4-金属材料的断裂和断裂韧性

合集下载

断裂韧性

断裂韧性

断裂韧性(fracture toughness)带裂纹的金属材料及其构件抵抗裂纹开裂和扩展的能力。

从20世纪50年代开始在欧文(G.R.Irwin)等的努力下,形成了线弹性断裂力学,随后又发展成弹塑性断裂力学。

在用它们对断裂过程进行分析和不断完善实验技术的基础上,逐步形成了平面应变断裂韧性KIC 、临界裂纹扩展能量释放率GIC、临界裂纹顶端张开位移δIC 、临界J积分JIC等断裂韧性参数。

其中下标I表示I型即张开型裂纹,下标c表示临界值。

这些参数可通过实验测定,其值越高,材料的断裂韧性越好,裂纹越不易扩展。

断裂韧性参数(1)平面应变断裂韧性KIC。

欧文分析平面问题的I型裂纹尖端区域的各个应力分量中都有一个共同的因子KI,其值决定着各应力分量的大小,故称为应力强度因子。

KIC=yσ(πa)1/2,式中σ为外加拉应力;a为裂纹长度,y为与裂纹形状、加载方式和试件几何因素有关的无量纲系数。

KI 增大到临界值KIC,KI≥KIC时,裂纹失稳扩展,迅速脆断。

(2)临界裂纹扩展能量释放率GIC 。

裂纹扩展能量释放率GI=-(aμ/aA),式中μ为弹性能,A为裂纹面积。

平面应力条件下,GI =kI2/E;平面应变条件下,G I =(kI2/E)(1-v2),式中E为弹性模量,v为泊松比。

GI是裂纹扩展的动力,GIC增大到临界值G。

即GI ≥GIC时,裂纹将失稳扩展。

(3)临界裂纹顶端张开位移δC。

裂纹上、下表面在拉应力作用下,裂纹顶端出现张开型的相对位移叫裂纹顶端张开位移δ,δ增大到临界值δC,裂纹开始扩展。

(4)临界J积分JIC。

弹塑性断裂力学中,一个与路径无关的能量线积分叫做J积分。

式中r为积分回路,由裂纹下边缘到上边缘,以逆时针方向为正,ds为弧元,ω为单位体积应变能,u为位移矢量,T是边界条件决定的应力矢量。

线弹性和弹塑性小应变条件下,I型裂纹的J积分JI=-B-1(aμ/aA),式中B为试样厚度,a为裂纹长度。

材料的断裂和韧性PPT课件

材料的断裂和韧性PPT课件
E
2


0
临界应力为:
c

2E c
1/ 2


E
c
1/ 2
2/ 1
平面应变状态下的断裂强度:
(2.7)格里菲斯公式
c


(1
2E 2 )c
1/
2
Chapter3 Properties of Materials
陶瓷、玻璃 等脆性材料
按照晶体材料断裂时裂纹扩展的途径
穿晶断裂;沿晶断裂;
根据断裂机理分类 解理断裂;剪切断裂;
根据断裂面的取向分类 正断;切断。
Chapter3 Properties of Materials
11/25/2019 4:22:35 PM
2
1.金属材料的韧性断裂与脆性断裂
韧性断裂(延性断裂)是材料断裂前及断裂过程 中产生明显宏观塑性变形的断裂过程。
07amchapter3propertiesmaterials17从能量平衡的观点出发格里菲斯认为裂纹扩展的条件是物体内储存的弹性应变能的减小大于或等于开裂形成两个新表面所需增加的表面能即认为物体内储存的弹性应变能降低或释放就是裂纹扩展的动力否则裂纹不会扩展
§1-5 材料的断裂和强度
固体材料在力的作用下分成若干部分的现象称为断 裂。材料的断裂是力对材料作用的最终结束,它意味 着材料的彻底失效。因材料断裂而导致的机件失效与 其他失效方式(如磨拙、腐蚀等)相比危害性最大,并 且可能出现灾难性的后果。因此,研究材料断裂的宏 观与微观构征、断裂机理、断裂的力学条件,以及影 响材料断裂的各种因素不仅具有重要的科学意义,而 且也有很大的实用价值。
11/25/2019 4:22:35 PM

