强度、断裂及断裂韧性 (1)
混凝土断裂韧度及实例分析1

二、应力场强度因子KⅠ及断裂韧度KⅠc
当σ/σs<0.7时
当σ/σs≥0.7时
三、裂纹扩展能量释放率GⅠ及断裂韧度GⅠc
(一)裂纹扩展能量释放率GⅠ (二)断裂韧度GⅠc和断裂G判据
补充
一、能量方法(Energy Methods ) :
利用功能原理 U = W 来求解可变形固体的位移、变形和内力
对拉杆进行逐步加载(认为无动能变化) 利用能量守恒原理: U(弹性应变能)=W(外力所做的功)
W 1 2 P L U E
UE P L 2 EA
2
L
PL EA
P
单位体积内的应变能----比能u(单位:J/m3)
P
u 1 U V 2 AL P L 1 2
2
P
前 言
缺口的第一个效应: 缺口造成应力应变集中。 缺口的第二个效应: 应力改为两向或三向拉伸。
缺口的第三个效应: 缺口使塑性材料得到“强化”。
前 言
1、传统的力学强度理论(1920s前): 材料连续、均匀和各向同性的; 断裂是瞬时发生的。 断裂:σ>σs 脆性、韧性断裂
2、现代的力学强度理论(1920s后): 材料存在裂纹(裂纹体); σ<σs时就断裂 ;
断裂力学的基本原理;
线弹性下断裂韧度的意义、测试原理和影响因素。
前
言
6、裂纹类型(摘自P80附表)
工 艺 裂 纹 及 使 用 裂 纹
第四章
金属的断裂韧度
§4.1 线弹性条件下的金属断裂韧度
§4.2 断裂韧度KⅠc的测试
§4.3 影响断裂韧度KⅠc的因素
§4.4 断裂K判据应用案例 §4.5 弹塑性条件下金属断裂韧度的基本概念
研究材料的力学强度与断裂韧性

研究材料的力学强度与断裂韧性材料的力学强度与断裂韧性是材料科学中的两个重要方面。
力学强度指材料在受力情况下承受应力的能力,即材料在外力作用下能够抵抗应力产生的变形和破坏的能力。
而断裂韧性则是指材料的抗断裂能力,即在受到外部力作用下不易发生断裂。
这两个性质对于材料的可靠性和使用寿命具有重要影响。
一般来说,材料的力学强度与断裂韧性之间存在一定的关系。
通常情况下,材料的强度越高,其断裂韧性也会相应提高。
这是因为材料的强度和断裂韧性都与材料的内部结构和成分有密切关系。
例如,金属材料中晶粒的尺寸和排列方式会对材料的力学性能产生影响。
当晶粒尺寸较小、排列有序时,晶界强化效应会增强材料的强度和韧性。
此外,其他微观结构特征如晶粒形状、晶界形态、孪晶等也会对材料的力学性能产生影响。
另一个影响力学强度和断裂韧性的因素是材料的成分。
不同元素和化合物的组合方式会决定材料的力学性能。
例如,合金中添加适量的合金元素可以改善材料的强度和韧性。
这是因为添加合金元素可以改变材料的晶体结构和电子结构,从而改变材料的力学性能。
此外,材料的制备工艺和热处理过程也会对其力学性能产生影响。
不同的加工工艺和热处理条件可以改变材料的晶粒尺寸和晶界特征,从而影响材料的力学性能。
例如,通过冷变形、退火等工艺可以显著改变材料的晶粒尺寸和晶界特征,从而提高其强度和韧性。
研究材料的力学强度与断裂韧性对于理解材料的性能和指导材料设计具有重要意义。
通过深入研究材料的微观结构特征和成分对其力学性能的影响,可以为材料科学的相关领域提供理论支持和实验依据。
同时,研究材料的力学强度与断裂韧性也可以为新材料的开发和应用提供指导,从而提高材料的性能和可靠性。
然而,需要强调的是,材料的力学强度和断裂韧性不是可以简单地通过单一的指标来衡量的。
对于不同的应用和使用环境,对材料性能的要求也不同。
因此,在研究和评估材料的力学性能时,需要综合考虑多个指标。
此外,材料的力学性能还受到动态加载、温度、湿度等外界条件的影响,因此需要进行实验测试和模拟分析来揭示材料的力学行为。
材料强度和断裂特性测试方法概述

材料强度和断裂特性测试方法概述材料强度和断裂特性是评估材料性能和可靠性的重要指标。
在工程领域中,如果材料无法经受住所需的力量或无法在适当的载荷条件下延展,可能导致结构和功能的失败。
