性度实验报告

线性度实验报告篇一:传感器实验报告传感器实验报告(二)自动化1204班蔡华轩 UXX13712 吴昊 UXX14545实验七:一、实验目的:了解电容式传感器结构及其特点。

二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。

三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。

四、实验步骤:1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。

2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。

图 7-1 电容传感器位移实验接线图3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控箱Vi 孔),Rw 调节到中间位置。

4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm图(7-1)五、思考题:试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一下在此设计中应考虑哪些因素?答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等六:实验数据处理由excle处理后得图线可知:系统灵敏度S=58.179非线性误差δf=21.053/353=6.1%实验八直流激励时霍尔式传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。

它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。

根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。

实验四 系统频率特性测量

实验四 系统频率特性测量

实验四系统频率特性测量一、实验目的1、加深了解系统及元件频率特性的物理概念。

2、掌握系统及元件频率特性的测量方法。

二、实验设备1、D1CE-AT-∏型自动控制系统实验箱一台2、带串口计算机一台3、RS232串口线三、实验原理及电路1、被测系统的方块图及原理:系统(或环节)的频率特性G(jω)是一个复变量,可以表示成以角频率3为参数的幅值和相角:G(M=IG(%)I∕G(网本实验应用频率特性测试仪测量系统或环节的频率特牲。

图4-1所示系统的开环频率特性为:B(jω)B(ιω)B(jω)G3)GR3)H(j3)=叼舟I/追采用对数幅频特牲和相频特性表示,则式(4-2)表示为:(4—1) (4-2)图4-1被测系统方块图2。

IgGG3)G∕)Hg)H。

啕需I=2(Hg1BG3-2(Hg1EG3)I (4—3) C⅛Gω)G<jω)HGω)=/*线=∕BQω)-EGω)(4-4)E(j3)将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输人端Et)],然后分别测量相应的反馈信号[b⑴]和误差信号[e(t)]的对数幅值和相位。

频率特性测试仪测试数据经相关运算器后在显示器中显示。

根据式(4—3)和式(4—4)分别计算出各个频率下的开环对数幅值和相位,在半对数座标纸上作出实验曲线:开环对数幅频曲线和相频曲线。

根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。

所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符,如果测量所得的相位在高频(相对于转角频率)时不等于一900(q—p)[式中P和q分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。

实验二线性系统分析

实验二线性系统分析

实验二线性系统分析一、实验目的通过实验,掌握线性系统的特性和分析方法,了解系统的幅频特性和相频特性。

二、实验原理1.线性系统线性系统是指遵循叠加原理和比例原理的系统,可以表示为y(t)=h(t)⊗x(t),其中h(t)为系统的冲激响应,x(t)为输入信号,y(t)为输出信号,⊗为线性卷积操作。

2.系统的频域特性系统的频域特性可以通过离散傅里叶变换(Discrete Fourier Transform,简称DFT)来进行分析,DFT是将离散时间域信号变换到离散频域的方法。

3.系统的幅频特性系统的幅频特性描述了输出信号的幅度随频率变化的规律,可以通过对系统的单位冲激响应进行DFT来得到。

4.系统的相频特性系统的相频特性描述了输出信号的相位随频率变化的规律,可以通过对系统的单位冲激响应进行DFT来得到。

三、实验步骤1.准备工作:a.将信号发生器的频率设置为100Hz,幅度设置为5V。

b.将示波器的触发模式设置为自动,并调节水平位置使信号波形居中显示。

2.测量系统的幅频特性:a.将信号发生器的输出信号连接到线性系统的输入端口,将示波器的通道1连接到线性系统的输入端口,将示波器的通道2连接到线性系统的输出端口。

b.调节示波器的时间基准使波形显示在适当的范围内。

c.调节信号发生器的频率和示波器的触发模式,观察输入信号和输出信号的波形。

d.在示波器中进行幅度测量,并记录下输入信号和输出信号的幅值。

e.使用DFT算法对输入信号和输出信号进行频谱分析,得到幅频特性曲线。

f.绘制输入信号和输出信号的幅频特性曲线,并进行比较和分析。

3.测量系统的相频特性:a.调节信号发生器的频率和示波器的触发模式,观察输入信号和输出信号的相位差。

b.在示波器中进行相位测量,并记录下输入信号和输出信号的相位。

c.使用DFT算法对输入信号和输出信号进行频谱分析,得到相频特性曲线。

d.绘制输入信号和输出信号的相频特性曲线,并进行比较和分析。

系统频率测试实验报告(3篇)

系统频率测试实验报告(3篇)

