金属材料的断裂韧性
金属材料韧性名词解释汇总

金属材料韧性名词解释汇总引言金属材料韧性是描述金属材料在受力条件下抵抗断裂的能力。
在工程领域中,韧性是一个重要的材料性能指标,它直接影响到材料的使用寿命和应用范围。
本文将对金属材料韧性相关的名词进行解释和汇总,以帮助读者更好地理解该领域的知识。
1. 韧性韧性指的是材料在受力下能够发生塑性变形而不断裂的能力。
韧性取决于材料的弯曲、拉伸和扭转等性能,在实际应用中,韧性主要通过材料的延伸、断面收缩等指标来表征。
2. 断裂韧性断裂韧性是指材料在断裂前能够承受的能量,通常用断裂韧性指数来表示,可以通过冲击试验等实验手段进行测量。
断裂韧性的高低直接关系到材料的抗断裂能力,需要综合考虑材料的强度和延展性等因素。
3. 冲击韧性冲击韧性是指材料在承受冲击载荷时的抵抗能力。
冲击韧性主要用于描述材料在低温和高速加载下的性能,决定材料的抗冲击能力和抗振动能力。
常用的测试方法有冲击弯曲试验和冲击拉伸试验等。
4. 韧性转变温度韧性转变温度是指材料从脆性向韧性转变的临界温度。
在一定温度范围内,材料的韧性取决于温度的变化。
低于韧性转变温度时,材料更加脆性,容易发生断裂;高于韧性转变温度时,材料的韧性较好,能够发生塑性变形。
5. 韧性断裂韧性断裂是指材料在受力条件下经历塑性变形后断裂。
与脆性断裂相比,韧性断裂具有相对较高的能量吸收能力,能够减轻出现断裂的可能性。
韧性断裂通常发生在材料的高应变和高应力区域,可以通过断口形貌的观察来判断。
6. 金属材料的韧性影响因素金属材料的韧性受到多种因素的影响,包括以下几个方面:•晶体结构:晶体结构的不同会影响金属材料的变形能力和断裂方式。
•温度:温度的升高会导致金属材料的韧性增加,因为高温下分子相对运动能力增强。
•缺陷和纯度:材料中存在的缺陷(如气泡、裂纹等)会降低其韧性,高纯度的金属材料通常具有较好的韧性。
•加工和热处理:适当的加工和热处理能够提高金属材料的韧性,如冷变形和退火处理等。
结论金属材料的韧性是一个重要的性能指标,影响着材料的使用寿命和适用领域。
国产结构用铝合金断裂韧性参数校准

国产结构用铝合金断裂韧性参数校准一、铝合金断裂韧性参数的含义铝合金断裂韧性参数是指在一定外加载荷的作用下,材料发生断裂前能够吸收的能量大小。
在材料科学中,通常采用断裂韧性参数来描述金属材料的抗断裂能力。
铝合金断裂韧性参数的常见指标包括KIC值和JIC值等。
1. KIC值:KIC值是指在断裂发生前给定的外加载荷下,材料周边的应力强度因子K 达到临界值时,材料开始产生裂纹并扩展的能量大小。
KIC值能够反映材料抗裂纹扩展的能力,是金属材料断裂韧性的重要参数之一。
国产结构用铝合金作为重要的结构材料,其断裂韧性参数的准确性直接影响着工程结构的安全性和稳定性。
通过对铝合金断裂韧性参数进行准确的校准,可以更加科学地评估材料的抗断裂能力,为工程结构的设计和使用提供可靠的依据。
特别是在高速列车、航空航天等领域,对铝合金材料的断裂韧性参数的要求更为严格,因此对其进行准确的校准尤为重要。
1. 实验测试:实验测试是校准铝合金断裂韧性参数的主要方法之一。
常用的实验测试方法包括冲击试验、拉伸试验、钉扎试验等。
通过对材料在不同外加载荷下的断裂行为进行实验测试,可以获得其断裂韧性参数的具体数值。
2. 理论计算:在实验测试的基础上,还可以采用理论计算的方法对铝合金断裂韧性参数进行校准。
常用的理论计算方法包括有限元分析、线性弹性断裂力学理论等。
通过建立材料的力学模型,结合实际工程条件进行计算,可以获得铝合金断裂韧性参数的具体数值。