因此,了解材料的强度和断裂特性对于设计和制造过程至关重要。
本文将概述几种常见的材料强度和断裂特性测试方法。
一、材料强度测试方法1. 拉伸测试:拉伸测试是最常见和基础的材料强度测试方法之一。
这种测试方法通过将材料置于拉伸设备中,施加一个持续增加的拉伸载荷,直到材料发生断裂。
拉伸测试可以确定材料的拉伸强度、屈服强度、断裂强度等力学性能。
2. 压缩测试:压缩测试是另一种常见的材料强度测试方法,它与拉伸测试相反。
在压缩测试中,材料被放置在压缩设备中,施加一个持续增加的压缩载荷,直到材料发生压缩变形或破坏。
压缩测试可以评估材料的压缩强度、屈服强度以及抗压性能。
3. 弯曲测试:弯曲测试常用于评估材料在受弯曲载荷下的性能。
在弯曲测试中,材料被放置在一个弯曲设备中,施加一个持续增加的弯曲载荷,直到材料产生弯曲或破坏。
弯曲测试可以测量材料的弯曲强度、弯曲刚度以及抗弯刚性。
二、材料断裂特性测试方法1. 断裂韧性测试:断裂韧性是评估材料在受到撞击或快速载荷下承载能力的能力。
常见的断裂韧性测试方法包括冲击试验和拉伸试验。
- 冲击试验:冲击试验通过施加一个快速、高能量的外力来模拟撞击条件。
常用的冲击试验方法有冲击强度试验和冲击韧性试验。
这些试验可以评估材料在受到冲击载荷时的断裂特性。
- 拉伸试验:拉伸试验用于评估材料在肯尼迪构面的韧性。
这种试验方法会施加一个快速增加的拉伸载荷,以模拟材料在快速载荷下的响应。
拉伸试验可以通过测量材料断口面积的增加和断口延伸来评估材料的断裂韧性。
2. 断裂韧性测试:断裂韧性是评估材料在受到撞击或快速载荷下承载能力的能力。
常见的断裂韧性测试方法包括冲击试验和拉伸试验。
- 冲击试验:冲击试验通过施加一个快速、高能量的外力来模拟撞击条件。
材料力学断裂力学知识点总结

材料力学断裂力学知识点总结材料力学是研究材料的力学性质和变形行为的学科,而断裂力学则是其中的重要分支。
断裂力学主要研究材料在外界作用下的破坏过程和断裂特性,对于了解材料的强度、可靠性和耐久性具有重要意义。
本文将对材料力学断裂力学的主要知识点进行总结。
1. 断裂力学基础概念1.1 断裂断裂是材料由于内外力作用下发生破裂的现象。
断裂过程包括初期损伤、裂纹扩展和断裂破坏三个阶段。
1.2 断裂韧性断裂韧性是材料在断裂过程中所吸收的能量的量度。
韧性高的材料能够在断裂前吸收大量能量,具有较好的抗断裂能力。
1.3 断裂强度断裂强度是材料在断裂破坏前所能承受的最大拉应力,是衡量材料抗断裂性能的重要指标。
2. 断裂模式2.1 纯拉伸断裂纯拉伸断裂是指材料在纯拉伸作用下破裂的模式。
在该模式下,裂纹往往呈现沿拉伸方向延伸的条状。
2.2 剪切断裂剪切断裂是指材料在剪切载荷作用下破裂的模式。
在该模式下,裂纹往往呈现锯齿状。
2.3 压缩断裂压缩断裂是指材料在压缩载荷作用下破裂的模式。
在该模式下,裂纹多呈现垂直于压缩方向的半环形状。
3. 断裂韧性的评价方法3.1 线性弹性断裂力学线性弹性断裂力学是最早用于断裂韧性评价的方法,其基本假设为材料在破裂前仍满足线性弹性行为。
3.2 弹塑性断裂力学弹塑性断裂力学是考虑了材料的塑性行为。
该方法应用广泛,能较好地描述材料的耐久性和断裂韧性。
3.3 细观断裂力学细观断裂力学是以材料微观层面的裂纹损伤为基础的断裂力学模型,通过对材料中裂纹数量和尺寸的分析,预测材料的断裂韧性。
4. 断裂的影响因素4.1 材料性质材料的力学性质直接影响了其断裂行为,例如强度、韧性、硬度等。
4.2 外界加载条件外界加载条件如载荷类型、载荷大小和加载速率等都会对材料的断裂行为产生重要影响。
4.3 温度和湿度温度和湿度的变化能够引起材料的热膨胀和水分吸附,进而影响材料的断裂性能。
5. 断裂力学应用5.1 材料设计通过对材料的断裂性能研究,可以为材料设计提供依据,提高材料在特定工况下的抗断裂能力。
(完整版)断裂力学与断裂韧性.

