材料断口分析(第7-8章)
金属材料断口分析的步骤与方法

金属材料断口分析的步骤与方法金属材料断口分析是一项综合性很强的技术分析工作,通常需要采用多种仪器联合测试检验的结果,从宏观到微观,从定性到定量进行研究分析。
因此,需要严格的科学态度和有步骤的操作。
断口分析的步骤包括:选择、鉴定、保存和清洗试样;宏观检验和分析断裂表面、二次裂纹以及其他表面现象;微观检验和分析;金相剖面的检验和分析以及化学分析;断口定量分析,如断裂力学方法;模拟试验等。
在进行断裂构件的处理和断口的保存时,需要采取措施把断口保存好并尽快制定分析计划。
对于不同情况下的断口,应采用不同的方法进行处理。
例如,对于大气中的新鲜断口,应立即放入干燥器内或真空干燥器内而不必清洗;对于带有油污的断口,应先用有机溶剂溶去油污,最后用无水乙醇清洗吹干;在腐蚀环境下发生断裂的断口,则需要进行产物分析。
通常可以采用X射线、电子探针、电子扫描显微镜或俄歇能谱仪进行产物分析,得出结论后再去掉产物观察断口形貌。
总之,断口分析是一项重要的金属材料分析技术,需要严格的科学态度和有步骤的操作。
去除腐蚀产物的方法之一是干剥法。
使用醋酸纤维纸(AC纸)进行清理是最有效的方法之一,特别是在断口表面已经受到腐蚀的情况下。
将一条厚度约为1mm的AC纸放入丙酮中泡软,然后放在断口表面上。
在第一张条带的背后衬上一块未软化的AC纸,然后用夹子将复型牢牢地压在断口表面上。
干燥后,使用小镊子将干复型从断口上揭下来。
如果断口非常污染,可以重复操作,直到获得一个洁净无污染的复型为止。
这种方法的一个优点是,它可以将从断口上除去的碎屑保存下来,以供以后鉴定使用。
此外,还可以使用复型法来长期保存断口。
断口表面不能使用酸溶液清洗,因为这会影响断口分析的准确性。
对于在潮湿空气中暴露时间比较长、锈蚀比较严重的断口,以及高温下使用的有高温氧化的断口,一定要去除氧化膜后才能观察,以避免假象。
如果一般有机溶液、超声波洗涤和复型都不能洁净断口表面,可以采用化学清洗。
第8章材料的变形与断裂

第8章材料的变形与断裂材料的变形与断裂是材料科学中的重要研究内容,对于了解材料的性能和使用寿命具有重要意义。
材料的变形是指在外力作用下,材料的形状、尺寸或结构发生改变的过程。
而断裂则是指在外力作用下,材料由于受到极限载荷或破坏源的影响,导致形成裂纹最终导致材料的破裂。
材料的变形可以分为弹性变形和塑性变形两种情况。
在小应力作用下,材料会发生弹性变形,即在去除外力后能够恢复其原状。
而在大应力作用下,材料会发生塑性变形,即即使去除外力,材料也无法完全恢复其原状。
材料的弹性模量是一个衡量材料抗弹性变形能力的重要参数,不同材料具有不同的弹性模量,常见材料如金属具有较大的弹性模量,而聚合物则具有较小的弹性模量。
材料的塑性变形是材料工程中非常重要的一个特性,塑性变形不仅与材料的力学性能有关,还与材料的微观结构和晶格缺陷等因素有关。
材料在塑性变形过程中会产生塑性应变和塑性应力,塑性应变是材料发生塑性变形时所引起的应变,而塑性应力则是材料发生塑性变形时所引起的应力。
常见的材料塑性变形包括屈服、流动、硬化等过程。
材料的断裂是指在外力作用下,材料发生了破裂。
材料的断裂主要分为两种形式:韧性断裂和脆性断裂。
韧性断裂是指材料在外力作用下具有一定韧性,在发生破裂前能够发生大量的塑性变形。
而脆性断裂则是指材料在外力作用下没有发生明显的塑性变形,很快发生破裂。
韧性断裂常见于许多金属材料,而脆性断裂则常见于一些玻璃、陶瓷等材料。
材料的断裂形式可以通过断口分析来确定。
不同的断口形式对应着不同的材料断裂机制。