材料的断裂韧性研究

材料的断裂韧性研究

材料的断裂韧性研究断裂韧性是材料性能中的重要指标之一,它描述了材料在受力过程中抵抗断裂的能力。

随着科技的进步和工程领域对材料性能要求的提升,对材料的断裂韧性研究引起了广泛关注。

本文将介绍材料的断裂韧性的含义、重要性以及常用的研究方法。

一、断裂韧性的含义断裂韧性是材料在受力条件下抵抗断裂的能力,是材料强度和韧性的综合指标。

一个材料具有较高的断裂韧性通常意味着它能承受更大的载荷、更大的变形以及更高的应力集中。

断裂韧性的高低直接关系到材料在使用中的可靠性和安全性。

二、断裂韧性的重要性1. 工程设计:在工程设计中,材料的断裂韧性是评估材料是否能够承受外部冲击和载荷的重要依据。

只有具备较高的断裂韧性的材料才能确保工程结构的安全可靠。

2. 材料改进:通过研究和改进材料的断裂韧性,可以使材料在受力条件下不易发生断裂或变形。

这对于提高材料的使用寿命、减少材料的损耗具有重要意义。

三、断裂韧性的研究方法1. 断裂韧性测试:常用的断裂韧性测试方法包括冲击试验、拉伸试验和缺口试验等。

通过对材料在不同应力条件下的断裂性能进行测试,可以得到材料的断裂应力、断裂韧性等相关参数。

2. 断裂韧性的改进方法:研究材料的断裂韧性还可以通过改变材料的制备工艺、添加合适的增强相等方法进行。

例如,在金属材料中,通过精细调控晶界数量和晶粒尺寸,可以显著提高材料的断裂韧性。

3. 断裂韧性模型的建立:建立准确的断裂韧性模型是研究材料断裂行为的重要手段之一。

通过理论研究和数值模拟,可以预测材料在受力条件下的断裂性能,并指导材料设计和工程应用。

四、结语材料的断裂韧性是评估材料性能的重要指标之一,对保证工程结构的安全可靠以及提高材料使用寿命具有重要意义。

通过采用合适的断裂韧性测试方法、改进材料制备工艺以及建立准确的断裂韧性模型,可以为材料的研发和应用提供有效的参考和指导。

通过持续的研究和探索,我们可以进一步提高材料的断裂韧性,并不断推动工程科技的发展。

金属材料表面裂纹拉伸试样断裂韧度试验方法

金属材料表面裂纹拉伸试样断裂韧度试验方法

金属材料是工程领域中广泛应用的材料之一,其性能对于工程结构的安全性和稳定性有着重要的影响。

而金属材料的表面裂纹拉伸试样断裂韧度试验方法是评定金属材料韧性能的重要手段之一。

本文将介绍金属材料表面裂纹拉伸试样断裂韧度试验方法的具体步骤和注意事项。

一、试验目的金属材料的表面裂纹拉伸试样断裂韧度试验旨在评定金属材料在受力状态下的抗拉性能和韧性能,为工程结构设计和材料选用提供参考依据。

二、试验样品的准备1. 样品的选择:一般选用金属材料的板材作为试验样品,尺寸一般为200mm*50mm*10mm。

2. 表面处理:样品的表面应保持平整,无凹凸不平或者明显的划痕。

三、试验步骤1. 样品标记:在样品上标注好试验样品的编号和方向。

2. 制作缺口:在样品上制作缺口,缺口长度为10mm,宽度为0.5mm。

3. 夹具安装:将样品安装在试验机的夹具上,夹具的张合长度为100mm。

4. 载荷施加:在试验机上施加加载,载荷速度控制在1mm/min。

5. 记录数据:在试验过程中,记录载荷和位移的数据,以便后续分析。

四、试验注意事项1. 缺口制作:缺口的制作应该尽量避免产生裂纹,可以使用慢速切割或者加工。

2. 夹具安装:夹具的安装要稳固,保证试验过程中的样品不会出现偏移或者松动。

3. 载荷施加:载荷的施加速度要均匀,避免过快或者过慢导致试验结果的偏差。

4. 安全防护:在试验过程中,要保证操作人员的安全,并严格遵守安全操作规程。

