中考数学模拟考试试题(有答案)
【必考题】数学中考模拟试题(含答案)

【必考题】数学中考模拟试题(含答案)一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米 3.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣14.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定 5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A.14cm B.4cm C.15cm D.3cm6.如图,是一个几何体的表面展开图,则该几何体是()A.三棱柱B.四棱锥C.长方体D.正方体7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.5B.25C.5D.238.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°9.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tantanαβB.sinsinβαC.sinsinαβD.coscosβα11.如图,在半径为13的Oe中,弦AB与CD交于点E,75DEB∠=︒,6,1AB AE==,则CD的长是()A.26B.210C.211D.4312.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.14.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.16.如图,点A 在双曲线y=4x 上,点B 在双曲线y=k x (k≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.17.若一个数的平方等于5,则这个数等于_____.18.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.19.分解因式:2x 2﹣18=_____.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.24.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?25.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD22200100-3∴AB=AD+BD=3100(3故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.3.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-g=21xx-【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.4.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。
数学中考全真模拟测试卷(附答案)

A.﹣3B.3C.- D.
2.小友家阳台上有一个如图所示的移动台阶,它的主视图是( )
A. B. C. D.
3.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4.已知正比例函数y=mx的图象过第一、三象限,则m的取值范围是( )
A.m<0B.m≤0C.m≥0D.m>0
5.计算(﹣2x2y3)•3xy2结果正确的是( )
A. ﹣6x2y6B. ﹣6x3y5C. ﹣5x3y5D. ﹣24x7y5
【答案】B
【解析】
【分析】根据单项式乘单项式法则直接计算即可.
【详解】解:(﹣2x2y3)•3xy2=﹣6x2+1y3+2=﹣6x3y5,
故选B.
【点睛】本题是对整式乘法的考查,熟练掌握单项式与单项式相乘的运算法则是解决本题的关键.
【详解】解:由图知,6张卡片中有2张是数字3,
∴从中任取一张是数字3的概率是 .
故选B.
【点睛】本题考查了概率公式.概率=所求情况数与总情况数之比.
8.广西北部湾某中学为了使学生能够更好地进行体育活动,决定修建一个长方体形状的游泳池,其底面周长为100 m,设游泳池的底面长方形的长为xm,要使游泳池的底面面积为400 m2,则可列方程为( )
【解析】
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】A、不是轴对称图形,也不是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、既是轴对称图形,又是中心对称图形,故此选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误,