1. 校准标准:选择合适的标准进行校准,确保校准结果的可靠性和准确性。
2. 校准工艺:合理安排校准实验和计算流程,确保校准结果的科学性和有效性。
3. 校准设备:采用先进的测试设备和计算软件,保证校准过程的精准性和可控性。
4. 校准人员:具有丰富经验和专业知识的技术人员进行校准工作,确保校准结果的可信度和可靠性。
随着现代材料科学技术的不断进步和发展,国产结构用铝合金断裂韧性参数校准的发展趋势主要体现在以下几个方面:1. 多学科交叉:结合材料科学、力学、数值计算等多个学科领域的知识,综合分析和研究铝合金断裂韧性参数,形成多学科交叉的研究模式。
热处理对金属材料的断裂韧性的影响

热处理对金属材料的断裂韧性的影响金属材料在实际应用中广泛使用,而其断裂韧性是评价其性能和可靠性的重要参数之一。
热处理作为一种常见的金属加工工艺,在一个或多个工序中改变金属材料的物理和化学性质,从而影响了材料的断裂韧性。
本文将介绍热处理对金属材料断裂韧性的影响,包括亮点提纯、晶粒尺寸和长大导向等方面。
亮点提纯对断裂韧性的影响热处理过程中的亮点提纯是通过升温和保温来使固溶体中的杂质迁移或析出的过程。
亮点提纯可以显著改变材料中的微观组织,并影响断裂韧性。
通常,亮点提纯可以去除金属材料中的非金属夹杂物、气体夹杂物和金属间化合物等,从而提高材料的纯度和断裂韧性。
首先,亮点提纯可以减少夹杂物对金属材料的影响。
夹杂物是金属中的一种杂质,会对材料的物理性能和力学性能产生明显的负面影响。
例如,硫和氧等夹杂物会降低材料的延展性和韧性,提高材料的脆性。
通过亮点提纯,这些夹杂物的含量得到减少,可以有效提升材料的断裂韧性。
其次,亮点提纯还可以减少金属材料中的气体夹杂物。
在热处理过程中,高温可以加速金属材料中的气体从固相向液相的扩散,使气体夹杂物得以移除。
这些气体夹杂物在金属材料中能够形成孔洞,降低材料的密度和机械性能,同时还会对断裂韧性造成负面影响。
因此,通过亮点提纯去除气体夹杂物,可以提高金属材料的断裂韧性。
最后,亮点提纯可以改变金属材料中的金属间化合物含量和分布。
金属间化合物一般都是脆性的,其存在会导致材料在应力作用下易发生断裂。
通过亮点提纯可以使金属间化合物析出或重新分布,进而减少在材料中的存在,从而提高金属材料的断裂韧性。
晶粒尺寸对断裂韧性的影响晶粒尺寸是指金属材料中晶粒的大小,而晶粒尺寸的变化会直接影响金属材料的断裂韧性。
热处理可以通过控制升温和保温时间来改变金属材料的晶粒尺寸。
一般来说,较细小的晶粒有助于提高断裂韧性。
这是因为细小的晶粒对应的晶界面积相对增大,因此能够更好地吸收和阻挡裂纹扩展,从而提高材料的断裂韧性。
金属材料表面裂纹拉伸试样断裂韧度试验方法

金属材料是工程领域中广泛应用的材料之一,其性能对于工程结构的安全性和稳定性有着重要的影响。
而金属材料的表面裂纹拉伸试样断裂韧度试验方法是评定金属材料韧性能的重要手段之一。
本文将介绍金属材料表面裂纹拉伸试样断裂韧度试验方法的具体步骤和注意事项。
一、试验目的金属材料的表面裂纹拉伸试样断裂韧度试验旨在评定金属材料在受力状态下的抗拉性能和韧性能,为工程结构设计和材料选用提供参考依据。
二、试验样品的准备1. 样品的选择:一般选用金属材料的板材作为试验样品,尺寸一般为200mm*50mm*10mm。
2. 表面处理:样品的表面应保持平整,无凹凸不平或者明显的划痕。
三、试验步骤1. 样品标记:在样品上标注好试验样品的编号和方向。
2. 制作缺口:在样品上制作缺口,缺口长度为10mm,宽度为0.5mm。