五、试验结果分析根据试验数据,可以得到金属材料在受拉状态下的应力-应变曲线,并据此分析金属材料的屈服强度、最大应力、断裂韧性等性能指标。

通过以上试验方法,我们可以准确评定金属材料在受拉状态下的韧性能,并为工程设计和材料选用提供科学依据。

试验过程中需要特别注意安全事项,确保工作人员的安全。

希望本文对金属材料表面裂纹拉伸试样断裂韧度试验方法有所帮助。

六、试验结果分析通过表面裂纹拉伸试样断裂韧度试验得到的金属材料在受拉状态下的应力-应变曲线,可以为工程设计和材料选择提供重要参考信息。

材料力学中的断裂与韧性

材料力学中的断裂与韧性

材料力学中的断裂与韧性材料力学作为一门关于物质内部结构和力学行为的科学,对于材料的性能与可靠性有着重要的影响。

其中,断裂与韧性是材料力学中一个十分关键的概念。

断裂指的是材料在外界施加力的作用下出现破裂的现象,而韧性则是指材料的抵抗断裂破坏的能力。

本文将从材料的断裂机制、断裂韧性的影响因素以及提高材料韧性的方法等方面加以论述。

一、材料的断裂机制材料断裂机制是指材料在承受外力作用下,因内部结构破坏而发生断裂的过程。

一般来说,材料的断裂机制可以分为韧性断裂和脆性断裂两种情况。

韧性断裂多见于金属等延展性材料,其断裂过程具有典型的韧性特征。

在外力的作用下,材料会先发生塑性变形,从而使得应力集中区域得到缓和。

随着外力的不断增加,应力集中区域逐渐扩大,并伴随着微裂纹的形成和扩展。

当微裂纹沿着材料内部继续扩展,最终导致材料的完全破裂。

需要注意的是,韧性断裂一般伴随着较大的能量吸收过程,因此对于抗震等要求韧性的工程结构,选择具有良好韧性的材料是十分重要的。

脆性断裂则多见于陶瓷、混凝土等脆性材料。

该类材料的断裂过程没有明显的塑性变形区域,而是在外力作用下直接发生破裂。

通常来说,脆性断裂的特点是断裂韧性较低,能量吸收较小。

二、影响材料韧性的因素材料的韧性不仅与材料本身的性质有关,同时也受到外界条件和应力状态的影响。

以下是一些影响材料韧性的常见因素:1.结构层次:材料的内部结构和组织对其韧性有着很大的影响。

晶粒的尺寸、形状以及晶界的性质等都会对材料的韧性产生影响。

一般来说,晶粒尺寸越小、晶界越多越强,材料的韧性也会相对提高。

2.材料纯度:杂质和夹杂物是影响材料韧性的重要因素。

杂质和夹杂物会引起应力集中,从而导致微裂纹的形成和扩展。

因此,材料的纯度对韧性有着直接的影响。

3.应力状态:不同的应力状态对材料的韧性有着直接影响。

例如,拉伸和压缩状态下的材料韧性表现可能不同。

此外,不同应力速率下材料的断裂行为也可能有所不同。

三、提高材料韧性的方法提高材料的韧性是工程实践中的一项重要任务。

针对金属材料断裂韧性的相关研究

针对金属材料断裂韧性的相关研究

针对金属材料断裂韧性的相关研究摘要:研究影响金属材料断裂韧性的因素对于提高金属的断裂韧性具有重要意义。

而影响金属材料断裂韧性的因素非常多,且很复杂。

因此,本文针对这些问题全面分析,认真地进行了研究相关的研究。

关键词:金属材料断裂韧性;影响金属断裂韧性因素1. 金属材料断裂韧性断裂韧性——指金属材料阻止宏观裂纹失稳扩展能力的度量,也是金属材料抵抗脆性破坏的韧性参数。

它和裂纹本身的大小、形状及外加应力大小无关。

是金属材料固有的特性,只与金属材料本身、热处理及加工工艺有关。

是应力强度因子的临界值。

常用断裂前物体吸收的能量或外界对物体所作的功表示。

例如应力-应变曲线下的面积。

韧性金属材料因具有大的断裂伸长值,所以有较大的断裂韧性,而脆性金属材料一般断裂韧性较小,是表征材料阻止裂纹扩展的能力,是度量材料的韧性好坏的一个定量指标。

在加载速度和温度一定的条件下,对某种材料而言它是一个常数。

