金属断裂机理完整版
金属材料的疲劳断裂机理解析

金属材料的疲劳断裂机理解析疲劳断裂是一种金属材料在受到反复加载后,由于应力集中作用而在载荷作用下出现的断裂现象。
在工程应用中,经常会受到相反方向的交替载荷的作用,这样会引起疲劳断裂问题。
因此,了解金属材料的疲劳断裂机理对于确保工程结构的安全可靠性至关重要。
疲劳断裂机理的研究历史可以追溯到20世纪初期,最初是在航空领域进行的。
人们开始注意到,航空器上的零件由于反复加载而发生疲劳断裂,如轴、桁架、螺栓等零部件。
在研究中,人们发现疲劳断裂与材料中的微观缺陷有关。
这些缺陷可以是材料内的夹杂、异相、孔洞、裂纹等,也可以是表面上的裂纹、腐蚀痕迹等。
对于金属材料疲劳断裂机理的研究,人们通常采用线应力范围S-N曲线进行实验研究。
这种曲线是将载荷幅值S和疲劳寿命N 以双对数坐标轴上绘制,研究者根据实验结果绘制不同应力幅值下的S-N曲线。
在这种曲线上可以找到最小疲劳强度极限,也就是金属可以承受多少次疲劳循环,最终导致疲劳断裂。
线应力范围S-N曲线的研究是设计金属零部件的必要环节之一,只有在了解材料特性中的疲劳强度极限和影响因素之后,才能够准确地进行零部件的设计。
在实际的工程应用中,疲劳断裂机理是多种多样的。
因此,根据组织结构不同,疲劳断裂机理也有所不同。
下面我们对金属材料的疲劳断裂机理进行详细分析:1. 基体内夹杂贡献金属材料中的夹杂是人工制备和自然形成的,包括铁锈、铝夹杂、夹杂物等。
这些夹杂在载荷作用下可以引起应力集中作用,从而在周围材料中形成一个高应力集中区域。
当这个区域受到一定数量的冲击时,就会导致夹杂物内部的微裂纹增长。
这些微裂纹随着载荷的增加而逐渐扩展,最终导致疲劳断裂。
2. 不均匀形变贡献金属材料在受到载荷作用时,所受到的变形十分不均匀。
在材料中,往往存在一些应力集中区域,这些区域所受到的变形也会比周围的区域更大。
这种不均匀形变会导致表面裂纹、夹杂物等缺陷的内部发生更多的塑性变形,因此这些缺陷的情况也会随着时间的推移变得更加严重。
金属断裂机理(完整版)

金属断裂机理1 金属的断裂综述断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。
根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。
通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。
可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。
多晶体金属断裂时,裂纹扩展的路径可能是不同的。
沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。
沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。
应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。
有时沿晶断裂和穿晶断裂可以混合发生。
按断裂机制又可分为解理断裂与剪切断裂两类。
解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。
解理面一般是低指数或表面能最低的晶面。
对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。
通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。
剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。
纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。
根据断裂面取向又可将断裂分为正断型或切断型两类。
第一章 材料在静载下的力学行为3(4.1金属的断裂)

沿晶断裂的断口形貌呈冰糖状,有时也称“萘状断 口”,上左图为18CrNiWA钢的冰糖状断口。 如晶粒很细小,则肉眼无法辨认出冰糖状形貌,此 时断口一般呈晶粒状,颜色较纤维状断口明亮,但 比纯脆性断口要灰暗些。 穿晶断裂和沿晶断裂有时可以混合发生。