2024年中考数学模拟考试卷(含参考答案)

2024年中考数学模拟考试卷(含参考答案) 学校:___________班级:___________姓名:___________考号:___________ 一、选择题(各小题的四个选项中,只有一项符合题意)1.2024的倒数是()A.﹣2024B.12024C.2024 D.120242.下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2C.a2•a3=a6D.(a﹣2)2=a2﹣43.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥2C.x≥﹣2D.x≤24.下列运算正确的是()A.B.|3.14﹣π|=π﹣3.14C.a2⋅a3=a6D.(a﹣1)2=a2﹣2a﹣15.如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°6.若x=2是关于x的一元一次方程ax﹣b=3的解,则4a﹣2b+1的值是()A.7B.8C.﹣7D.﹣87.每周四下午的活动课是学校的特色课程,同学们可以选择自己喜欢的课程.小明和小丽从“二胡课”“轮滑课”“围棋课”三种课程中随机选择一种参加,则两人恰好选择同一种课程的概率是()A.B.C.D.8.已知点A(﹣4,y1),B(2,y2),C(3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y2<y19.如图,边长为2的正方形ABCD的对角线相交于点O,将正方形沿直线AN折叠,点B 落在对角线上的点M处,折痕AN交BD于点E,则BE的长为()A.B.C.D.10.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④二、填空题(本大题共6小题,共24分)11.分解因式:a3﹣4ab2=.12.如图,在直角坐标系中,△ABC与△ODE是位似图形,其中点A(2,1),则位似中心的坐标是.13.已知关于的x方程有两个实数根,请写出一个符合条件的m 的值.14.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=2,则下列结论中正确的有.①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点,点C(5,y3)在该函数图象上,则y1<y3<y2;④若图象过(﹣1,0),则方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.15.如图,放置在直线l上的扇形OAB,由①图滚动(无滑动)到图②,在由图②滚动到图③,若半径OA=2,∠AOB=45°,则点O的路径长为.16.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是.三.解答题17.(1)计算:;(2)解不等式组:,并写出它的所有整数解.18.为降低校园欺凌事件发生的频率,某课题组针对义务教育阶段学生校园欺凌事件发生状况进行调查并分析.课题组对全国可查的2800例欺凌事件发生原因进行抽样调查并分析,所得数据绘制成统计图如下:根据以上信息,回答下列问题:(1)本次抽样调查的样本容量为.(2)补全条形统计图;(3)在欺凌事件发生原因扇形统计图中,“因琐事”区域所在扇形的圆心角的度数为.(4)估计所有2800例欺凌事件中有多少事件是“因琐事”或因“发泄情绪”而导致事件发生的?19.为响应国家东西部协作战略,烟台对口协作重庆巫山,采购巫山恋橙助力乡村振兴.巫山恋橙主要有纽荷尔和默科特两个品种,已知1箱纽荷尔价格比1箱默科特少20元,300元购买纽荷尔的箱数与400元购买默科特的箱数相同.(1)纽荷尔和默科特每箱分别是多少元?(2)我市动员市民采购两种巫山恋橙,据统计,市民响应积极,预计共购买两种隥子150箱,且购买纽荷尔的数量不少于默科特的2倍,请你求出购买总费用的最大值.20.(10分)如图,一次函数y=﹣x+5的图象与函数的图象交于点A (4,a)和点B.(1)求n的值;(2)若x>0,根据图象直接写出当时x的取值范围;(3)点P在线段AB上,过点P作x轴的垂线,交函数的图象于点Q,若△POQ 的面积为1,求点P的坐标.21.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.22.如图,已知抛物线y=ax2+2x+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,直线l:y=﹣2x+b与x轴、y轴分别交于点E,F,直线与抛物线有唯一交点G.(1)求抛物线和直线的解析式.(2)点H为抛物线对称轴上的动点,且到B,G的距离之和最小时,求点H的坐标,并求△HBG内切圆的半径.