3. 夹具安装:将样品安装在试验机的夹具上,夹具的张合长度为100mm。
4. 载荷施加:在试验机上施加加载,载荷速度控制在1mm/min。
5. 记录数据:在试验过程中,记录载荷和位移的数据,以便后续分析。
四、试验注意事项1. 缺口制作:缺口的制作应该尽量避免产生裂纹,可以使用慢速切割或者加工。
2. 夹具安装:夹具的安装要稳固,保证试验过程中的样品不会出现偏移或者松动。
3. 载荷施加:载荷的施加速度要均匀,避免过快或者过慢导致试验结果的偏差。
4. 安全防护:在试验过程中,要保证操作人员的安全,并严格遵守安全操作规程。
五、试验结果分析根据试验数据,可以得到金属材料在受拉状态下的应力-应变曲线,并据此分析金属材料的屈服强度、最大应力、断裂韧性等性能指标。
通过以上试验方法,我们可以准确评定金属材料在受拉状态下的韧性能,并为工程设计和材料选用提供科学依据。
试验过程中需要特别注意安全事项,确保工作人员的安全。
希望本文对金属材料表面裂纹拉伸试样断裂韧度试验方法有所帮助。
六、试验结果分析通过表面裂纹拉伸试样断裂韧度试验得到的金属材料在受拉状态下的应力-应变曲线,可以为工程设计和材料选择提供重要参考信息。
金属材料的力学性能指标

金属材料的力学性能指标金属材料是工程中常用的材料之一,其力学性能指标对于材料的选择和设计具有重要意义。
力学性能指标是评价金属材料力学性能的重要依据,主要包括强度、韧性、塑性、硬度等指标。
下面将对金属材料的力学性能指标进行详细介绍。
首先,强度是评价金属材料抵抗外部力量破坏能力的指标。
强度可以分为屈服强度、抗拉强度、抗压强度等。
其中,屈服强度是材料在受到外部力作用下开始产生塑性变形的应力值,抗拉强度是材料在拉伸状态下抵抗破坏的能力,抗压强度是材料在受到压缩力作用下抵抗破坏的能力。
强度指标直接影响着材料的承载能力和使用寿命。
其次,韧性是材料抵抗断裂的能力。
韧性指标包括冲击韧性、断裂韧性等。
冲击韧性是材料在受到冲击载荷作用下抵抗破坏的能力,断裂韧性是材料在受到静态载荷作用下抵抗破坏的能力。
韧性指标反映了材料在受到外部冲击或载荷作用下的抗破坏能力,对于金属材料的使用安全性具有重要意义。
再次,塑性是材料在受力作用下产生塑性变形的能力。
塑性指标包括伸长率、收缩率等。
伸长率是材料在拉伸破坏前的延展性能指标,收缩率是材料在受力破坏后的收缩性能指标。
塑性指标直接影响着金属材料的加工性能和成形性能,对于金属材料的加工工艺和成形工艺具有重要影响。
最后,硬度是材料抵抗划伤、压痕等表面破坏的能力。
硬度指标包括洛氏硬度、巴氏硬度等。
硬度指标反映了材料表面的硬度和耐磨性能,对于金属材料的耐磨性和使用寿命具有重要意义。
综上所述,金属材料的力学性能指标是评价材料性能的重要依据,强度、韧性、塑性、硬度等指标直接影响着材料的使用性能和工程应用。
在工程设计和材料选择中,需要根据具体的工程要求和使用环境,综合考虑各项力学性能指标,选择合适的金属材料,以确保工程的安全可靠性和经济性。
金属材料的断裂韧性-材料力学性能

1
主要内容
1.应力场强度因子 2.断裂韧性的影响因素 3.裂纹尖端塑性区及其修正 4.裂纹扩展的能量释放率 5.平面应变断裂韧性KIC的测定
2
一、应力场强度因子
1、裂纹体的三种断裂模式 (1)张开型 -I型(2)滑开型-II型(3)撕开型-III型
张开型-I型 正应力垂直于裂纹面 扩展方向与正应力垂直
都可做断裂判据
KIC易测 GIC难测
18
五、平面应变断裂韧性KIC的测定
1、试样制备 制备要求:1)预制疲劳裂纹 2)试样有足够厚度