常见的断裂形式有拉断、韧窝断裂、脆窝断裂等。
拉断是指材料发生拉伸断裂,断口两侧平整光滑,常见于高强度的金属材料。
而韧窝断裂则是指材料发生韧性断裂,断口两侧有明显的韧窝。
脆窝断裂则是指材料发生脆性断裂,断口两侧有明显的断裂窝。
通过对断口形态的观察可以判断材料的断裂机制和断裂韧性。
材料的变形和断裂不仅仅涉及到力学性能的研究,还和材料的制备工艺、微观结构、晶体缺陷、应力和温度等因素有关。
金属材料断口机理及分析

精心整理名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹纹。
正断韧性: 河流花样 氢脆:卵形韧窝等轴韧窝1.2.34裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型) 裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似) :断裂应力(剩余强度)a :裂纹深度(长度)Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关) 脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法:T型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。
断口的试样制备:截取,清洗,保存。
断口分析技术设备:1.宏观断口分析技术(用肉眼,放大镜,低倍率光学显微镜观察分析)2.光学显微断口分析(扫描电子显微镜光学显微镜,透射电子显微镜),3.电镜断口分析。
第三章延性断裂:12.3.1(1约成45(2(321.2.(1)内颈缩扩展:质点大小、分布均匀,韧窝在多处形核(裂纹萌生),随变形增加,微孔壁变薄,以撕裂方式连接(2)剪切扩展:材料中具有较多夹杂物,同时具有细小析出相时,微孔之间可能以剪切方式相连接。
注意:内颈缩扩展与剪切扩展在同一韧窝断口上可能同时发生。
影响韧窝的形貌因素:夹杂物或第二相粒子,基体材料的韧性,试验温度,应力状态。
金属的断裂条件及断口

金属的断裂条件及断口金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。
断裂是裂纹发生和发展的过程。
1. 断裂的类型根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。
韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。
脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。
韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。
韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。
2. 断裂的方式根据断裂面的取向可分为正断和切断。
正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。
切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。
3. 断裂的形式裂纹扩散的途径可分为穿晶断裂和晶间断裂。
穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。
晶间断裂:裂纹穿越晶粒本身,脆断。