(3)在第一象限内的抛物线上是否存在点K,使△KBC的面积最大?如果存在,求出△KBC的最大面积,如果不存在,请说明理由.参考答案与试题解析一、选择题(各小题的四个选项中,只有一项符合题意)11.2024的倒数是()A.﹣2024B.12024C.2024 D.12024【解答】解:2024的倒数是1 2024故选:D.2.下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2 C.a2•a3=a6D.(a﹣2)2=a2﹣4【解答】解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.(x+1)(x﹣2)=x2﹣x﹣2,故本选项符合题意;C.a2•a3=a5,故本选项不合题意;D.(a﹣2)2=a2﹣4a+4,故本选项不合题意.故选:B.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥2C.x≥﹣2D.x≤2【解答】解:∵3x﹣6≥0∴x≥2故选:B.4.下列运算正确的是()A.B.|3.14﹣π|=π﹣3.14C.a2⋅a3=a6D.(a﹣1)2=a2﹣2a﹣1【解答】解:A.+无法合并,故此选项不合题意;B.|3.14﹣π|=π﹣3.14,故此选项符合题意;C.a2⋅a3=a5,故此选项不合题意;D.(a﹣1)2=a2﹣2a+1,故此选项不合题意;故选:B.5.如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°【解答】解:如图,过点P作P A∥a,则a∥b∥P A∴∠3+∠NP A=180°,∠1+∠MP A=180°∴∠1+∠2+∠3=180°+180°=360°.故选:A.6.若x=2是关于x的一元一次方程ax﹣b=3的解,则4a﹣2b+1的值是()A.7B.8C.﹣7D.﹣8【解答】解:∵x=2是方程ax﹣b=3的解∴2a﹣b=3∴4a﹣2b=6∴4a﹣2b+1=7故选:A.7.每周四下午的活动课是学校的特色课程,同学们可以选择自己喜欢的课程.小明和小丽从“二胡课”“轮滑课”“围棋课”三种课程中随机选择一种参加,则两人恰好选择同一种课程的概率是()A.B.C.D.【解答】解:画树状图为:(用A、B、C分别表示“二胡课”“轮滑课”“围棋课”三种课程)∵共有9种等可能的结果数,其中两人恰好选择同一课程的结果数为3∴两人恰好选择同一课程的概率=.故选:A.8.已知点A(﹣4,y1),B(2,y2),C(3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y2<y1【解答】解:∵反比例函数∴函数图象的两个分支分别在第二、四象限内,且在每一个象限内y随x的增大而增大又∵点A(﹣4,y1),B(2,y2),C(3,y3)∴点A在第二象限内,点B、点C在第四象限内∴y1>0,y2<0,y3<0又∵2<4∴y2<y3∴y2<y3<y1故选:C.9.如图,边长为2的正方形ABCD的对角线相交于点O,将正方形沿直线AN折叠,点B落在对角线上的点M处,折痕AN交BD于点E,则BE的长为()A.B.C.D.【解答】解:如图所示,连接MN∵边长为2的正方形ABCD的对角线相交于点O∴AD=AB=BC=2∴∵将正方形沿直线AN折叠,点B落在对角线上的点M处,折痕AN交BD于点E ∴∠AMN=∠ABN=90°,MN=BN,AM=AB=2∴∵∠ACB=45°∴∠MNC=45°∴∴∵AD∥BN∴△ADE∽△NBE∴,即解得.故选:B.10.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④【解答】解:∵△PBC是等边三角形,四边形ABCD是正方形∴∠PCB=∠CPB=60°,∠PCD=30°,BC=PC=CD∴∠CPD=∠CDP=75°则∠BPD=∠BPC+∠CPD=135°,故①正确;∵∠CBD=∠CDB=45°∴∠DBH=∠DPB=135°又∵∠PDB=∠BDH∴△BDP∽△HDB,故②正确;如图,过点Q作QE⊥CD于E设QE=DE=x,则QD=x,CQ=2QE=2x∴CE=x由CE+DE=CD知x+x=1解得x=∴QD=x=∵BD=∴BQ=BD﹣DQ=﹣=则DQ:BQ=:≠1:2,故③错误;∵∠CDP=75°,∠CDQ=45°∴∠PDQ=30°又∵∠CPD=75°∴∠DPQ=∠DQP=75°∴DP=DQ=∴S△BDP=BD•PD sin∠BDP=×××=,故④正确;故选:D.二、填空题(本大题共6小题,共24分)11.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).12.如图,在直角坐标系中,△ABC与△ODE是位似图形,其中点A(2,1),则位似中心的坐标是(4,2).