当裂纹尺寸一定时,材料的断裂韧性值愈大,其裂纹失稳扩展所需的临界应力就愈大;当给定外力时,若材料的断裂韧性值愈高,其裂纹达到失稳扩展时的临界尺寸就愈大。

2. 课题研究的主要内容通过对金属材料断裂韧性的影响因素进行了系统分析。

假定影响金属材料断裂韧性的其它因素均保持不变,把温度对断裂韧性的影响进行单独研究。

一些关于压力容器钢断裂韧性的研究结果表明,当温度达到上平台温度之后,断裂韧性会随着温度的继续升高而下降,即存在韧性劣化的现象。

相对于低温范围断裂韧性的研究,中、高温范围内断裂韧性的研究仍显不足,且实际工程中许多构件在高温条件下工作,按照常温力学性能设计的构件存在某种意义上的安全隐患,因而研究温度对断裂韧性的影响就显得相当重要。

文中结合钢韧断机理的研究成果与点缺陷在应力场中的迁移运动规律,通过理论分析建立了断裂韧性JIC与温度T的数学模型,在此基础上对多种压力容器钢断裂韧性的实验数据进行了分析,最后验证了模型的合理性。

文中通过对断裂参量J积分进行了数值分析,分析了温度对J积分的影响。

金属材料的力学性能

金属材料的力学性能
金属材料的力学性能主要包括以下几个方面:
1. 强度:金属材料的强度是指它抵抗外力的能力。

通常用屈服强度、抗拉强度或抗压强度来表示材料的强度。

2. 延展性:金属材料的延展性是指其在受力下能够发生塑性变形的
能力。

常用的评价指标有伸长率、断面收缩率和断裂延伸率。

3. 硬度:金属材料的硬度是指其抵抗局部划痕或压痕的能力。

常用
的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。

4. 韧性:金属材料的韧性是指其抵抗断裂的能力。

韧性与强度和延
展性密切相关,一般用冲击韧性和断裂韧性来评价材料的韧性。

5. 塑性:金属材料的塑性是指其在受力作用下发生可逆形变的能力。

塑性是金属材料特有的力学性能,它使得金属材料可以制成各种形状。

6. 疲劳性能:金属材料的疲劳性能是指其在交变或周期性载荷下抵抗疲劳损伤的能力。

疲劳性能的评价指标包括疲劳寿命和疲劳极限等。

不同的金属材料具有不同的力学性能,这些性能会受到材料的化学成分、晶体结构、热处理和加工工艺等因素的影响。

因此,在选择和使用金属材料时,需要根据具体的工程要求和环境条件来考虑其力学性能。

材料力学性能-第四章-金属的断裂韧度(1)


二、应力场强度因子KI和断裂韧度KIC 1、裂纹尖端附近的应力-应变场
由于裂纹扩展是从其尖端开 始进行的,所以首先应该分析裂 纹尖端的应力和应变状态,建立 裂纹扩展的力学条件。如图4-1 所示,假设一有无限大板,其中 有2a长的Ⅰ型裂纹,在无限远处
作用有均匀的拉应力。
图4-1 具有I 型裂纹无限 大板的应力分析
cos
2
1
sin
2
sin
3
2
xy
a
1
2r
cos
2
sin
2
cos3
2
z (x y() 平面应变, 为泊松比)
z 0(平面应力)
2021年12月10日 星期五
第四章 金属的断裂韧度
x方向的位移分量:u
1
E
KI
2r
cos
2
1
2
s in 2
2
y方向的位移分量:
1
E
KI
2r
sin
2
2021年12月10日 星期五
第四章 金属的断裂韧度
应用线弹性力学 y
来分析裂纹尖端附近
的应力、位移场。用
极坐标表示,则各点(r,
裂纹
)的应力、位移分量
可以用下式表示:
y xy x
x
2021年12月10日 星期五
第四章 金属的断裂韧度
x
a
1
2r
cos 2
1
sin
2
sin
3
2
y
a
1
2r
2021年12月10日 星期五
第四章 金属的断裂韧度
断裂力学还证明:上述各式不仅适用于图