19
试样类型
试样厚度
裂纹长度
韧带宽度
KIC为材料断裂韧性的估算值或类似材料的断裂韧性值 20
2、测试方法 试验装置
条件断裂韧性KQ的计算公式 三点弯曲试样
载荷-裂纹口张开位移曲线 紧凑拉伸试样
PQ-试样断裂或裂纹失稳扩展时的载荷
21
临界载荷PQ的确定
裂纹长度a的确定
有效性检验: KQ = KIC (1) (2)
a = (a2 + a3 + a4) / 3 注:a与(a1 + a5) / 2的 差小于10%
22
金属材料的断裂韧性 小 结
一、应力场强度因子
1. 裂纹体的三种断裂模式 2. 裂纹尖端应力场 3. 应力场强度因子KI的物理意义
10
1、裂纹尖端塑性区大小
米赛斯屈服判据
平面应力状态
平面应变状态
θ= 0时
θ= 0时
表面塑性区大,平面应力状态
中心塑性区小,平面应变状态
11
2、应力松弛对塑性区的影响
应力松弛效应: σy达到σys以后,把高出的
针对金属材料断裂韧性的相关研究
针对金属材料断裂韧性的相关研究摘要:研究影响金属材料断裂韧性的因素对于提高金属的断裂韧性具有重要意义。
而影响金属材料断裂韧性的因素非常多,且很复杂。
因此,本文针对这些问题全面分析,认真地进行了研究相关的研究。
关键词:金属材料断裂韧性;影响金属断裂韧性因素1. 金属材料断裂韧性断裂韧性——指金属材料阻止宏观裂纹失稳扩展能力的度量,也是金属材料抵抗脆性破坏的韧性参数。
它和裂纹本身的大小、形状及外加应力大小无关。
是金属材料固有的特性,只与金属材料本身、热处理及加工工艺有关。
是应力强度因子的临界值。
常用断裂前物体吸收的能量或外界对物体所作的功表示。
例如应力-应变曲线下的面积。
韧性金属材料因具有大的断裂伸长值,所以有较大的断裂韧性,而脆性金属材料一般断裂韧性较小,是表征材料阻止裂纹扩展的能力,是度量材料的韧性好坏的一个定量指标。
在加载速度和温度一定的条件下,对某种材料而言它是一个常数。
当裂纹尺寸一定时,材料的断裂韧性值愈大,其裂纹失稳扩展所需的临界应力就愈大;当给定外力时,若材料的断裂韧性值愈高,其裂纹达到失稳扩展时的临界尺寸就愈大。
2. 课题研究的主要内容通过对金属材料断裂韧性的影响因素进行了系统分析。
假定影响金属材料断裂韧性的其它因素均保持不变,把温度对断裂韧性的影响进行单独研究。
一些关于压力容器钢断裂韧性的研究结果表明,当温度达到上平台温度之后,断裂韧性会随着温度的继续升高而下降,即存在韧性劣化的现象。
相对于低温范围断裂韧性的研究,中、高温范围内断裂韧性的研究仍显不足,且实际工程中许多构件在高温条件下工作,按照常温力学性能设计的构件存在某种意义上的安全隐患,因而研究温度对断裂韧性的影响就显得相当重要。
文中结合钢韧断机理的研究成果与点缺陷在应力场中的迁移运动规律,通过理论分析建立了断裂韧性JIC与温度T的数学模型,在此基础上对多种压力容器钢断裂韧性的实验数据进行了分析,最后验证了模型的合理性。
文中通过对断裂参量J积分进行了数值分析,分析了温度对J积分的影响。
第4章 金属的断裂韧性全(材料07)
2
1 2
2 2 cos 2 1 3 sin 2 (平面应变状态)
K
I s
2
c o s
2
2
1
3
s i n
2
2
3 2 2 2 1-2 cos sin (平面应力状态) 2 4 2
37
3、两种重要裂纹的KI修正公式 (1)无限大板I型裂纹
K I=
Y=
(平面应力状态)
a
1-0.5 s
2
K I=
a
1-0.177 s
2
(平面应变状态)
(2)大件表面半椭圆裂纹
K I= 1.1 a
Y=