机器零件断裂后不仅完全丧失服役能力,而且还可能造成不应有的经济损失及伤亡事故。
断裂是机器零件最危险的失效形式。
按断裂前是否产生塑性变形和裂纹扩展路径做如下分类。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,用肉眼或低倍显微镜观察时,断口呈暗灰色纤维状,有大量塑性变形的痕迹。
脆性断裂则相反,断裂前从宏观来看无明显塑性变形积累,断口平齐而发亮,常呈人字纹或放射花样。
宏观脆性断裂是一种危险的突然事故。
脆性断裂前无宏观塑性变形,又往往没有其他预兆,一旦开裂后,裂纹迅速扩展,造成严重的破坏及人身事故。
因而对于使用有可能产生脆断的零件,必须从脆断的角度计算其承载能力,并且应充分估计过载的可能性。
. 金属材料产生脆性断裂的条件(1)温度任何一种断裂都具有两个强度指标,屈服强度和表征裂纹失稳扩散的临界断裂强度。
温度高,原子运动热能大,位错源释放出位错,移动吸收能量;温度低反之。
(2)缺陷材料韧性裂纹尖端应力大,韧性好发生屈服,产生塑性变形,限制裂纹进一步扩散。
断口学课件

断口学 开拓者之一,中国工程院院士。
现任北京航空航天大学教授, 校学术委员会主任。
1
目录
第一章:绪论
第二章:断裂力学基础
第三章:断裂物理基础
第四章:断口分析技术
第五章:断裂失效分析的思路
第六章:韧性断裂的断口及其分析
第七章:脆性断裂的断口及其分析
14
15
16
17
第六章:韧性断裂的断口 及其分析
6.1 韧性断裂的机理及其影响因素 6.1.1 单晶的韧性断裂现象 6.1.2 多晶的断裂现象
18
19
20
21
6.1 韧性断裂的机理及其影响因素
第六章:韧性断裂的断口 6.1.4 韧性断裂的影响因素
结构特征:fcc bcc hcp
及其分析 晶粒大小:晶粒细化,韧脆转移温度降低,韧性提高 杂质、第二相 应力状态及应变速率:拉应力、压应力 形变温度及环境
22
6.2 韧性断口的特征和诊断
第六章:韧性断裂的断口 6.2.1 韧性断口的宏观特征 及其分析
23
第六章:韧性断裂的断口 及其分析
24
6.2 韧性断口的特征和诊断
第六章:韧性断裂的断口 6.2.2 韧性断口的微观特征 滑移分离 及其分析
25
6.2 韧性断口的特征和诊断
第六章:韧性断裂的断口 6.2.2 韧性断口的微观特征 韧窝 及其分析
11
5.1 断裂失效分析思路的思想方法
第五章:断裂失效分析的 5.1.2 五个具体方法 系统方法 思路 抓主要矛盾法 比较方法 历史方法 逻辑方法
12
5.2 断裂失效分析思路
第五章5.2.1 相:关性断思路裂失效分析的 思路
材料的力学性能 断裂与断口分析

材料的力学性能-断裂与断口分析材料的断裂断裂是工程材料的主要失效形式之一。
工程结构或机件的断裂会造成重大的经济损失,甚至人员伤亡。
如何提高材料的断裂抗力,防止断裂事故发生,一直是人们普遍关注的课题。
任何断裂过程都是由裂纹形成和扩展两个过程组成的,而裂纹形成则是塑性变形的结果。
对断裂的研究,主要关注的是断裂过程的机理及其影响因素,其目的在于根据对断裂过程的认识制定合理的措施,实现有效的断裂控制。
✓材料在塑性变形过程中,会产生微孔损伤。
✓产生的微孔会发展,即损伤形成累积,导致材料中微裂纹的形成与加大,即连续性的不断丧失。
✓损伤达到临界状态时,裂纹失稳扩展,实现最终的断裂。
按断裂前有无宏观塑性变形,工程上将断裂分为韧性断裂和脆性断裂两大类。
断裂前表现有宏观塑性变形者称为韧性断裂。
断裂前发生的宏观塑性变形,必然导致结构或零件的形状、尺寸及相对位置改变,工作出现异常,即表现有断裂的预兆,可能被及时发现,一般不会造成严重的后果。