剪切断裂与解理断裂
(1)剪切断裂是金属材料在切应力作用下沿滑 移面分离而造成的滑移面分离断裂,其中又 分滑断(纯剪切断裂)和微孔聚集型断裂。
(2)解理断裂
解理断裂是金属材料在一定条件下(如低温),当外 加正应力达到一定数值后,以极快速率沿一定晶体 学平面产生的穿晶断裂,因与大理石断裂类似,故 称此种晶体学平面为解理面。 一般在体心立方、密排六方金属中发生,而面心立 方金属只在特殊情况下才发生。 解理面一般是低指数晶面或裸露后表面能最低的晶 面。 解理断裂总是脆性断裂,但有时在解理断裂前也显 示一定的塑性变形,所以解理断裂与脆性断裂不是 同义词,解理断裂指断裂机理而言,脆性断裂则指 断裂的宏观性态。
1.甄纳-斯特罗位错塞积理论
在滑移面上的切应力作用下, 刃型位错在晶界前受阻并互 相靠近形成位错塞积,如果 塞积头处的应力集中不能为 塑性变形所松弛,当切应力 达到某一临界值时,塞积头 处的最大拉应力能够等于材 料理论断裂强度而形成高nb、 长为r的楔形裂纹。
解理裂纹的形成,并不意味着裂纹将迅速扩 展而导致金属材料完全断裂。 柯垂耳用能量分析法推导出解理裂纹扩展的 临界条件为
放射区的形成过程
纤维区中裂纹扩展是很慢的,当其达到临界尺寸后 就快速扩展而形成放射区。 放射区有放射线花样特征。放射线平行于裂纹扩展 方向而垂直于裂纹前端(每一瞬间)的轮廓线,并逆 指向裂纹源。 撕裂时塑性变形量越大,则放射线越粗。对于几乎 不产生塑性变形的极脆材料,放射线消失。 温度降低或材料强度增加,由于塑性降低,放射线 由粗变细乃至消失。
金属材料的断裂力学分析

金属材料的断裂力学分析一、前言金属材料是工业生产中使用最广泛的材料之一,具有良好的物理特性和机械性质,但在使用过程中,金属材料断裂是一种较为常见的失效模式。
断裂力学是研究材料在外部载荷作用下失效的科学。
本文主要围绕金属材料的断裂力学进行分析。
二、金属的特性概述金属材料是指常温下是固体,能够引导电流和热量,通常具有具有良好的可塑性,强度和刚度较高,主要由于金属材料的晶粒结构和晶格缺陷的存在,使得其具有良好的机械性能。
金属材料的力学行为可以通过塑性和弹性来描述,而塑性使得金属具有较好的变形后硬化效应,可以避免松弛而导致的失效。
三、金属材料失效的机制金属材料失效的基本机制是应力集中产生离散化损伤,导致材料的断裂。
在载荷作用下,金属材料中的应力会发生集中作用,这样的集中应力部位容易形成各种损伤,例如缺陷、裂缝和微观缺陷。
金属材料临界断裂应力的定义是材料在严格单向应力下破坏的最小应力值。
这个值主要决定于金属材料的材料特性和制造工艺。
四、金属材料断裂分析金属材料的断裂分析主要涵盖了材料损伤形成、损伤扩展和破坏机理分析等。
微观结构、应力、损伤、断裂等因素都可以影响材料的断裂力学行为。
因此,断裂力学的分析需要结合多个方面的知识与技术来展开。
常用的断裂力学分析方法主要包括有限元分析、断裂力学模型和试验分析等。
有限元分析是利用计算机程序把真实的结构抽象化成有限的元素,利用这些元素之间的相对位置关系和应力、位移等变量来求解物体的力学行为。
通过有限元分析可以评估金属材料中存在的缺陷和微观结构对其力学性能的影响。
断裂力学常用的模型包括破裂、塑性和弹塑性模型、裂缝力学模型和疲劳模型等。
这些模型可以用于描述材料的基本性质,例如断裂韧性、脆性和持久性等参数。
试验分析是将不同载荷下的材料样品进行试验,以获取其断裂行为。
这些试验包括金属的拉伸试验、压缩试验、扭转试验等,可用于获得属于材料的力学行为数据。
五、结论本文通过对金属材料的特性、失效机制和断裂分析等方面的阐述,介绍了金属材料的断裂力学分析。
金属断裂机理

金属断裂机理
金属断裂是指金属材料在外力作用下发生破裂或断裂的过程。
金属的断裂机理主要包括以下几种:
1. 脆性断裂:脆性断裂是指金属材料在受到外力作用下几乎没有可见的塑性变形就突然破裂。
脆性断裂主要由金属的晶体结构和缺陷引起,如晶界的弱化、镍效应等。
常见的脆性断裂包括贝氏体断裂、冷脆断裂等。
2. 韧性断裂:韧性断裂是指金属材料在受到外力作用下先经历一定的可见塑性变形,然后发生破裂。
韧性断裂主要由金属的晶体结构、析出物和晶界等因素影响。
常见的韧性断裂模式包括韧突型断裂、韧性断裂等。
3. 疲劳断裂:疲劳断裂是指金属材料在长时间受到周期性应力作用下发生的破裂。
疲劳断裂主要由金属的晶间滑移、晶界变形和微观裂纹的扩展等因素引起。
疲劳断裂常发生在受振动或循环应力作用下的金属构件中。
4. 腐蚀断裂:腐蚀断裂是指金属材料在受到腐蚀介质作用下发生的破裂。
腐蚀断裂主要由金属与环境介质之间的电化学反应引起,如应力腐蚀断裂、氢脆断裂等。
总之,金属断裂机理是一个复杂的过程,受到多种因素的综合影响。
为了提高金属材料的断裂强度和韧性,需要通过合理的合金设计、热处理和表面处理等方法来改善金属的断裂性能。
金属断裂机理完整版

金属断裂机理完整版Newly compiled on November 23, 2020金属断裂机理1 金属的断裂综述断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。
根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。
通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。
可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。
多晶体金属断裂时,裂纹扩展的路径可能是不同的。
沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。
沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。
应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。
有时沿晶断裂和穿晶断裂可以混合发生。
按断裂机制又可分为解理断裂与剪切断裂两类。
解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。
解理面一般是低指数或表面能最低的晶面。
对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。
通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。
剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。
纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。
金属断裂机理完整版

金属断裂机理1 金属的断裂综述断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。
根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。
通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。
可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。
多晶体金属断裂时,裂纹扩展的路径可能是不同的。
沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。
沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。
应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。
有时沿晶断裂和穿晶断裂可以混合发生。
按断裂机制又可分为解理断裂与剪切断裂两类。
解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。
解理面一般是低指数或表面能最低的晶面。
对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。
通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。
剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。
纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。
根据断裂面取向又可将断裂分为正断型或切断型两类。
金属材料疲劳断裂机理分析

金属材料疲劳断裂机理分析一、引言金属材料常见的失效形式之一是疲劳断裂,而疲劳断裂机理的分析对于提高金属材料的使用寿命具有重要意义。
本文将对金属材料疲劳断裂机理进行详细分析。
二、金属材料的疲劳断裂1. 疲劳断裂的概念疲劳断裂是材料受到循环或重复应力作用后,出现裂纹并扩展,最终导致材料破坏的一种失效形式。
2. 疲劳断裂的特点(1)与静态断裂不同,疲劳断裂通常在应力水平低于静态破坏强度时出现。
(2)疲劳断裂往往发生在金属材料受到循环应力或者滞后循环应力的情况下。
(3)疲劳断裂是一个逐渐形成的过程,通常由细小的裂纹开始,然后扩展到整个截面并导致材料断裂。
3. 疲劳断裂的影响因素(1)应力幅值对于金属材料疲劳断裂的影响很大。
一般来说,应力幅值越大,疲劳断裂的损伤就越严重。
(2)材料的力学性质对于疲劳断裂也有很大的影响。
通常来说,强度越高的材料越难发生疲劳断裂,但是当强度相同时,材料的硬度越高,就越容易疲劳断裂。
(3)疲劳断裂还受到持续时间、温度、材料的化学成分和缺陷的影响。
4. 疲劳断裂的分类根据裂纹的扩展速率和应力比,疲劳断裂可以分为以下几类:(1)低周疲劳断裂:在循环应力下,材料的裂纹扩展速率很慢,往往需要上百万以上次循环才会导致疲劳断裂。
(2)中周疲劳断裂:循环应力下材料的裂纹扩展速率较快,在千-十万次循环后就能导致疲劳断裂。
(3)高周疲劳断裂:循环应力下材料的裂纹扩展速率极快,在数十万-数百万次循环内就会导致疲劳断裂。
5. 疲劳断裂的机理(1)金属材料的疲劳断裂过程一般分为始裂阶段和稳定扩展阶段。
(2)始裂阶段:在材料表面出现较小的裂纹,形成的原因是在应力作用下,材料中的微小缺陷和夹杂物开始聚集和扩散。
(3)稳定扩展阶段:当裂纹扩展到一定长度时,会出现塑性形变,当扩展到一定程度时,材料就会出现断裂。
(4)材料疲劳断裂机理可以采用形变、断裂学和金相学等多方面知识进行解释。
三、疲劳断裂机理分析1. 循环应力下的金属变形材料在循环应力下,会出现塑性变形和弹性变形两种不同的变形形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属断裂机理1 金属的断裂综述断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。
根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。
通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。
可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。
多晶体金属断裂时,裂纹扩展的路径可能是不同的。
沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。
沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。
应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。
有时沿晶断裂和穿晶断裂可以混合发生。
按断裂机制又可分为解理断裂与剪切断裂两类。
解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。
解理面一般是低指数或表面能最低的晶面。
对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。
通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。
剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。
纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。
根据断裂面取向又可将断裂分为正断型或切断型两类。
若断裂面取向垂直于最大正应力,即为正断型断裂;断裂面取向与最大切应力方向相一致而与最大正应力方向约成45°角,为切断型断裂。
前者如解理断裂或塑性变形受较大约束下的断裂,后者如塑性变形不受约束或约束较小情况下的断裂。
按受力状态、环境介质不同,又可将断裂分为静载断裂(如拉伸断裂、扭转断裂、剪切断裂等)、冲击断裂、疲劳断裂;根据环境不同又分为低温冷脆断裂、高温蠕变断裂、应力腐蚀和氢脆断裂;而磨损和接触疲劳则为一种不完全断裂。
常用的断裂分类方法及其特征见下表:2 微孔聚合断裂机制2.1 相关概念定义:微孔聚合型断裂过程是在外力作用下,在夹杂物、第二相粒子与基体的界面处,或在晶界、孪晶带、相界、大量位错塞积处形成微裂纹,因相邻微裂纹的聚合产生可见微孔洞,以后孔洞长大、增殖,最后连接形成断裂。
微孔萌生的时间:若材料中第二相与基体结合强度低,在颈缩之前;反之,在颈缩之后。
微孔萌生成为控制马氏体时效钢断裂过程的主要环节。
微孔聚合型断裂形成的韧窝有三种:1)拉伸型等轴状韧窝;2)剪切型伸长韧窝;3)拉伸撕裂型伸长韧窝。
韧窝的大小和深浅取决于第二相的数量、分布以及基体的塑性变形能力,如第二相较少、分布均匀且基体塑性变形能力又强,那么韧窝大而深;若基体的加工硬化能力很强,韧窝大而浅。
2.2 断口形貌特征A种(15 mA cm−2)变体钢断裂面的形貌---兼有微孔聚合断裂和解理断裂B (30 mA cm−2)种变体钢断裂面形貌---兼有韧窝和二次裂纹以上图片是对“800 C–Mn–Si超强度钢(TRIP 800 steels)”的A、B两种变体钢试样进行拉伸试验的断口形貌,括号中标注的是实验具体使用的电流密度值。
本实验研究氢含量对TRIP 800 steels性质和断口形貌的影响,上面图2-1说明氢含量高使得断口表现出了较多较浅的韧窝,韧窝浅因为氢脆效应降低了材料的塑性变形能力。
另外,图2-2是在加入了氢吸收促进剂之后的断裂形貌,除了有韧窝出现,还有了二次断裂,并且产生于夹杂物(即氢吸收促进剂)旁边。
2.3 微孔聚合断裂机制微孔聚集断裂为剪切断裂的一种形式,微孔聚集断裂是材料韧性断裂的普遍形式,其断口在宏观上常呈现暗灰色、纤维状,微断口特征花样则是端口上分布大量“韧窝”,微孔聚集断裂过程包括微孔形核、长大、聚合直至断裂。
微孔聚合断裂过程由于应力状态或加载方式的不同,微孔聚合型断裂所形成的韧窝有三种类型:(1)拉伸型的等轴状韧窝。
裂纹扩展方向垂直于最大主应力σmax ,σmax是均匀分布于断裂平面上,拉伸时呈颈缩的试样中心部分就显示这种韧窝状。
(2)剪切型的伸长韧窝。
在拉伸试样的边缘,两侧均由剪应力切断,显示这种韧窝形状,韧窝很大如卵形,其上下断面所显示的韧窝,其方向是相反的。
(3)拉伸撕裂的伸长韧窝。
产生这种韧窝的加载方式有些和等轴状韧窝类似,但是等轴状韧窝可以认为是在试样中心加拉伸载荷的,而拉伸型韧窝是在试样边缘加载的,因而σmax不是沿截面均匀分布的,在边缘部分应力很大,裂纹是由表面逐渐向内部延伸的,好像我们把粘着的两张纸,从一端把它们逐渐撕开一样故称拉伸撕裂型。
表面有缺口的试样或者裂纹试样,其断口常显示这种类型。
这种类型的韧窝,韧窝小而浅,裂纹扩展快,故在宏观上常为脆断,所以不要把微孔聚合型的微观机制都归之为韧断,这也是宏观和微观不能完全统一之处。
SPA-H集装箱板断口形貌700×上图为拉伸断口形貌,断裂全部为韧性断裂,断口呈韧窝状,夹杂物少。
2.4 断口形貌分析图4与图5分别给出了复合材料室温和高温拉伸后试样的断口形貌。
可以看出,室温条件下,TMC1 为韧性断裂,其断口有许多较浅的韧窝,而TMC2 为典型脆性断裂,其断口存在河流花样以及脆性解离面。
与等轴组织较浅的韧窝相比,TMC1 的层片状组织的增强体附件韧窝相对较深且较细小,这主要是因为层片组织对源自增强体断裂的裂纹具有很好的阻碍作用。
同样,从断口来看,层片组织的TMC2 较等轴组织的延性要略好,这些结果与力学性能是一致的。
高温条件下,两种热处理下的TMCs 都表现出明显的延性断裂特征,并且温度越高韧窝越深。
而由于层片组织不利于协调变形,因而塑性韧窝不易聚集长大,故表现出的相对细小的韧窝。
不同组织的复合材料室温拉伸的扫描电镜断口形貌不同组织的复合材料高温拉伸的扫描电镜断口形貌3 解理断裂3.1 形貌特征解理断裂的端口形貌是河流状花样。
解理台阶、河流花样以及舌状花样都是解理断裂的基本微观特征。
3.2 形成原理解理断裂是在正应力作用产生的一种穿晶断裂,断裂面沿一定的晶面发生的,这个平面叫做解理面。
解理台阶是沿两个高度不同的平行解理面上扩展的解理裂纹相交时形成的。
形成过程有两种方式:通过解理裂纹与螺型位错相交形成;通过二次解理或撕裂形成。
第一种,当解理裂纹与螺型位错相遇时,便形成一个台阶,裂纹继续向前扩展,与许多螺型位错相交便形成众多台阶,他们沿裂纹前端滑动而相互交汇,同号台阶相互汇合长大,异号台阶相互抵消,当汇合台阶足够大的时候便在电镜下观察为河流状花样。
第二种,二次解理是指在解理裂纹扩展的两个互相平行解理面间距较小时产生的,但若解理裂纹的上下两个面间距远大于一个原子间距时,两解理裂纹之间的金属会产生较大的塑性变形,结果由于塑性撕裂而形成台阶,称为撕裂棱晶界。
舌状花样是由于解理裂纹沿孪晶界扩散留下的舌头状凹坑或凸台,故在匹配断口上“舌头”为黑白对应的。
42CrMo钢的冲击试样断口的解理断口微观形貌3.3解理断口形貌特征3.3.1 河流花样(riverpattern)解理断口电子图像的主要特征是“河流花样”,河流花样中的每条支流都对应着一个不同高度的相互平行的解理面之间的台阶。
解理裂纹扩展过程中,众多的台阶相互汇合,便形成了河流花样。
在河流的“上游”,许多较小的台阶汇合成较大的台阶,到“下游”,较大的台阶又汇合成更大的台阶。
河流的流向恰好与裂纹扩展方向一致。
所以人们可以根据河流花样的流向,判断解理裂纹在微观区域内的扩展方向。
3.3.2 舌状裂面解理裂纹与孪晶(见孪生)相遇时可沿孪晶面形成局部裂纹,它发展到一定程度后与解理面上的裂纹相连通,形成像躺在解理面上的舌状裂面。
这种裂面在低温高速加载的条件下最易发生。
3.3.3 解理扇台阶状解理裂纹不能直接通过晶界扩展到相邻晶粒中去,只能在晶界附近相邻晶粒内某些区域形成一些新裂缝,它们在传播过程中汇集成河流状花样并形成扇面形向四周扩展。
“河流”上游即解理扇,扇柄处是裂纹源,扇面下游即裂纹扩展方向。
3.4 准解理准解理断裂介于解理断裂和韧窝断裂之间,它是两种机制的混合。
准解理与解理的共同点:都是穿晶断裂;有小解理面;有台阶或撕裂棱及河流状花样。
不同点:准解理小刻面不是晶体学解理面;真正解理裂纹常源于晶界,而准解理裂纹则常源于晶内硬质点,形成从晶内某点发源的放射状河流花样。
它是另一种型式的准解理断裂,其断裂面上显现有较大的塑性变形,特征是断口上存在由于几个地方的小裂纹分别扩展相遇发生塑性撕裂而形成的撕裂岭。
准解理断裂面不是一个严格准确的解理面,有人认为准解理断裂是解理和微孔聚合的混合机制,它常见于淬火回火钢中。
4 沿晶断裂4.1 概念沿晶断裂是指裂纹在晶界上形成并沿晶界扩展的断裂形式。
金属材料中的裂纹沿晶界扩展而产生断裂。
当沿晶断裂断口形貌呈粒状时又称晶间颗粒断裂。
多数情况下沿晶断裂属于脆性断裂,但也可能出现韧性断裂,如高温蠕变断裂。
在多晶体变形中,晶界起协调相邻晶粒变形的作用。
但当晶界受到损伤,其变形能力被削弱,不足以协调相邻晶粒的变形时,便形成晶界开裂。
裂纹扩展总是沿阻力最小的路径发展,遂表现为沿晶断裂。
钼的沿晶断裂4.2 形成原因产生沿晶断裂一般有如下原因:(1)晶界上存在有脆性沉淀相;(2)杂质和合金元素在晶界偏析,致使晶界弱化;(3)热应力作用;(4)环境引起的沿晶腐蚀;(5)晶界有弥散相析出。
4.2.1 晶界上有脆性沉淀相如果脆性相在晶界面上覆盖得不连续,例如AIN粒子在钢的晶界面上的分布,将产生微孔聚合型沿晶断裂;如果晶界上的脆性沉淀相是连续分布的,例如奥氏体Ni—Cr钢中形成的连续碳化物网状,则将产生脆性薄层分裂型断裂。
4.2.2 晶界有使其弱化的夹杂物如钢中晶界上存在P、S、As、Sb、Sn等元素。
有害元素沿晶界富集,降低了晶界处表面能,使脆性转变温度向高温推移,明显提高了材料对温度和加载速率的敏感性,在低温或动载条件下发生沿晶脆断。
Ni原本是穿晶断裂,加入S元素后就变为沿晶断裂4.2.3 热应力作用材料在热加工过程中,因加热温度过高,造成晶界熔化,严重减弱了晶界结合力和晶界处的强度,在受载时,产生早期的低应力沿晶断裂。