1.1
-0.608 s
1 KI R 0 =2r0 s
2
2
(平面应力状态)
1 KI =2r0 R0 (平面应变状态) 2 2 s
34
五、应力场强度因子的修正
1、修正条件:σ/ σs≥0.6~0.7 原因:比值大,塑性区大,影响应力场。
2、修正方法:虚拟有效裂纹
应力 张开型 (I型 ) 正应力 裂纹面 裂纹线 扩展方向 ⊥ ⊥ ⊥ 图例
滑开型 切应力 (Ⅱ型) 撕开型 切应力 (Ⅲ 型)
∥ ∥
⊥ ∥
∥ ⊥
提高:裂纹扩展的基本形式
二、裂纹顶端的应力场分析
1、裂纹尖端各点应力—弹性力学推导
2a
有I型穿透裂纹无限大板的应力分析图
西安交通大学材料力学性能试验报告——断裂韧性
材料力学性能实验报告姓名: 班级: 学号: 成绩:
K的测定
实验名称实验六断裂韧性
1C
实验目的了解金属材料平面应变断裂韧性测试的一般原理和方法。
实验设备 1.CSS-88100万能材料试验机;
2.工具读数显微镜一台;
3.位移测量器;
4.千分尺一把;
5.三点弯曲试样40Cr和20#钢试样各两个。
试样示意图
图1 三点弯曲试样
由于三向应力的存在,使得裂纹扩展区域的位错运动困难,受到更大的摩擦力,从而塑性变差,更易发生脆断。
附录一:
断裂韧性试验中断口照片:
附录二:
%根据试验的数据画P-V 曲线的matlab 程序
%在运行程序之前, 需要将数据导入到matlab 中: “File ”|“Import Data ” (a)试样01的断口图 (b)试样02的断口图
图7 40Cr800℃淬火+100℃回火断口图
(a)试样412的断口图 (b)试样415的断口图
图8 20#退火态试样的断口图
图3 40Cr800℃+100℃回火试样01的P-V 曲线
0.5
1.5
2.5
4
变形/mm
力/N
图4 40Cr800℃+100℃回火试样02的P-V 曲线
4
变形/mm
力/N
变形/mm
力/N
图5 20#钢退火态试样412的P-V 曲线
变形/mm 力/N
图6 20#钢退火态试样415的P-V 曲线。
金属材料的断裂韧性测试
金属材料的断裂韧性测试当我们谈论金属材料时,断裂韧性是一个重要的性质。
它指的是材料在受力下能够承受多大的应变能量,而不会发生断裂。
断裂韧性测试是评估金属材料性能的一种常用方法,它可以帮助工程师确定材料的可靠性和适用性。
本文将介绍金属材料的断裂韧性测试的原理、方法和应用。
一、原理金属材料的断裂韧性是指材料在断裂之前能够吸收的能量。
它与材料的强度、韧性和硬度等性质密切相关。
断裂韧性测试的原理是通过施加外力,使材料发生断裂,并测量断裂前后的应变能量差。
这个差值可以用来评估材料的断裂韧性。
二、方法1. 塑性断裂韧性测试塑性断裂韧性测试是一种常用的测试方法。
它通过在试样上施加拉伸力,使其发生塑性变形,然后测量断裂前后的应变能量差。
常用的测试方法包括冲击试验和拉伸试验。
冲击试验是一种快速施加冲击载荷的测试方法。
它通常使用冲击试验机进行,将试样固定在机器上,然后施加冲击载荷。
当试样发生断裂时,测试机会记录下断裂前后的能量差。
拉伸试验是一种更常见的测试方法。
它通过在试样上施加拉伸力,使其发生塑性变形,然后测量断裂前后的应变能量差。
常用的拉伸试验方法有静态拉伸试验和动态拉伸试验。
静态拉伸试验是一种较慢的测试方法,通过逐渐增加载荷来进行。
动态拉伸试验是一种更快的测试方法,通过快速施加载荷来进行。
2. 脆性断裂韧性测试脆性断裂韧性测试是一种针对脆性材料的测试方法。
脆性材料在受力下容易发生断裂,因此需要特殊的测试方法来评估其断裂韧性。