脆性断裂断裂前,没有宏观塑性变形的断裂方式。
脆性断裂特别受到人们关注的原因:脆性断裂往往是突然的,因此很容易造成严重后果。
脆性断裂断裂前不发生宏观塑性变形的脆性断裂,意味着断裂应力低于材料屈服强度。
对脆性断裂的广义理解,包括低应力脆断、环境脆断和疲劳断裂等。
脆性断裂一般所谓脆性断裂仅指低应力脆断,即在弹性应力范围内一次加载引起的脆断。
主要包括:与材料冶金质量有关的低温脆性、回火脆性和蓝脆等;与结构特点有关的如缺口敏感性;与加载速率有关的动载脆性等。
材料的断裂比较合理的分类方法是按照断裂机理对断裂进行分类。
微孔聚集型断裂、解理断裂、准解理断裂和沿晶断裂。
有助于→揭示断裂过程的本质→理解断裂过程的影响因素→寻找提高断裂抗力的方法。
材料的断裂将环境介质作用下的断裂和循环载荷作用下的疲劳断裂按其断裂过程特点单独讨论。
金属材料的断裂-静拉伸断口材料在静拉伸时的断口可呈现3种情况:(a)(b):平断口;(c)(d):杯锥状断口;(e)尖刃断口平断口:材料塑性很低、或者只有少量的均匀变形,断口齐平,垂直于最大拉应力方向。
断口分析-文档资料

22Cr双相不锈钢板材的冲击断口
45钢断口形貌
从以上的分析可知:剪切韧窝与撕裂韧 窝形状没有什么区别,只从照片上很难区分, 必须对断口两侧作对应研究,看凸向是否相 同才能确定。
§3.2 韧窝的尺寸
§3.2.1 韧窝的尺寸
韧窝的尺寸包括它的平均直径和深度。影响韧窝尺寸 的主要因素为第二相质点的尺寸、形状、分布,材料本 身的相对塑性、变形硬化指数,外加应力、温度等。
12Cr1MoV980℃正火+720 ℃回火
GH4037钢的不同受力状态下的宏观断口
断口比较平坦,呈颗 粒状。断口主要为放 射区,有粗糙的放射 棱,为典型脆性断口。
断面平坦,断口呈颗 粒状,也是典型的脆 性断口。
“放射状”或“人字形”花样:解理断口另一宏观特 征是具有放射状条纹或人字条纹。放射条纹的收敛处和 人字纹的尖端为裂纹源。“人字纹”形态反映材料性质 与加载速度。材料机械性能相同时加载速度越大“人字 纹”愈明显。加载速度相同时,材料脆性越大“人字纹” 愈明显。
舌状花样
3.扇形花样 当解理裂纹起源于晶界附近的晶内时,河流花样
以扇形的方式向外扩展。根据扇形花样可以判断裂 纹源及裂纹局部扩展方向。
A3钢的扇形河流花样
4.鱼骨状花样
在体心立方金属材料中例如碳钢、不锈钢有时看到形状类 似鱼脊骨的花样。中间脊线是{100}[100]解理造成的,两侧 是{100}[100]和{112}[110]解理所引起的花样。
载荷作用等外部因素;焊接裂纹、焊缝夹杂、气孔严 重及焊后热处理条件不当;压力容器在低温或与有害 介质接触,环境介质与拉伸应力共同作用而产生的应 力腐蚀断口;上述零件的断裂经常呈解理断口,氢脆 断口有时也可见到解理断裂。
解理断裂通常是在没有觉察到的塑性变形的情况下 发生的脆性断裂。体心立方晶系一般沿{100}面解理, 也可以沿{110}、 {112}、 {111}等晶面解理。密排 六方晶体常常沿{0001}发生解理。面心立方金属由于 有大量滑移系统一般情况不发生解理断裂,但是在特 殊情况,例如冬季低温、腐蚀环境或材质较差条
断口分析报告

断口分析报告1. 背景断口分析是一种通过观察和研究材料的断口特征,以了解材料断裂的原因和性质的方法。
断口分析在材料科学、工程和事故调查等领域都有广泛的应用。
本报告旨在对某一断口进行分析,以确定断裂原因并提供相关建议。
2. 断口特征通过对断口的观察,我们可以得出以下一些断口特征:2.1 断裂模式根据断裂的形态和特征,我们可以将断裂模式分为以下几种类型:•韧性断裂:断口较为平整,可见一些拉伸痕迹。