【解答】解:如图所示:位似中心的坐标是(4,2)故答案为:(4,2).13.已知关于的x方程有两个实数根,请写出一个符合条件的m 的值 1.2.【解答】解:∵关于x方程(m﹣1)x2﹣=0的有两个实数根∴解得:0≤m≤2且m≠1.故答案为:1.2.14.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=2,则下列结论中正确的有①③④.①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点,点C(5,y3)在该函数图象上,则y1<y3<y2;④若图象过(﹣1,0),则方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.【解答】解:∵∴4a+b=0故①正确;∵抛物线与x轴的一个交点为(﹣1,0),对称轴为直线x=2∴另一个交点为(5,0)∵抛物线开口向下∴当x=3时,y>0,即9a+3b+c>0故②错误;∵抛物线的对称轴为x=2,C(5,0)在抛物线上∴点(﹣1,y3)与C(5,y3)关于对称轴x=2对称∵,在对称轴的左侧,抛物线开口向下,y随x的增大而增大∴y1<y3<y2故③正确;若图象过(﹣1,0),即抛物线与x轴的一个交点为(﹣1,0)方程a(x+1)(x﹣5)=0的两根为x=﹣1或x=5过y=﹣3作x轴的平行线,直线y=﹣3与抛物线的交点的横坐标为方程的两根∵x1<x2,抛物线与x轴交点为(﹣1,0),(5,0)∴依据函数图象可知:x1<﹣1<5<x2故④正确故答案为:①③④.15.如图,放置在直线l上的扇形OAB,由①图滚动(无滑动)到图②,在由图②滚动到图③,若半径OA=2,∠AOB=45°,则点O的路径长为.【解答】解:如图点O的运动路径的长=的长+O1O2+的长==故答案为:.16.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是()n﹣1.【解答】解:∵直线l为正比例函数y=x的图象∴∠D1OA1=45°∴D1A1=OA1=1∴正方形A1B1C1D1的面积=1=()1﹣1由勾股定理得,OD1=,D1A2=∴A2B2=A2O=∴正方形A2B2C2D2的面积==()2﹣1同理,A3D3=OA3=∴正方形A3B3C3D3的面积==()3﹣1…由规律可知,正方形A n B n∁n D n的面积=()n﹣1故答案为:()n﹣1.三.解答题17.(1)计算:;(2)解不等式组:,并写出它的所有整数解.【解答】解:(1)原式=1﹣2×+2+2=4;(2)由①得:x≤1由②得:x>﹣1∴不等式组的解集为﹣1<x≤1则不等式组的整数解为0,1.18.为降低校园欺凌事件发生的频率,某课题组针对义务教育阶段学生校园欺凌事件发生状况进行调查并分析.课题组对全国可查的2800例欺凌事件发生原因进行抽样调查并分析,所得数据绘制成统计图如下:根据以上信息,回答下列问题:(1)本次抽样调查的样本容量为50.(2)补全条形统计图;(3)在欺凌事件发生原因扇形统计图中,“因琐事”区域所在扇形的圆心角的度数为213°.(4)估计所有2800例欺凌事件中有多少事件是“因琐事”或因“发泄情绪”而导致事件发生的?【解答】解:(1)本次抽样调查的样本容量为:30÷60%=50;故答案为:50;(2)满足欲望的人数有:50×12%=6(人)其他的人数有:50×8%=4(人)补全统计图如下:(3)“因琐事”区域所在扇形的圆心角的度数为:360°×60%=216°;故答案为:216°;(4)2800×(60%+20%)=2240(例)答:估计所有3000例欺凌事件中有2240例事件是“因琐事”或因“发泄情绪”而导致事件发生的.19.为响应国家东西部协作战略,烟台对口协作重庆巫山,采购巫山恋橙助力乡村振兴.巫山恋橙主要有纽荷尔和默科特两个品种,已知1箱纽荷尔价格比1箱默科特少20元,300元购买纽荷尔的箱数与400元购买默科特的箱数相同.(1)纽荷尔和默科特每箱分别是多少元?(2)我市动员市民采购两种巫山恋橙,据统计,市民响应积极,预计共购买两种隥子150箱,且购买纽荷尔的数量不少于默科特的2倍,请你求出购买总费用的最大值.【解答】解:(1)设纽荷尔每箱a元,则默科特每箱(a+20)元由题意得:=解得:a=60经检验,a=60是原分式方程的解∴a+20=80答:纽荷尔每箱60元,默科特每箱80元;(2)设购买纽荷尔x箱,则购买默科特(150﹣x)箱,所需费用为w元由题意得:w=60x+10(150﹣x)=﹣20x+12000∵x≥2(150﹣x)∴x≥100∵﹣20<0∴w随x的增大而减小∴当x=100时,w取得最大值,此时w=﹣20×100+12000=10000答:购买总费用的最大值为10000元.20.(10分)如图,一次函数y=﹣x+5的图象与函数的图象交于点A (4,a)和点B.