第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。

2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。

3. 分析测试结果,确定系统的主要频率成分和频率响应特性。

二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。

幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。

频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。

三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。

五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。

这些峰值和谷值可能对应系统中的谐振频率或截止频率。

通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。

2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。

相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。

通过分析相位特性,可以了解系统的相位稳定性。

六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。

2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。

3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。

线性系统的频率特性实验报告

线性系统的频率特性实验报告

实验四 线性系统的频率特性一、实验目的:1. 测量线性系统的幅频特性2. 复习巩固周期信号的频谱测量二、实验原理:我们讨论的确定性输入信号作用下的集总参数线性非时变系统,又简称线性系统。

线性系统的基本特性是齐次性与叠加性、时不变性、微分性以及因果性。

对线性系统的分析,系统的数学模型的求解,可分为时间域方法和变换域方法。

这里主要讨论以频率特性为主要研究对象,通过傅里叶变换以频率为独立变量。

设输入信号)(t v in ,其频谱)(ωj V in ;系统的单位冲激响应)(t h ,系统的频率特性)(ωj H ;输出信号)(t v out ,其频谱)(ωj V out ,则时间域中输入与输出的关系)()()(t h t v t v in out *=频率域中输入与输出的关系)()()(ωωωj H j V j V in out ⋅=时间域方法和变换域方法并没有本质区别,两种方法都是将输入信号分解为某种基本单元,在这些基本单元的作用下求得系统的响应,然后再叠加。

变换域方法可以将时域分析中的微分、积分运算转化为代数运算,将卷积积分变换为乘法;在信号处理时,将输入时间信号用一组变换系数(谱线)来表示,根据信号占有的频带与系统通带间的关系来分析信号传输,判别信号中带有特征性的分量,比时域法简便和直观。

三、实验方法:1. 输入信号的选取这里输入信号选取周期矩形信号,并且要求τT不为整数。

这是因为周期矩形信号具有丰富的谐波分量,通过观察系统的输入、输出波形的谐波的变化,分析系统滤波特性。

周期矩形信号可以分解为直流分量和许多谐波分量;由于测量频率点的数目有限,因此需要排除谐波幅度为零的频率点,周期矩形信号谐波幅度为零的频率点是ΩKT,其中1=K 、2、3、… 。

图11.1 输入的周期矩形信号时域波形t图11.2 输入的周期矩形信号幅度频谱2.线性系统的系统函数幅度频率特性分析 (1)RL 低通网络(a ) RL 电路 (b ) 幅频特性曲线图11.3 RL 电路及其幅频特性曲线)()()(t v dtt dv R L t v i o o =⋅+输入周期矩形信号,通过RL 低通网络的输出波形如下:图11.4 通过RL 低通网络的输入、输出信号V )(ωjV out)(s t μ)(s t μ对比输入、输出信号,可以看到输出信号的跳变部分被平滑,说明输入信号通过RL 低通网络后,滤除高频分量。