•脆性断裂:断口光滑,没有明显的变形或拉伸痕迹。
•疲劳断裂:断裂面呈现出扇形状的纹理,通常伴随着细小的裂纹。
2.2 断口形貌根据断口的形貌,我们可以得到以下一些关键信息:•断口表面的平整程度,可以判断材料的韧性。
•断口表面的颜色和气泡,可以了解材料的杂质含量和成分。
•断口表面的纹理和条纹,可以用于判断断裂过程中的应力分布和应力集中。
2.3 断口特征的意义通过对断口特征的分析,我们可以初步判断断裂原因、材料的性能和失效机制。
断口特征的意义如下:•韧性断口表明材料具有较好的韧性和延展性。
•脆性断口表明材料可能存在缺陷或材料本身较脆性。
•疲劳断裂表明材料长期受到了交变载荷的影响,可能需要进行疲劳寿命的评估。
3. 断裂原因分析基于对断口特征的观察和分析,我们进行进一步的断裂原因分析。
断裂原因分为以下几个方面:3.1 材料缺陷材料缺陷是引起断裂的常见原因之一。
缺陷可以存在于材料的制备、成型和使用过程中。
常见的材料缺陷包括:气孔、夹杂物、夹层等。
通过观察断口特征,我们可以判断是否存在明显的材料缺陷。
3.2 施加载荷材料在受到外部力的作用下可能会发生断裂。
施加在材料上的载荷可能包括拉力、压力、剪切力等。
通过观察断口形貌和纹理,我们可以初步判断受力方向和载荷大小。
3.3 环境因素环境因素也可能对材料的断裂起到一定的影响。
例如,高温、湿度、腐蚀等环境条件可能导致材料的性能变化和失效。
通过分析断口的颜色、气泡等特征,我们可以初步判断是否存在环境因素导致的断裂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六面体
八面体
十二面体
十四面体
十八面体
二十六面体
17
4、腐蚀坑分析技术 就是利用腐蚀坑溶解体积的几何参数与晶面指数之间的 关系,来分析研究晶体取向的一种简单测试技术 具体应用:◆解理面的确定 ◆应力腐蚀断裂开裂面的确定 ◆解理断裂中裂纹扩展方向 ◆疲劳断裂中疲劳裂纹扩展方向 局限性:适用于结晶学断裂,而非结晶学断裂(塑性变形较 大的断裂),不能应用腐蚀坑技术来分析研究其位 向关系
锻造温度过高
锻造温度过低
33
预防措施
◆采用高效润滑剂,以减少工件与工具间的接触摩擦 ◆采用凹型模:锻造时由于模壁对工件的横向压缩,使周 向拉应力减少 ◆采用软垫 ◆采用包套或活动套环
34
§2
实际构件的失效分析
一、引言 失效:材料或机械构件由于尺寸、形状或材料的组织与性 能发生变化而引起机械构件不能完成指定的功能。 也有人叫事故或故障。 判断失效的条件: 完全不能工作 虽能工作,但不能完成指定的任务 当发现有严重损伤,不能再继续安全使用,应及时拆 下调换或修补
32
三、锻造时的断裂
锻造时表面裂纹
1、锻造温度过高时,由于晶间结合力大大减弱,常出现晶间断裂,且裂 纹方向与周向拉应力垂直 2、锻造温度过低时,晶间强度常高于晶内强度,便出现穿晶断裂。由剪 应力引起,其裂纹方向与最大主应力呈45°角 3、自由镦粗塑性较低的金属饼材时,由于锤头端面对镦粗件表面摩擦力 的影响,形成单鼓形,使其侧面周向承受拉应力而产生裂纹
预防措施:
增加L/h值,即道次压下量。随L/h增加,变形逐渐向内部深入,当达到 一定值后,轧件中间部位便由原来的纵向拉应力变为压应力
30
二、挤压(拉拔)时的断裂 挤压表面裂纹
由于挤压筒和模壁摩擦力的阻碍作用,使边部金属流动滞后中心部金 属,造成了边部受拉,中心受压的附加应力分布。摩擦阻力越大,此 种现象就越严重,当摩擦力很大时,就会造成金属挤压制品的表面裂 纹,严重时会出现竹节状或棘棒状。 拉拔与挤压类似,但基本应力为拉应力,这就加剧了边部裂纹。