材料性能断裂力学与断裂韧性


无限宽板中Griffith裂纹的能量平衡
断裂应力和裂纹尺寸的关系:



2 E c
1/
2
Griffith公式
因为
2

1/ 2
1


E
c
与 1/ 2

c


E
a
1/ 2

相似。
1
c
若取 c 104 a 则实际断裂强度只是理论
第三章 断裂力学与 断裂韧性

3.1 概述
断裂是一种最危险失效形式
按传统力学设计,工作应力σ‹许用应力[σ]为安全。
塑性材料[σ]=σS/n 脆性材料[σ]=σb/n 但是在σ《σS《σ-1情况下,也可产生断裂,所谓 低应力脆断现象,传统或经典的强度理论无法解释。
传统力学是把材料看成均匀的,没有缺陷的,没有 裂纹的理想固体,但实际的工程材料,在制备,加 工及使用过程中 ,都会产生各种宏观缺陷乃至宏观 裂纹,传统力学解决不了带裂纹构件的断裂问题。
值的1/100
3.2.3 Orowan的修正
Orowan公式


2E s a

8a
1/ 2

适用于当 8 a ,裂纹尖端塑性变形较大,控制着
裂纹的扩展时


8

a
时,就成为Griffith公式。
当 8 a时,用Griffith公式。

对金属材料:裂纹尖端由于应力集中的作用,局部
则R=2 S P
定义: G



u
2c




2c

金属材料的断裂韧性测试

金属材料的断裂韧性测试当我们谈论金属材料时,断裂韧性是一个重要的性质。

它指的是材料在受力下能够承受多大的应变能量,而不会发生断裂。

断裂韧性测试是评估金属材料性能的一种常用方法,它可以帮助工程师确定材料的可靠性和适用性。

本文将介绍金属材料的断裂韧性测试的原理、方法和应用。

一、原理金属材料的断裂韧性是指材料在断裂之前能够吸收的能量。

它与材料的强度、韧性和硬度等性质密切相关。

断裂韧性测试的原理是通过施加外力,使材料发生断裂,并测量断裂前后的应变能量差。

这个差值可以用来评估材料的断裂韧性。

二、方法1. 塑性断裂韧性测试塑性断裂韧性测试是一种常用的测试方法。

它通过在试样上施加拉伸力,使其发生塑性变形,然后测量断裂前后的应变能量差。

常用的测试方法包括冲击试验和拉伸试验。

冲击试验是一种快速施加冲击载荷的测试方法。

它通常使用冲击试验机进行,将试样固定在机器上,然后施加冲击载荷。

当试样发生断裂时,测试机会记录下断裂前后的能量差。

拉伸试验是一种更常见的测试方法。

它通过在试样上施加拉伸力,使其发生塑性变形,然后测量断裂前后的应变能量差。

常用的拉伸试验方法有静态拉伸试验和动态拉伸试验。

静态拉伸试验是一种较慢的测试方法,通过逐渐增加载荷来进行。

动态拉伸试验是一种更快的测试方法,通过快速施加载荷来进行。

2. 脆性断裂韧性测试脆性断裂韧性测试是一种针对脆性材料的测试方法。

脆性材料在受力下容易发生断裂,因此需要特殊的测试方法来评估其断裂韧性。

常用的测试方法包括冲击试验和压缩试验。

冲击试验是一种常用的测试方法,通过在试样上施加冲击载荷来评估脆性材料的断裂韧性。

冲击试验机将试样固定在机器上,然后施加冲击载荷。

当试样发生断裂时,测试机会记录下断裂前后的能量差。

压缩试验是一种较少使用的测试方法,通过在试样上施加压缩载荷来评估脆性材料的断裂韧性。

压缩试验机将试样固定在机器上,然后施加压缩载荷。

当试样发生断裂时,测试机会记录下断裂前后的能量差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档