常用的测试方法包括冲击试验和压缩试验。
冲击试验是一种常用的测试方法,通过在试样上施加冲击载荷来评估脆性材料的断裂韧性。
冲击试验机将试样固定在机器上,然后施加冲击载荷。
当试样发生断裂时,测试机会记录下断裂前后的能量差。
压缩试验是一种较少使用的测试方法,通过在试样上施加压缩载荷来评估脆性材料的断裂韧性。
压缩试验机将试样固定在机器上,然后施加压缩载荷。
当试样发生断裂时,测试机会记录下断裂前后的能量差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属材料的断裂韧性
摘要不同的金属材料的断裂韧性是不一样的,对不同金属材料的断裂韧性进行研究并找出影响的因素对提高金属材料断裂韧性具有非常重要的意义。
根据影响金属材料断裂韧性因素的不用,可以总体上概括为两个部分的因素,分别是金属材料外部因素和金属材料内部因素,本文分别就影响金属材料的外部因素和内部因素综合进行分析,以得出影响金属材料动态断裂韧性的因素。
关键词金属材料;失效;断裂韧性;影响因素
0引言
随着现代社会经济的不断发展,对金属材料的使用也大大的增加,在工程构件设计和使用的过程中,最为严重的就是金属材料的断裂,金属材料一旦发生断裂就会发生生产安全事故,同时也会造成一定的经济损失。
通过对以往发生的大量的金属材料的断裂事件的分析,得出构件的低应力脆断是由宏观裂纹扩展引起的,其中最为主要的是金属材料的断裂纹,裂纹一般是在金属加工和生产的过程中引起的[1]。
根据影响金属材料断裂韧性因素的不用,可以总体上概括为两个部分的因素,分别是金属材料外部因素和金属材料内部因素,本文分别就影响金属材料的外部因素和内部因素综合进行分析,以得出影响金属材料动态断裂韧性的因素。
1影响金属材料断裂韧性的外部因素
1.1几何因素的影响
几何因素是影响金属材料断裂韧性的一个最为重要的外部因素。
几何因素主要包括两个方面的内容,分别是试样厚度和试样取向等因素,下面对这两个因素进行分析:
1)试样厚度
目前在对金属材料的断裂韧性进行研究的过程中发现,不同厚度的金属材料会对会对裂纹前端的应力约束产生较大的影响,同样也会对金属材料的断裂韧性有一定的影响,所以我们分别用不同厚度的同一个金属材料进行断裂韧性的实验,在实验的过程中发现厚试样的断裂韧性值明显的比薄试样的断裂韧性值要低,换而言之,不同厚度的金属材料,其自身的断裂韧性也不同,厚度也是影响金属材料断裂韧性的一个重要的因素[2]。
2)试样的取向
在对金属材料进行取样测试的时候,试样的去向业余金属材料的断裂韧性之
间存在着一定的联系,如果我们取样的金属材料裂纹面与金属材料裂纹的扩展方向一致,那么金属材料的断裂韧性就会明显的降低。
如果我们取样的金属材料裂纹面与金属材料裂纹的扩展方向相反或者有一定的偏差,那么金属材料的断裂韧性就会较别的有所提高[3]。
1.2加载速率的影响
加载速率与金属材料的断裂韧性有一定的影响,它们之间的联系通常可以用应变速率来进行表示,如果对金属材料的应变速率进行增加的话,那么金属材料相应的断裂韧性就会有所降低。
但是,如果应变速率很大,而且形成局部温度升高的绝热状态时,形变热量来不及散开,材料的断裂韧性值会出现回升。
1.3温度的影响
金属材料的断裂韧性之所以会发生变化,是因为金属材料本身的内部损伤或者内部结构的缓慢变化而引起的,内部金属粒子的空位浓度的变化直接导致了金属材料的损伤。
国内有一些研究文献表明,空位的迁移运动也就一定,空位聚合形成空穴的动力一定。
因此裂纹尖端空位浓度越高,形成空穴的几率也就越大,就比较容易导致断裂。