27
一、轧制时的断裂
板材端部呈圆形 轧件通过辊缝时,沿宽向各点均有横向流动的趋势, 由于受到摩擦阻力的影响,中心部分宽展远小于边 部,此时中心部分厚度的减少将转化为长度的增加 而边部厚度的减少则有部分转化为宽展,所以板材 端部呈圆形。
28
边裂:
◆ 由于轧件为一整体,边部受附加拉应力作用,产生边部周期性裂纹 ◆轧辊控制不当(凸辊型) ◆坯料形状不良(凸形横截面) 劈裂:板材两侧强烈的附加拉应力所引起 防止措施:◆适宜的良好辊型和坯料尺寸形状 ◆合理的轧制工艺规程(控制压下量、润滑、调整张力) ◆包覆侧边
18
解理台阶的蚀坑
河流花样的蚀坑
19
二、断口的定量分析技术
1、定量分析内容 断口电子图象中特征花样的定量分析 如:韧窝大小、解理程度、第二相分布等 断口形貌参数与断裂力学参量之间关系的定量分析 如:疲劳辉纹间距与△K之间的关系
20
2、定量分析方法 点截法(网格法)
特征形貌的定量测量值n% = 断口形貌特征点数÷总的点数
{100}、{110} 、{111} {112}等
各向异性:腐蚀溶解是各向同性,则其腐蚀溶解体积将呈一个圆锥体
若腐蚀溶解是各向异性,则其腐蚀溶解体积将呈一个角锥 体(多面体)
3、几何形状 依赖于材料的晶体结构,即晶体结构不同,腐蚀坑的几 何形状也不相同
16
如:立方晶系的金属或合金,优先被腐蚀溶解的晶面通常是100、110、111等, 腐蚀坑实质上就是由这些低指数晶面所围成的多面体, 若腐蚀坑都是由{100}晶面所围成,则这个多面体为正六面体 若腐蚀坑都是由{111}晶面所围成,则这个多面体为正八面体 若腐蚀坑都是由{110}晶面所围成,则这个多面体为十二面体 有时出现不同晶面为界面的多面体,如100+110、100+111、100+110+111, 则腐蚀坑的几何形状各异
8
2、疲劳断口:裂源位于平滑区 疲劳前沿线曲率半径最小处
3、环境断裂:裂源位于氧化或腐蚀最严重的表面或次表面
9
显微裂纹局部扩展方向的判别 1、韧窝裂纹 撕裂韧窝的抛物线方向 2、解理裂纹 河流花样的合并方向 扇形花样的发散方向 台阶高度增加方向
10
11
3、疲劳裂纹 与疲劳辉纹相垂直的方向 轮胎压痕间距增大的方向
对断口形貌有一全面了解,用于分析断裂原因, 但不能判明断口的精细结构 可确定裂纹起点及扩展途径,为微观分析确定最 重要途径 除上述功能外,利用其焦深浅和易调动焦距可测 定凹凸高度差,疲劳条纹间距,裂纹形态,但对 断口形貌难作详细观察。分辨率>0.2μ
透射电子显微镜
1千-几十万 焦深大,能观察其一次复型或二次复型凹凸不平 的表面,分辨率高,成象质量好,不必破坏断口。 但不能在低倍下作扫描观察 5-20万 可直接扫描断口,也可以用复型法观察,放大倍 数可在一定范围内连续变化,高低倍比较具有方 便、直接快速的优点。但分辨率不如TEM,样 品尺寸受限制,有时要破坏
2
2、分叉法 一般情况下,裂纹分叉的方向为裂纹扩展方向, 其反方向指向裂纹源O点处。即分叉裂纹为二次裂 纹(B、C、D),汇合裂纹为主裂纹A。
3
3、变形法 根据变形量的大小来判别。变形量大的部位为主 裂纹A,其它部位为二次裂纹,裂源在主裂纹所 形成的断口上。
4
4、氧化法 根据材料在环境介质中发生氧化或腐蚀的现象 确定。氧化或腐蚀严重的部位是主裂纹部位, 较轻的部位是二次裂纹部位,裂源在主裂纹的 表面处。
第七章 断口分析技术
§1 断口试样的选取 §2 断口的一般分析技术 §3 断口的特殊分析技术
1
§1
断口试样的选取