断裂力学与断裂韧性3.1 概述断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。
自从四五十年代之后,脆性断裂的事故明显地增加。
例如,大家非常熟悉的巨型豪华客轮-泰坦尼克号,就是在航行中遭遇到冰山撞击,船体发生突然断裂造成了旷世悲剧!按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ],就被认为是安全的了。
而[σ],对塑性材料[σ]=σs /n,对脆性材料[σ]=σb/n,其中n为安全系数。
经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。
原来,传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。
人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。
因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。
可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。
3.2 格里菲斯(Griffith)断裂理论3.2.1 理论断裂强度金属的理论断裂强度可由原子间结合力的图形算出,如图3-1。
图中纵坐标表示原子间结合力,纵轴上方为吸引力下方为斥力,当两原子间距为a即点阵常数时,原子处于平衡位置,原子间的作用力为零。
如金属受拉伸离开平衡位置,位移越大需克服的引力越大,引力和位移的关系如以正弦函数关系表示,当位移达到Xm 时吸力最大以σc表示,拉力超过此值以后,引力逐渐减小,在位移达到正弦周期之半时,原子间的作用力为零,即原子的键合已完全破坏,达到完全分离的程度。
可见理论断裂强度即相当于克服最大引力σc。
该力和位移的关系为图中正弦曲线下所包围的面积代表使金属原子完全分离所需的能量。
付华-材料性能学-部分习题答案1

第一章材料的弹性变形一、填空题:1.金属材料的力学性能是指在载荷作用下其抵抗变形或断裂的能力。
2. 低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。
3. 线性无定形高聚物的三种力学状态是玻璃态、高弹态、粘流态,它们的基本运动单元相应是链节或侧基、链段、大分子链,它们相应是塑料、橡胶、流动树脂(胶粘剂的使用状态。
二、名词解释1.弹性变形:去除外力,物体恢复原形状。
弹性变形是可逆的2.弹性模量:拉伸时σ=EεE:弹性模量(杨氏模数)切变时τ=GγG:切变模量3.虎克定律:在弹性变形阶段,应力和应变间的关系为线性关系。
4.弹性比功定义:材料在弹性变形过程中吸收变形功的能力,又称为弹性比能或应变比能,表示材料的弹性好坏。
三、简答:1.金属材料、陶瓷、高分子弹性变形的本质。
答:金属和陶瓷材料的弹性变形主要是指其中的原子偏离平衡位置所作的微小的位移,这部分位移在撤除外力后可以恢复为0。
对高分子材料弹性变形在玻璃态时主要是指键角键长的微小变化,而在高弹态则是由于分子链的构型发生变化,由链段移动引起,这时弹性变形可以很大。
2.非理想弹性的概念及种类。
答:非理想弹性是应力、应变不同时响应的弹性变形,是与时间有关的弹性变形。
表现为应力应变不同步,应力和应变的关系不是单值关系。
种类主要包括滞弹性,粘弹性,伪弹性和包申格效应。
3.什么是高分子材料强度和模数的时-温等效原理?答:高分子材料的强度和模数强烈的依赖于温度和加载速率。
加载速率一定时,随温度的升高,高分子材料的会从玻璃态到高弹态再到粘流态变化,其强度和模数降低;而在温度一定时,玻璃态的高聚物又会随着加载速率的降低,加载时间的加长,同样出现从玻璃态到高弹态再到粘流态的变化,其强度和模数降低。
时间和温度对材料的强度和模数起着相同作用称为时=温等效原理。
四、计算题:气孔率对陶瓷弹性模量的影响用下式表示:E=E0 (1—1.9P+0.9P2)E0为无气孔时的弹性模量;P为气孔率,适用于P≤50 %。
断裂力学和断裂韧性

断裂力学与断裂韧性3.1 概述断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。
自从四五十年代之后,脆性断裂的事故明显地增加。
例如,大家非常熟悉的巨型豪华客轮-泰坦尼克号,就是在航行中遭遇到冰山撞击,船体发生突然断裂造成了旷世悲剧!按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ],就被认为是安全的了。
而[σ],对塑性材料[σ]=σs /n,对脆性材料[σ]=σb/n,其中n为安全系数。
经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。
原来,传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。
人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。
因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。
可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。
3.2 格里菲斯(Griffith)断裂理论3.2.1 理论断裂强度金属的理论断裂强度可由原子间结合力的图形算出,如图3-1。
图中纵坐标表示原子间结合力,纵轴上方为吸引力下方为斥力,当两原子间距为a即点阵常数时,原子处于平衡位置,原子间的作用力为零。
如金属受拉伸离开平衡位置,位移越大需克服的引力越大,引力和位移的关系如以正弦函数关系表示,当位移达到Xm 时吸力最大以σc表示,拉力超过此值以后,引力逐渐减小,在位移达到正弦周期之半时,原子间的作用力为零,即原子的键合已完全破坏,达到完全分离的程度。
可见理论断裂强度即相当于克服最大引力σc。
该力和位移的关系为图中正弦曲线下所包围的面积代表使金属原子完全分离所需的能量。
金属材料的强度和韧性

金属材料的强度和韧性1.定义:强度是指金属材料在外力作用下抵抗塑性变形和断裂的能力。
(1)抗拉强度:金属材料在拉伸过程中所能承受的最大拉力。
(2)抗压强度:金属材料在压缩过程中所能承受的最大压力。
(3)抗弯强度:金属材料在弯曲过程中所能承受的最大力矩。
(4)抗剪强度:金属材料在剪切过程中所能承受的最大剪力。
3.影响因素:(1)材料的化学成分:合金元素的加入可以提高金属材料的强度。
(2)材料的微观结构:晶粒大小、晶界、位错等微观缺陷会影响金属材料的强度。
(3)温度:金属材料在高温下的强度会降低。
(4)应变速率:应变速率越快,金属材料的强度越高。
1.定义:韧性是指金属材料在断裂前吸收塑性变形能量的能力。
(1)冲击韧性:金属材料在冲击载荷作用下的韧性。
(2)断裂韧性:金属材料在拉伸载荷作用下的韧性。
3.影响因素:(1)材料的化学成分:合金元素的加入可以提高金属材料的韧性。
(2)材料的微观结构:晶粒大小、晶界、位错等微观缺陷会影响金属材料的韧性。
(3)温度:金属材料在低温下的韧性会降低。
(4)应力状态:三向应力状态下,金属材料的韧性优于单向应力状态。
三、强度和韧性的关系1.强度和韧性往往存在一定的矛盾:强度高的材料,韧性往往较低;韧性好的材料,强度往往较低。
2.衡量强度和韧性的指标:韧脆转变温度(DBTT),即材料由韧性断裂转变为脆性断裂的温度。
3.如何在保证强度的同时提高韧性:(1)合金化:通过加入适当的合金元素,提高金属材料的强度和韧性。
(2)热处理:通过改变材料的微观结构,提高金属材料的强度和韧性。
(3)微观缺陷控制:通过控制晶粒大小、晶界和位错等微观缺陷,提高金属材料的强度和韧性。
四、应用实例1.航空领域:高性能铝合金、钛合金等材料在航空器结构件中的应用,要求材料具有高强度和良好韧性。
2.汽车领域:钢铁、铝合金等材料在汽车零部件中的应用,要求材料具有适当的强度和韧性。
3.建筑领域:不锈钢、钢筋等材料在建筑结构中的应用,要求材料具有高强度和良好韧性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-1-5 强度(strength)、断裂及断裂韧性 1、基本概念 Concept
(1)强度:材料抵抗形变和断裂的能力。 材料的内部应力:拉伸、压缩、剪切 强度分为:拉伸强度、压缩强度、剪切强度 加载特征分为:弯曲、扭曲、冲击、疲劳 未到破坏强度,形变而失去承载能力(屈服、屈曲) (2)断裂和韧性( fracture and toughness) 断裂是主要破坏形式,韧性是材料抵抗断裂的能力。 断裂韧性 材料抵抗其内部裂纹扩展能力的性能指标; 冲击韧性 材料在高速冲击负荷下韧性的度量。二者间存在 着某种内在联系。 实际应用中,材料的屈服、断裂 是最值得引起注意的 两个问题,
表4-1-2 一些材料的屈服强度或抗张强度数据
材
料
屈服强度(MPa)
3 70 280 28 170 350 310 240~280 铍丝
材
钨晶须 石墨晶须
料
混凝土 无氧99.95%退火铜 无氧99.95%冷拉铜 99.45%退火铝 99.45%冷拉铝 经热处理铝合金 可锻铸铁 低碳钢
抗 张 强 度 ( MPa) 1400 3700 20000 6000~5000 3500 3500 2100 140
表4-1-3 几种常见金属材料与复合材料性能比较 比重 拉伸强度 弹性模量 比强度( (103kg/ 4m) ( GPa ) ( GPa ) 10 m 3) 7.8 1.01 205.8 0.13 2.8 0.46
玻璃钢 碳纤维II/ 环氧 碳纤维I/ 环氧 有机玻璃 PRD/环氧 硼纤维/环 氧
1130~1380
2450~4120 3140~3240 2550 1570 2710 2160~2360 2450~2750 ~ 2450~2750 4080
41.4~55.2
69.2~110.4 98.0~108.0 98.0 87.2 89.2~90.2 96.2~104.2 106.0~125.0 >98.0 96.2~134.8 68.6~75.6
聚丙烯
PVC 尼龙-66 尼龙-6 尼龙-1010 聚甲醛 聚碳酸酯 聚砜 聚酰亚胺 聚苯醚 氯化聚醚
33~41.4
34.6~61 81.4 72.7~76.4 51.0~53.9 61.2~66.4 65.7 70.4~83.7 92.5 84.6~87.6 41.5
200~700
20~40 60 150 100~250 60~75 60~100 20~100 6~8 30~80 60~160
蓝宝石晶须 玻璃丝 硼丝 石墨丝 灰口铸铁
高碳淬火钢
退火合金钢 (4340)
700~1300
450~480
尼龙-66
尼龙-66纤维
70
700
淬火合金钢 (4340)
马氏体时效钢 (300)
900~1600
2000
PVC
HDPE
34-61
21-38
钢琴丝
2400~3400
PP
33-41
材料名称 钢 铝
1180~1570
2870~2940 2360~2540 1270 2550 1960~2940 2750 3140 1960~2060 880
线形聚酯 聚四氟乙 烯
78.4
13.9~24.7
200
250~350
2850
390
114.8
10.8~13.7
(3)抗冲强度(impact strength)
量纲 MN/m2, MPa
t =1.5 F max l0 / (b.d2)
l0,b及d分别为试样的长、宽、厚 加载方式: 三点弯曲, 四点弯曲。 特点: ①适用于 A 测定加工不方便的脆性材料,如铸铁、工具钢、硬质合金乃 至陶瓷材料的断裂强度和塑性。 B 高分子材料,常用于筛选配方或控制产品质量。 ②可较灵敏地反映材料的缺陷, 抗张强度大,则抗弯强度也大
强度、断裂及断裂韧性
Strength, Fracture and Fracture Toughness of Materials Strength stress(tensile,compression and shear) flexural, torsional and impact Fracture Brittle Fracture, Theoretical fracture strength Ductile Fracture with a plastic deformation Transition of Brittle and Ductilty Fracture Toughness
4.5
2.0 1.45 1.6 1.4
0.94
1.04 1.47 1.05 1.37
111.7
39.2 137.2 235.2 78.4
0.21
0.53 1.03 0.67 1.0
0.25
0.21 0.21 1.5 0.57
2.1
1.35
205.8
0.66
1.0
(2)抗弯强度(flexural strength)
表4-1-4常见聚合物的力学强度
材料名称 低压聚乙 烯 聚苯乙烯 ABS PMMA 抗张强度 (MPa) 21.5~38 34.5~61 16~61 48.8~76.5 断裂伸长率 % 60~150 1.2~2.5 10~140 2~10 拉伸模量 MPa 820~930 2740~3460 650~2840 3140 抗弯强度 MPa 24.5~39.2 60.0~87.4 24.8~93.0 89.8~117.5 2950 弯曲模量 MPa 1080~1370
A 材料在高速冲击状态下的韧性或对断裂抵 抗能力的量度。
B 指某一标准试样在断裂时单位面积上所需 要的能量,而不是通常所指的“断裂应力” 。
C 其值与高速拉伸应力– 应变曲线下的面积 成正比。 D 不是材料的基本参数,而是一定几何形状 的试样在特定试验条件下韧性的一个指标。
2、屈服强度 (Yield Strength)
3、断裂强度 (Fracture Strength) (1)抗张强度(tensile strength) 规定的温度、湿度和加载速度条件,标准试样 上沿轴向施加拉伸力直到试样被拉断为止,计算断 裂前试样所承受的最大载荷F max 与试样截面积之比。 量纲 MN/m2, MPa 高分子材料<低于金属材料, 树脂基复合材料>钢等金属材料。