由基本的物理学知识可以得知,给定一个材料,其本身受热多少的变化也会影响到金属材料的韧性,金属材料本身的断裂韧性会随着温度的升高而降低。
金属材料本身具有一个温度适应变化的范围,一旦外界的温度逾越了这个范围,就会对金属材料的断裂韧性产生一定的影响,由此我们可以推断出金属材料的断裂韧性和温度有着很大的关系。
由上图可以得知,金属材料的断裂韧性会随着温度的变化而变化,当金属的温度达到一定的温度以后,金属材料的断裂韧性对比系数会随着温度的继续升高而下降,且下降的幅度很明显。
2影响金属材料断裂韧性的内部因素
2.1组织结构的影响
1)马氏体
金属材料内部的马氏体也是影响金属材料断裂韧性的一个重要的内部因素。
金属材料的淬火马氏体在回火后获得回火马氏体,在马氏体不出现回火脆性的情况下,回火温度和强度的变化会对整个金属材料的产生很大的影响,随着回火温度的提高,强度逐渐下降,塑性和韧性逐渐升高。
因此,通过这些实验我们可以得出通过淬火、回火获得回火马氏体后,金属材料的组织综合力学性能能达到一个最好的水平,同时这也使得即材料的屈服强度和断裂韧性值都得到较大的提高[4]。
2)贝氏体
金属材料内部的贝氏体一般有三种不同的类型,分别是无碳贝氏体(针状铁素体)、上贝氏体和下贝氏体。
通常金属材料通过加热后,其内部的贝氏体会变成魏氏体,这使得金属材料的断裂韧性有了很大的降低[4]。
3)奥氏体
奥氏体本身的韧性比马氏体要高出很多,所以如果在金属材料的马氏体上残留一定的奥氏体时,也就相当于提高了金属材料的断裂韧性。
2.2碳含量的影响
金属材料内部碳元素的含量(碳含量)也会对金属材料的断裂韧性产生一定的影响,一种比较常见的现象是在高强度钢材的生产过程中降低碳元素的含量,以提高金属材料的断裂韧性,以便达到强化的目的[4]。
2.3合金元素的影响
板条马氏体的形成有利于断裂韧性的提高。
在钢中,合金元素主要通过对钢组织结构的影响来影响断裂韧性,不同种类的合金元素含量的多少是可以直接影响金属材料的断裂韧性的。
在相同的作用强度下,位错型马氏体的断裂韧性比孪晶型马氏体高得多,这样一来,含位错型马氏体较多的金属材料,其本身的断裂韧性就会越高。
在金属材料中,不同的合金元素之间会产生很多的作用,这些影响到金属材料的复杂性。
2.4晶粒尺寸的影响
金属材料中的晶粒尺寸的大小也会影响金属材料本身的断裂韧性,通过科学实验可以发现,晶粒越小,其晶粒总体所占的面积就会越大,这样一来,裂纹就有拥有更加复杂错综的结构,如果想要使这种复杂的晶界失去稳定性,就需要获使用更多的外界能量,因此,细化晶粒不但利于提高材料的强度,还能提高材料的断裂韧性。
3结论
本文对影响金属材料的断裂韧性进行了综合的分析,分别对影响金属材料断裂韧性的内外部因素进行了综合的分析,得出了一定的结论,以期对日后的研究提供一些理论依据。
参考文献
[1]李鹤林,冯耀荣.石油钻柱失效分析及预防措施.石油机械,1990,18(8):38-44.
[2]练章华,骆发前,龚建文,钟水清.塔里木油田钻杆刺漏原因分析[J].钻采
工艺,2003,26(6):62-64.
[3]Lv S L,Luo F Q,etc.Cause Analysis on Drilling Pipe Wash out and Preventive Measure[J].Oil Field Equipment.2006,35(supplement):12-16.
[4]郭海清,马永安.井斜对钻具影响理论在轮古13井钻具刺漏原因分析中的应用[J].钻采工艺,2003,26(3):1-4.。