(1)求n的值;(2)若x>0,根据图象直接写出当时x的取值范围;(3)点P在线段AB上,过点P作x轴的垂线,交函数的图象于点Q,若△POQ 的面积为1,求点P的坐标.【解答】解:(1)∵一次函数y=﹣x+5的图象与过点A(4,a)∴a=﹣4+5=1∴点A(4,1)∵点A在反比例函数的图象上∴n=4×1=4;(2)由,解得或∴B(1,4)∴若x>0,当时x的取值范围是1<x<4;(3)设P(x,﹣x+5),则Q(x,)∴PQ=﹣x+5﹣∵△POQ的面积为1∴=1,即整理得x2﹣5x+6=0解得x=2或3∴P点的坐标为(2,3)或(3,2).21.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.【解答】解:(1)∵⊙O与边AB相切于点E,且CE为⊙O的直径∴CE⊥AB∵AB=AC,AD⊥BC∴BD=DC又∵OE=OC∴OD∥EB∴OD⊥CE;(2)连接EF∵CE为⊙O的直径,且点F在⊙O上,∴∠EFC=90°∵CE⊥AB∴∠BEC=90°.∴∠BEF+∠FEC=∠FEC+∠ECF=90°∴∠BEF=∠ECF∴tan∠BEF=tan∠ECF∴又∵DF=1,BD=DC=3∴BF=2,FC=4∴EF=2∵∠EFC=90°∴∠BFE=90°由勾股定理,得∵EF∥AD∴∴.22.如图,已知抛物线y=ax2+2x+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,直线l:y=﹣2x+b与x轴、y轴分别交于点E,F,直线与抛物线有唯一交点G.(1)求抛物线和直线的解析式.(2)点H为抛物线对称轴上的动点,且到B,G的距离之和最小时,求点H的坐标,并求△HBG内切圆的半径.(3)在第一象限内的抛物线上是否存在点K,使△KBC的面积最大?如果存在,求出△KBC的最大面积,如果不存在,请说明理由.【解答】解:(1)把A(﹣1,0)代入y=ax2+2x+3得:0=a﹣2+3解得a=﹣1∴抛物线的解析式为y=﹣x2+2x+3;∵直线y=﹣2x+b与抛物线有唯一交点G∴﹣x2+2x+3=﹣2x+b有两个相等的实数解即x2﹣4x+b﹣3=0有两个相等的实数解∴Δ=0,即16﹣4(b﹣3)=0解得b=7∴直线的解析式为y=﹣2x+7;(2)在y=﹣x2+2x+3中,令y=0得x=﹣1或x=3∴B(3,0)∴抛物线y=﹣x2+2x+3的对称轴为直线x==1由得:∴G(2,3)∵点H为抛物线对称轴上的点∴HB=HA∴HB+HG=HA+HG∴当G,H,A共线时,HB+HG最小,最小值即为AG的长度;如图:由A(﹣1,0),G(2,3)可得直线AG解析式为y=x+1在y=x+1中,令x=1得y=2∴H(1,2);∴OH=OA=2∴△AOH是等腰直角三角形∴∠AHO=45°由对称性可得∠BHO=45°∴∠GHB=90°,即△GHB是直角三角形∵G(2,3),H(1,2),B(3,0)∴HG=,BG=,BH=2设△HBG内切圆的半径为r∴2S△BHG=BH•HG=(HG+BG+BH)•r∴r==∴△HBG内切圆的半径为;(3)存在点K,使△KBC的面积最大,理由如下:过K作KQ∥y轴交BC于Q,如图:设K(m,﹣m2+2m+3)在y=﹣x2+2x+3中,令x=0得y=3∴C(0,3)由B(3,0),C(0,3)可得y=﹣x+3∴Q(m,﹣m+3)∴KQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m∴S△KBC=×(﹣m2+3m)×3=﹣(m﹣)2+∴当m=时,S△KBC取最大值∴△KBC的最大面积是.。
中考仿真模拟考试 数学试题 附答案解析

C. D.
10.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是【】
A. B. C. D.
二、填空题(本大题共 6 小题,共 24 分)
【详解】由题意,可得 .
故答案为:5.
【点睛】本题主要考查平均数,掌握平均数的公式是解题的关键.
15.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.
【答案】(3,1).
【解析】
∵四边形ABCD为平行四边形.
∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,
17.化简: ÷(a-4)- .
18.已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.
19.求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)
20.已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D
【解析】
【分析】
由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.