一、主裂纹与二次裂纹的判别 1、T型法 若一个构件上产生两条裂纹或几个碎片合拢起来,其 裂纹构成“T”型,通常情况下,横穿裂纹A为首先开裂 的,这时可以认为A裂纹阻碍了裂纹B的扩展,A为主 裂纹,B为二次裂纹,裂源位置可能O在O’或处
14
扫描电子显微镜
§3
断口特殊分析技术
一、断口的腐蚀坑分析技术 1、腐蚀坑的类型 位错腐蚀坑 位向腐蚀坑
锗中形成小角度晶界的位错腐蚀坑
电子束熔炼钨的解理面腐蚀坑
15
2、产生原因 晶体材料在一定的腐蚀介质中腐蚀溶解具有选择性和 各向异性 选择性: 一般情况下,均选择在晶体材料的低指数平面,如立方系的
线截法
特征平均尺寸(面积、体积、大小) = 直线总长度÷直线所截取特征花样的总个数
点截法
线截法
21
3、疲劳断口的定量分析 疲劳辉纹间距S与应力强度因子变化△K及 疲劳裂纹扩 展速率da/dN的关系
S = C(△K )n da/dN = A (△K )n S ~ △K ~ da/dN22Fra bibliotek 其它分析方法
12
§2 断口的一般分析技术
一、宏观断口分析技术 指用肉眼、放大镜、体视显微镜等来观察分析断 口的宏观形貌特征的一种方法。 二、微观断口分析技术 扫描电子显微镜 光学显微镜 透射电子显微镜
13
断口分析的主要技术手段
分析手段 肉眼检查 放大镜 体视显微镜 金相显微镜 放大倍数 功 能
1-10 1-100 50-500
37
失效分析报告的内容
① 失效构件的描述 ② 失效时的服役条件 ③ 失效前的历史 ④ 构件制造及处理过程 ⑤ 构件材质及冶金质量的评定 ⑥ 各种物理、化学、力学试验 ⑦ 失效的主要原因及其影响因素 ⑧ 预防措施及改进意见
要求:简洁、清晰、合乎逻辑
38
三、失效的主要原因
设计不当 加工不当 环境介质的影响 材质缺陷或选材不当 其它:包括操作、装配、运输、使用等
39
四、失效分析实例
自学教材的第十章
40
典型断口形貌特征总结
宏观断口形貌特征 微观断口形貌特征
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
二次曲线解理阶
铸态铌
再结晶态钼
59
谢谢大家!
60
断口浮突测量技术:解理台阶的高度 滑移台阶的高度 断口的分形(fractal)分析技术
23
24
第八章
断裂失效分析
§1 材料在加工过程中的断裂 §2 实际构件的失效分析
25
§1 材料在加工过程中的断裂 加工过程中材料开裂的现象
26
断裂形式: 按金属制品裂纹产生的部位:表面开裂 内部开裂 按塑性加工方式:轧制开裂 挤压(拉拔)开裂 锻造开裂 断裂原因: ◆塑性变形不均匀 ◆铸锭质量差,如铸造时产生的疏松、偏析等 ◆加工工艺不合理,如温度过高造成过热、过烧
预防措施:加强润滑、降低摩擦阻力
改进工艺方法:反向挤压,反张力拉伸
31
挤压内部裂纹 挤压比较小时,由于产生表面变形会使压缩变形深入 不到轴心层,结果导致中心层产生附加拉应力,此拉 应力与纵向基本应力相迭加,使轴心层工作应力大于 材料的断裂应力,产生内裂。 预防措施:增大挤压比 拉拔时增大变形程度,减小模孔锥角
5
5、贝纹线法: 适用于疲劳断裂
一般来说,脆断用T型法、分叉法来判别主裂纹 韧断用变形法来判别主裂纹 环境断裂用氧化法来判别主裂纹 疲劳断裂用贝纹线法来判别主裂纹
6
7
二、裂纹源及裂纹扩展方向的判别 裂源位置的判别 裂源位置:材料表面 材料次表面 材料内部:夹渣、气孔等地 应力集中处:尖角、油孔、凹槽及划痕等 裂源的判别方法: 利用断口宏观形貌特征来判别 1、断口三要素: 纤维区中心 放射线或人字纹收敛处 无剪切唇处
29
轧制时内部裂纹: