断裂韧性
材料的韧性与断裂韧性研究

材料的韧性与断裂韧性研究引言:材料的韧性和断裂韧性是评价材料性能的重要指标,也是材料科学和工程领域中的热门研究课题。
本文将探讨材料的韧性和断裂韧性的概念、研究方法以及应用领域。
一、材料的韧性韧性是指材料在受力时能够承受塑性变形和吸收冲击能量的能力。
它通常用断裂前的应变能量密度来衡量,也可以用断裂韧性来描述。
韧性高的材料具有良好的延展性和抗冲击性,有利于避免材料的突然断裂和破裂。
二、断裂韧性的研究方法研究材料的断裂韧性可以采用多种方法。
其中,最常用的是断裂韧性试验。
这种试验通常通过施加恒定的力或应变加载材料,观察材料的断裂行为,从而得到材料的断裂韧性参数。
常用的断裂韧性试验方法有缺口冲击试验、拉伸试验和压缩试验等。
三、材料的韧性与应用领域1.金属材料金属材料通常具有较高的韧性和断裂韧性,广泛应用于工程领域。
例如,航空航天领域对金属材料的韧性要求较高,以确保航空器在遭受风险和外界环境冲击时保持结构完整。
2.高分子材料高分子材料在韧性方面具有一定的优势。
其中,聚合物材料是最常见的高分子材料,具有较高的韧性和断裂韧性。
这使得聚合物材料广泛应用于制造塑料制品、橡胶制品以及复合材料中。
3.陶瓷材料陶瓷材料一般具有较高的强度但韧性较低。
很多陶瓷材料在受到外力时很容易产生裂纹,并最终导致破裂。
因此,研究如何提高陶瓷材料的韧性和断裂韧性是陶瓷领域的重要课题。
结论:材料的韧性和断裂韧性是评价材料性能的重要指标,对于提高材料的工程应用性能至关重要。
通过研究材料的韧性和断裂韧性,可以为材料设计和材料工程提供更准确的理论基础和实验依据。
不同类型的材料在韧性和断裂韧性方面存在差异,因此需要根据应用需求进行选择和改进。
材料的断裂韧性研究

材料的断裂韧性研究断裂韧性是材料性能中的重要指标之一,它描述了材料在受力过程中抵抗断裂的能力。
随着科技的进步和工程领域对材料性能要求的提升,对材料的断裂韧性研究引起了广泛关注。
本文将介绍材料的断裂韧性的含义、重要性以及常用的研究方法。
一、断裂韧性的含义断裂韧性是材料在受力条件下抵抗断裂的能力,是材料强度和韧性的综合指标。
一个材料具有较高的断裂韧性通常意味着它能承受更大的载荷、更大的变形以及更高的应力集中。
断裂韧性的高低直接关系到材料在使用中的可靠性和安全性。
二、断裂韧性的重要性1. 工程设计:在工程设计中,材料的断裂韧性是评估材料是否能够承受外部冲击和载荷的重要依据。
只有具备较高的断裂韧性的材料才能确保工程结构的安全可靠。
2. 材料改进:通过研究和改进材料的断裂韧性,可以使材料在受力条件下不易发生断裂或变形。
这对于提高材料的使用寿命、减少材料的损耗具有重要意义。
三、断裂韧性的研究方法1. 断裂韧性测试:常用的断裂韧性测试方法包括冲击试验、拉伸试验和缺口试验等。
通过对材料在不同应力条件下的断裂性能进行测试,可以得到材料的断裂应力、断裂韧性等相关参数。
2. 断裂韧性的改进方法:研究材料的断裂韧性还可以通过改变材料的制备工艺、添加合适的增强相等方法进行。
例如,在金属材料中,通过精细调控晶界数量和晶粒尺寸,可以显著提高材料的断裂韧性。
3. 断裂韧性模型的建立:建立准确的断裂韧性模型是研究材料断裂行为的重要手段之一。
通过理论研究和数值模拟,可以预测材料在受力条件下的断裂性能,并指导材料设计和工程应用。
四、结语材料的断裂韧性是评估材料性能的重要指标之一,对保证工程结构的安全可靠以及提高材料使用寿命具有重要意义。
通过采用合适的断裂韧性测试方法、改进材料制备工艺以及建立准确的断裂韧性模型,可以为材料的研发和应用提供有效的参考和指导。
通过持续的研究和探索,我们可以进一步提高材料的断裂韧性,并不断推动工程科技的发展。
结构力学中的断裂韧性分析

结构力学中的断裂韧性分析在结构力学中,断裂韧性分析是一个重要的研究领域。
它涉及到材料在受力作用下的破裂行为以及材料抵抗断裂的能力。
断裂韧性是评价材料抵抗断裂的重要指标,它直接关系到材料的可靠性和安全性。
本文将介绍断裂韧性的概念、分析方法和应用领域。
一、断裂韧性的概念断裂韧性是指材料在受力作用下抵抗破裂的能力。
通常用断裂韧性指标KIC来衡量。
断裂韧性分析的核心是破裂力学理论,其中断裂力学理论主要研究材料在应力场中的破裂行为。
在断裂韧性分析中,常用的方法有线弹性断裂力学、贝尔式断裂力学和能量法等。
二、断裂韧性的分析方法1. 线弹性断裂力学线弹性断裂力学是断裂韧性分析中应用最广泛的方法之一。
该方法通过在裂纹前端应力场的计算和分析来确定断裂韧性指标KIC。
线弹性断裂力学的基本假设是材料在断裂前是线弹性的,且裂纹尺寸相对结构尺寸较小。
2. 贝尔式断裂力学贝尔式断裂力学是一种近似解析方法,适用于解决复杂结构中的断裂韧性问题。
该方法可以解决复杂的应力场问题,并提供了估计断裂韧性的方法。
3. 能量法能量法是一种常用的近似方法,它通过分析系统的弹性和塑性能量来评估结构的断裂韧性。
能量法常用于工程结构中的断裂韧性分析,比如断裂的扩展路径和破坏机制等。
三、断裂韧性的应用领域断裂韧性的分析在工程领域具有广泛的应用价值。
以下是一些常见的应用领域:1. 材料选型与设计。
通过断裂韧性分析,可以评估不同材料的抗断裂性能,为材料的选择和设计提供依据。
2. 结构安全评估。
断裂韧性分析可以用于评估结构在受力情况下的破裂风险,为结构的安全性评估提供依据。
3. 断裂韧性改善。
通过分析和改善材料的断裂韧性,可以提高结构的耐用性和可靠性,减少破裂风险。
4. 破损检测和评估。
断裂韧性分析可以用于破损的检测和评估,提供定量的破损评估指标。
综上所述,断裂韧性分析在结构力学中起着重要的作用。
通过对材料破裂行为的研究和分析,可以评估材料的抗断裂能力,并为工程结构的设计和安全评估提供依据。
断裂韧性

谢谢观看
结果
在断裂韧性的测定中,有三个阶段,在第一阶段里,FPZ逐渐形成,应力强度因子KI值将会单调增加;在第 二阶段里,裂纹发生稳定扩展;然后在第三阶段,出现了KI值的突然减少到KIC值。对于这种现象的一种可能解 释是数值方法的固有假定所至。在有限元标定中假定了理想的线弹性系统,但随着实验的进行,此假定却进一步 失去正确性。因为有限裂纹长度增加,可以观察到大的残余CMOD。这个影响,在实验开始时可以忽略,但到实验 的后期此影响是相当大的。
外部因素 外部因素包括板材或构件截面的尺寸、服役条件下的温度和应变速率等。 材料的断裂韧性随着板材或构件截面尺寸的增加而逐渐减小,最后趋于一稳定的最低值,即平面应变断裂韧 性KIC。这是一个从平面应力状态向平面应变状态的转化过程。 断裂韧性随温度的变化关系和冲击韧性的变化相类似。随着温度的降低,断裂韧性可以有一急剧降低的温度 范围,低于此温度范围,断裂韧性趋于一数值很低的下平台,温度再降低也不大改变了。 关于材料在高温下的断裂韧性,Hahn和Rosenfied提出了以下经验公式: 式中: n——高温下材料的应变硬化指数;E——高温下材料的弹性模量,MPa; σs——高温下材料的屈服应力,MPa; εf——高温下单向拉伸时的断裂真应变, ;
定义
断裂韧性表征材料阻止裂纹扩展的能力,是度量材料的韧性好坏的一个定量指标。在加载速度和温度一定的 条件下,对某种材料而言它是一个常数,它和裂纹本身的大小、形状及外加应力大小无关,是材料固有的特性, 只与材料本身、热处理及加工工艺有关。当裂纹尺寸一定时,材料的断裂韧性值愈大,其裂纹失稳扩展所需的临 界应力就愈大;当给定外力时,若材料的断裂韧性值愈高,其裂纹达到失稳扩展时的临界尺寸就愈大。它是应力 强度因子的临界值。常用断裂前物体吸收的能量或外界对物体所作的功表示。例如应力-应变曲线下的面积。韧性 材料因具有大的断裂伸长值,所以有较大的断裂韧性,而脆性材料一般断裂韧性较小。
第四章金属的断裂韧性

第四章金属的断裂韧性绪言-、按照许用应力设计的机件不一定安全按照强度储备方法确定机件的工作应力,即丁卜I-厂咚。
按照上述设计的零件应该n不会产生塑性变形更不会发生断裂。
但是,高强度钢制成的机件以及中、低强度钢制成的大型机件有时会在远低于屈服强度的状态下发生脆性断裂一一低应力脆性断裂。
二、传统塑性指标数值的大小只能凭经验。
像3(A)、书(Z)、A k、T k值,只能定性地应用,无法进行计算,只能凭经验确定。
往往出现取值过高,而造成强度水平下降,造成浪费。
中、低强度钢材料中小截面机件即属于此类情况。
而高强度钢材料机件及中、低强度钢的大型件和大型结构,这种办法并不能确保安全。
三、如何定量地把韧性应用于设计,确保机件运转的可靠性,从而出现了断裂力学。
断裂韧性一一能反映材料抵抗裂纹失稳扩展能力的性能指标。
大量事例和试验分析证明,低应力脆性断裂总是由材料中宏观裂纹的扩展引起的。
这种裂纹可能是冶金缺陷、加工过程中产生或使用中产生。
断裂力学运用连续介质力学的弹性理论,考虑了材料的不连续性,来研究材料和机件中裂纹扩展的规律,确定能反映材料抵抗裂纹扩展的性能指标及其测试方法,以控制和防止机件的断裂,定量地与传统设计理论并入计算。
本章主要介绍断裂韧性的基本概念、测试方法及影响因素,解决断裂韧性与外加应力和裂纹之间的定量关系。
第一节线弹性条件下的金属断裂韧性大量断口分析表明,金属机件或构件的低应力脆性断口没有宏观塑性变形痕迹。
由此可以认为,裂纹在断裂扩展时,其尖端总是处于弹性状态,应力和应变呈线性关系。
因此,在研究低应力脆断的裂纹扩展问题时,可以应用弹性力学理论,从而构成了线弹性断裂力学。
线弹性断裂力学分析裂纹体断裂问题有两种方法:一种是应力应变分析法(应力场分析法),考虑裂纹尖端附近的应力场强度,得到相应的断裂K判据;另一种是能量分析法,考虑裂纹扩展时系统能量的变化,建立能量转化平衡方程,得到相应的断裂G判据。
从这两种分析方法中得到断裂韧度Ki c和Gc,其中K i c是常用的断裂韧性指标,是本章的重点。
05 材料的断裂韧性

思考题:
5.3 裂纹尖端塑性区的大小及修正
由弹性应力场公式:
KI y 2 r
r 0时,σy ∞,但对韧性材料,当σ>σs时,发生塑性变 形,其结果是材料在裂纹扩展前,其尖端附近出现塑性变形 区,塑性区内应力应变关系不是线性关系,上述KI判据不再 适用。
试验表明:如果塑性区尺寸r0远小于裂纹尺寸a( r0 /a<0.1)时或塑性区周围为广大的弹性区包围时,即在 小范围屈服下,只要对KI进行适当修正,裂纹尖端附 近的应力应变场的强弱程度仍可用修正的KI来描述。
5.4 裂纹扩展能量释放率GI
通过分析裂纹扩展过程中能量转化讨论断裂条件。
裂纹扩展能量释放率定义:裂纹扩展单位面积时,弹性系 统所能释放(或提供)的能量,也叫裂纹扩展力(GI)。
U GI A
(量纲为MJ· m-2或Mpa· m)
当裂纹长度(中心穿透裂纹)为2a,裂纹体的厚度(板厚)为B时
含裂纹试样的断裂应力与试样内 部裂纹尺寸的试验结果:
K c a
1 c a Y
(Y与裂纹形状、试样几 何尺寸和加载方式有关)
c a Y 常数
KIc= c a Y
(该常数与裂纹大小、几何形状及加 载方式无关,而取决于材料本身)
断裂韧性
KIC表征材料抵抗裂纹失稳扩展的能力
a
1 0.177( / s ) 2
修正后,KI值变大,对平面应力状态,当σ>0.7σs时, 需要修正。 当r0 /a>0.1时,线弹性断裂力学已不适用,要采用弹塑 性断裂力学。
例:
一块含有长为16mm中心穿透裂纹的钢板, 受到350MPa垂直于裂纹平面的应力作用。 (1)如果材料的屈服强度是1400MPa, 求塑性区尺寸和裂纹顶端有效应力场强度 因子值; (2)如果材料的屈服强度为385 MPa,求塑 性区尺寸和裂纹顶端有效应力场强度根据裂纹形 状、试样尺寸和加载方式查手册。
断裂韧性测定

断裂韧性测定
断裂韧性测定,也叫断裂硬度测定,是一种测定物体的破坏容性能力的重要评价标准。
其实质就是针对特定物体,在承受一定表面拉力时,观测物体断裂趋势,推算出断裂硬度数据,从而衡量物体强度和完整性能,并分析断裂分离原因。
断裂韧性测定,基本装置主要由待测样品、测试机架、拉力发生装置、负荷传递系统等组成,以及控制测试过程的操作台。
断裂硬度测定,做法通常是将物体固定在测试架上,采用拉力发生装置使其承受外力,然后观测其断裂趋势及分离形态。
一般而言,断裂硬度越大,表明物体强度及完整性能越好,耐久性比较强;相反,断裂硬度越小,则物体强度及完整性较差,耐久性较差。
断裂韧性测定具有明确、准确与可控等优点,可用于金属材料、塑料、橡胶、碳纤维、食品等多种物体的完整性研究,并且在材料科学领域和工程生产实际应用中广泛。
有效准确地测量断裂韧性,不仅有助于提升物体的完整性,而且对于判断对比相同物体的强度及完整性,也大有裨益。
总之,断裂韧性测定是一种重要的物体完整性评估方式,结合了科学实验与工程应用,为各领域提供了助力,具有广阔的发展前景。
材料力学中的断裂韧性研究

材料力学中的断裂韧性研究材料力学是研究材料在外部作用下的变形和破坏行为的学科。
在材料力学中,断裂韧性是一个非常重要的指标,它描述了材料在应力作用下逐渐破坏的能力。
断裂韧性是材料设计和制造的重要依据之一,因此研究断裂韧性具有重要的科学意义和应用价值。
一、断裂韧性的概念和测量方法断裂韧性是指材料在应力作用下逐渐破坏的能力。
通常情况下,材料受到外部应力作用时会发生塑性变形,逐渐形成裂纹,最终导致断裂。
断裂韧性与材料的断裂强度不同,它反映了材料的抗拉断性能,而断裂强度只是材料拉伸断裂时的强度极限。
断裂韧性的测量方法比较复杂,通常有以下几种常见方法:1. K_IC(裂纹扩展应力强度因子)法:是一种直接测量断裂韧性的方法,通过对裂纹扩展的速率和裂纹尖端周围应力场的分析,可以确定材料的断裂韧性。
2. TCT(脆性破坏温度)法:该方法可以得到材料在低温下的断裂韧性,通常用于评估金属材料或复合材料的热应力断裂韧性。
3. CTOD(裂纹口开度位移)法:CTOD法是一种非常有效的测量断裂韧性的方法,通过测量裂纹口的开度位移来确定材料的断裂韧性。
二、断裂韧性的影响因素材料的断裂韧性是由多种因素综合作用所决定的,包括材料本身的组织结构、晶粒度、温度、应力状态等。
其中,比较重要的因素有以下几个:1.材料微观结构:材料的微观结构决定了材料的强度和塑性性能,因此也会影响断裂韧性。
晶粒尺寸、晶格位错、晶界等因素都会对材料的断裂韧性产生影响。
2.温度:温度对材料的断裂韧性影响很大,一般来说低温下材料的断裂韧性更高。
这是因为低温下材料的塑性变形能力较差,裂纹扩展速率较慢,因此材料的断裂韧性更高。
3.应力状态:不同的应力状态对材料的断裂韧性也有影响。
在拉伸应力状态下,裂纹的扩展方向往往与应力作用方向垂直,这种情况下材料的断裂韧性最高。
三、断裂韧性的研究现状和发展趋势作为材料力学的一个重要分支,断裂力学已经成为一个非常成熟的学科。
对于断裂韧性的研究也已经进行了很多年。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
断裂韧性(fracture toughness)
带裂纹的金属材料及其构件抵抗裂纹开裂和扩展的能力。
从20世纪50年代开始在欧文(G.R.Irwin)等的努力下,形成了线弹性断裂力学,随后又发展成弹塑性断裂力学。
在用它们对断裂过程进行分析和不断完善实验技术的基础上,
逐步形成了平面应变断裂韧性K
IC 、临界裂纹扩展能量释放率G
IC
、临界裂纹顶端
张开位移δ
IC 、临界J积分J
IC
等断裂韧性参数。
其中下标I表示I型即张开型裂
纹,下标c表示临界值。
这些参数可通过实验测定,其值越高,材料的断裂韧性越好,裂纹越不易扩展。
断裂韧性参数
(1)平面应变断裂韧性K
IC。
欧文分析平面问题的I型裂纹尖端区域的各个应
力分量中都有一个共同的因子K
I
,其值决定着各应力分量的大小,故称为应力强
度因子。
K
IC
=yσ(πa)1/2,式中σ为外加拉应力;a为裂纹长度,y为与裂纹形状、
加载方式和试件几何因素有关的无量纲系数。
K
I 增大到临界值K
IC
,K
I
≥K
IC
时,裂
纹失稳扩展,迅速脆断。
(2)临界裂纹扩展能量释放率G
IC 。
裂纹扩展能量释放率G
I
=-(aμ/aA),式中
μ为弹性能,A为裂纹面积。
平面应力条件下,G
I =k
I
2/E;平面应变条件下,
G I =(k
I
2/E)(1-v2),式中E为弹性模量,v为泊松比。
G
I
是裂纹扩展的动力,G
IC
增
大到临界值G。
即G
I ≥G
IC
时,裂纹将失稳扩展。
(3)临界裂纹顶端张开位移δ
C。
裂纹上、下表面在拉应力作用下,裂纹顶端
出现张开型的相对位移叫裂纹顶端张开位移δ,δ增大到临界值δ
C
,裂纹开始扩展。
(4)临界J积分J
IC。
弹塑性断裂力学中,一个与路径无关的能量线积分
叫做J积分。
式中r为积分回路,由裂纹下边缘到上边缘,以逆时针方向为正,ds为弧元,ω为单位体积应变能,u为位移矢量,T是边界
条件决定的应力矢量。
线弹性和弹塑性小应变条件下,I型裂纹的J积分J
I
=-B-1(a
μ/aA),式中B为试样厚度,a为裂纹长度。
J
I 增大到J
IC
临界值,m即当J
I
≥J
IC
时,裂纹开始扩展。
断裂韧性参数还有动态断裂韧度K
Id ,应力腐蚀临界强度因子K
I scc
、疲劳裂
纹扩展速率da/dN(mm/周)等。
各种参数中K
Ic
应用最为普遍。
K
Ic
的测定各国的测试标准基本上都参考美国ASTME399。
中国是
GB4161—84。
按GB7732—87金属板材表面裂纹断裂韧度K
Ic
试验方法规定的标准试样是紧凑拉伸试样和弯曲试样的尺寸如图1所示。
试样尺寸必须满足:(1)厚度B≥2.5(K
Ic /σ
s
)2;(2)裂纹长度口≥2.5(K
Ic
/σ
s )2);(3)韧带宽度W-a≥2.5(K
Ic
/σ
s
)2。
各式中σ
s
为拉伸屈服应力。
可在材料试
验机上或电子拉伸试验机上测出载荷P和裂纹顶端张开位移V的关系曲线。
P—V 曲线可能有3种类型(图2)。
为确定临界载荷P
Q
,作一条比实验曲线直线部分斜
率小5%的割线OP
5与曲线相交于P
5
点;若P
5
点以前试验曲线每点的载荷都低于
P 5点,则取P
5
点的载荷为裂纹失稳扩张的临界载荷P
Q
,若在P
5
点以前还有一个
大于P
5点载荷的最大载荷(如图2曲线Ⅱ、Ⅲ的情况),就取该载荷为P
Q
,然后
依P
Q 和试样压断后(3点弯曲试验)实测的裂纹长度n代入计算K
I
公式算出K
Q
值。
对于紧凑拉伸试样
K
Q
=P
Q
/BW1/2[29.6(a/w)1/2-185.5
(a/w)3/2+655.7(a/w)5/2-1017(a/w)7/2+63.9(a/w)9/2]
对于3点弯曲试样
K Q =P
Q
/BW1/2[2.9(a/w)1/2-4.6(a/w)3/2+21.8(a/w)5/2-37.6(a/w)7/2+38.7(a/w)9/2]
式中符号与试样尺寸符号相同。
若P
max /P
Q
<1.1,则K
Q
即K
IC
,否则必须加大
试样厚度重新实验。
K IC 的应用 K
I
≥K
IC
时裂纹才失稳扩展,所以K
I
<K
IC
就可作为制
定构件安全的条件。
K
I =yσa1/2K=K
IC
是裂纹体处于危险的临界状态,利用这一关
系,则:(1)若已知K
IC 和裂纹最大长度a,可确定构件的最大承载能力σ=K
IC
/
ya1/2;(2)若已知K
IC 和构件的工作应力σ,可确定裂纹最大容许长度a
c
=K
IC
2/σ
乃。
这些关系式是工程安全设计的理论根据。
实际金属材料中的裂纹前端存在塑
性区,会影响K
I 值,应以有效裂纹长度a+r
y
(塑性区半径)代替真实裂纹长度a
来消除塑性区的影响,修正K
I 值。
平面应力条件下,r
y
=(1/2π)(K
I
/σ
S
)2,平面
变形条件下r
y =1/(4·21/2·π
)
(K
I
/σ
s
)2,修正后的K
I=
yσ(a+r
y
)1/2。