线性系统的时域分析实验报告

线性系统的时域分析实验报告

线性系统的时域分析实验报告线性系统的时域分析实验报告引言:线性系统是控制理论中的重要概念,它在工程领域中有广泛的应用。

时域分析是研究线性系统的一种方法,通过对系统输入和输出的时域信号进行观察和分析,可以得到系统的动态特性。

本实验旨在通过对线性系统进行时域分析,探究系统的稳定性、阶数和频率响应等特性。

实验一:稳定性分析稳定性是线性系统的基本性质之一,它描述了系统对于不同输入的响应是否趋于有界。

在本实验中,我们选取了一个简单的一阶系统进行稳定性分析。

首先,我们搭建了一个一阶系统,其传递函数为H(s) = 1/(s+1),其中s为复变量。

然后,我们输入了一个单位阶跃信号,观察系统的输出。

实验结果显示,系统的输出在输入信号发生变化后,经过一段时间后稳定在一个有限的值上,没有出现发散的情况。

因此,我们可以判断该系统是稳定的。

实验二:阶数分析阶数是线性系统的另一个重要特性,它描述了系统的动态响应所需的最小延迟时间。

在本实验中,我们选取了一个二阶系统进行阶数分析。

我们搭建了一个二阶系统,其传递函数为H(s) = 1/(s^2+2s+1)。

然后,我们输入了一个正弦信号,观察系统的输出。

实验结果显示,系统的输出在输入信号发生变化后,经过一段时间后才稳定下来。

通过进一步分析,我们发现系统的输出波形具有两个振荡周期,这表明系统是一个二阶系统。

实验三:频率响应分析频率响应是线性系统的另一个重要特性,它描述了系统对于不同频率输入信号的响应情况。

在本实验中,我们选取了一个低通滤波器进行频率响应分析。

我们搭建了一个低通滤波器,其传递函数为H(s) = 1/(s+1),其中s为复变量。

然后,我们输入了一系列不同频率的正弦信号,观察系统的输出。

实验结果显示,随着输入信号频率的增加,系统的输出幅值逐渐减小,表明系统对高频信号有较强的抑制作用。

这一结果与低通滤波器的特性相吻合。

结论:通过以上实验,我们对线性系统的时域分析方法有了更深入的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 线性系统的频率特性
一、实验目的:
1. 测量线性系统的幅频特性 2. 复习巩固周期信号的频谱测量
二、实验原理:
我们讨论的确定性输入信号作用下的集总参数线性非时变系统,又简 称线性系统。线性系统的基本特性是齐次性与叠加性、时不变性、微分 性以及因果性。对线性系统的分析,系统的数学模型的求解,可分为时 间域方法和变换域方法。这里主要讨论以频率特性为主要研究对象,通 过傅里叶变换以频率为独立变量。
电压
6.5
(dB)
电压
2.6
(dB)
H(jω) -3.9 (dB)/Vo-
RL低通电路仿真图
10
15
1.8
-12.3
-3.9
-19.8
-5.7
-7.5
20 -7.9 -17.0 -9.1
25 -5.7 -16.2 -10.5
H(jω) 0.638263 0.5188 0.421697 0.350752 0.298538 实测
H(jω) 0.148314 0.286954 0.416114 0.516044 0.598618 仿真
频率
5
(kHz)
电压
6.5
(dB)
RC高通电路仿真图
10
15
20
25
1.8
-12.3
-7.9
-5.7
电压
-9.3
(dB)
-8.5
-19.9
-14.0
-10.7
H(jω) -15.8
-10.3
-7.6
-6181 0.305492 0.416869 0.49545 0.562341 实测
对比输入、输出信号,可以看到输出信号的跳变部分被保留,说明 输入信号通过RC高通网络后,滤除低频分量。 描述RC高通网络的系统函数的频率特性为
四、实验实验设备与器件
1. 函数信号发生器 2. 选频电平表 3. 双踪示波器 4. 实验箱 5. 电阻、电感、电容若干
五、实验内容
1. 仪器使用与调试(参见实验一) 输入信号选取:周期方波信号,周期,脉冲宽度,脉冲幅度。
设输入信号,其频谱;系统的单位冲激响应,系统的频率特性;输出 信号,其频谱,则 时间域中输入与输出的关系
频率域中输入与输出的关系
时间域方法和变换域方法并没有本质区别,两种方法都是将输入信 号分解为某种基本单元,在这些基本单元的作用下求得系统的响应,然 后再叠加。变换域方法可以将时域分析中的微分、积分运算转化为代数 运算,将卷积积分变换为乘法;在信号处理时,将输入时间信号用一组 变换系数(谱线)来表示,根据信号占有的频带与系统通带间的关系来 分析信号传输,判别信号中带有特征性的分量,比时域法简便和直观。
对比输入、输出信号,可以看到输出信号的跳变部分被平滑,说明 输入信号通过RL低通网络后,滤除高频分量。
描述RL低通网络的系统函数的频率特性为
(2)RC高通网络 R
(a) RC电路
(b) 幅频特性曲线
图11.5 RC电路及其幅频特性曲线
输入周期矩形信号,通过RC高通网络的输出波形如下:
图11.6 通过RC高通网络的输入、输出信号
图11.1 输入的周期矩形信号时域波形 图11.2 输入的周期矩形信号幅度频谱
2.线性系统的系统函数幅度频率特性分析 (1)RL低通网络 R
(a) RL电路
(b) 幅频特性曲线
图11.3 RL电路及其幅频特性曲线
输入周期矩形信号,通过RL低通网络的输出波形如下:
图11.4 通过RL低通网络的输入、输出信号
H(jω) 0.83646 0.593939 0.40819 0.369361 0.285953 仿真
3. RC高通网络 在实验箱上连接成RC电路(47nF电容、220Ω电阻)。测量数据的要 求同RL低通电路。 测量电路如下:
选频 表 信号源 CH1 示 CH2 波 器
图11.8 RC高通电路测量图
三、实验方法:
1. 输入信号的选取 这里输入信号选取周期矩形信号,并且要求不为整数。这是因为周
期矩形信号具有丰富的谐波分量,通过观察系统的输入、输出波形的谐 波的变化,分析系统滤波特性。周期矩形信号可以分解为直流分量和许 多谐波分量;由于测量频率点的数目有限,因此需要排除谐波幅度为零 的频率点,周期矩形信号谐波幅度为零的频率点是,其中、2、3、… 。
2. RL低通网络 在实验箱上连接成RL电路(4.7电感、220电阻)。分别测量输入、
输出的时域波形;分别测量RL低通电路的输入、输出信号的基波到第 十次谐波,并记录测量的各次谐波频率及对应谐波频率的幅度。
测量图如下:
选频 表
信号源 CH1 示 CH2 波

图11.7 RL低通电路测量图
频率
5
(kHz)
相关文档
最新文档