【详解】∵在矩形ABCD中,BD=8,
A.21×10-4B.2.1×10-6C.2.1×10-5D.2.1×10-4
中考数学模拟试题(含答案)

中考数学模拟试题(含答案)中考数学模拟试题本试卷共8页,考试时间100分钟,满分120分。
选择题(共10小题,每小题3分,共30分)1.求-3的倒数。
()A。
-1/3 B。
-1/-3 C。
1/-3 D。
1/32.函数y=1/(x-8),x的取值范围是()。
A。
x8 D。
x≥83.国家游泳中心“水立方”的外层膜展开面积约为平方米,科学记数法表示为()。
A。
2.6×10^5 B。
26×10^4 C。
0.26×10^6 D。
2.6×10^64.下列简单几何体的左视图是()。
A。
B。
C。
D.5.某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、34、30、32、31,这组数据的中位数和众数分别是()。
A。
32、31 B。
31、32 C。
31、31 D。
32、356.下列命题中,错误的是()。
A。
矩形的对角线互相平分且相等 B。
对角线互相垂直的四边形是菱形 C。
等腰梯形的两条对角线相等 D。
等腰三角形两底角相等7.下列图形中,能肯定∠1>∠2的是()。
A。
B。
C。
D.8.下列各式计算结果正确的是()。
A。
2a+a=3a B。
(3a)^2=9a^2 C。
(a-1)^2=a^2-1 D。
a×a=a^2非选择题9.已知△ABC中,∠A=60°,AB=√3,AC=2.求BC的长度。
10.已知函数y=2x^2-x-3,求其对称轴的方程。
答案区:1.1/(-3)2.x>83.2.6×10^54.C5.31、316.A7.D8.a×a=a^29.BC=210.x=1/49、在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为12.10、圆柱底面直径为2cm,高为4cm,则圆柱的侧面积为8π cm²。
11、一对互为相反数的数为x和-x。
12、b²-2b可以分解为b(b-2)。
2024年中考数学模拟考试卷(附带有答案)

2024年中考数学模拟考试卷(附带有答案)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共8页,满分为150分,考试时间为120分钟答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上。
答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动。
用橡皮擦干净后,再选涂其他答案标号:答非选择题时,用0.5mw黑色签字笔在答题卡上题号所提示的答题区域作答、答案写在试卷上无效,考试结束后。
将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.9的平方根是()A.3B.-3C.±3D.√32.下列儿何体中,俯视图是三角形的是()3.从教育部获悉。
我国己基本建成世界第一大教育教学资源库,国家中小学智慧教育平台现有资源超过44000条,其中44000用科学记数法表示为()A.4.4x105B.4.4x104C.4.4x103D.44x1024.如图:AD∥BC、BD平分∠ABC,若∠ADB=35°,则∠4的度数为()A.35°B.70°C.110°D.120°(第4题图) (第6题图)5.下列设计的图案中既是中心对称图形又是轴对称图形的是()6.有理数a、b在数轴上的对应位置如图所示,下列选项正确的是()A.a﹣b>0B.a+b<0C.ab>0D.|a|<|b|7.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒。
配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,每盒盒饭的大小、外形都相同。
从中任选一盒,含肉的概率是()A.78B.67C.17D.188.周末,小鹏的妈妈让他到药店购买口罩和酒精湿巾,已知口罩每包3元,酒精湿中每包2元。
2024年中考数学模拟测试试卷(带有答案)

【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:
∴
∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数
则
∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.
中考数学模拟试题和答案

中考数学模拟试题一、选择题(共10个小题,每小题3分,共30分)1.(3分)|﹣3|的倒数是()A .﹣3B .C.3D.解答:解:∵|﹣3|=3,∴|﹣3|的倒数是.故选:D.2.某市约330万人口,用科学记数法表示这个数为()A.330×104B.33×105C.3.3×105D.3.3×106解答:解:将330万=3300000用科学记数法表示为:3.3×106.故选:D.3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,不是轴对称图形,故此选项错误.故选:C.A.B.C.D.解答:解:A、与不能合并,所以A选项不正确;B、×=,所以B选项不正确;C、﹣=2=,所以C选项正确;D、÷=2÷=2,所以D选项不正确.故选C.5.下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C.数据3、5、4、1、﹣2的中位数是3D.某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖解答:解:A、选举中,人们通常最关心的数据是众数,故本选项正确;B、∵从1、2、3、4、5中随机取一个数,取得奇数的概率为:,取得偶数的概率为:,∴取得奇数的可能性比较大,故本选项正确;C、数据3、5、4、1、﹣2的中位数是3,故本选项正确;D、某游艺活动的中奖率是60%,不能说明参加该活动10次就有6次会获奖,故本选项错误.故选D.6.若反比例函数的图象上有两点P1(1,y1)和P2(2,y2),那么()A.y2<y1<0 B.y1<y2<0 C.y2>y1>0 D.y1>y2>0解答:7.(3分)(2012•自贡)如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有()A.3对B.4对C.5对D.6对解答:解:图中全等的直角三角形有:△AED≌△FEC,△BDC≌△FDC≌△DBA,共4对.故选B.8.(3分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为()A.2和3 B.3和2 C.4和1 D.1和4考点:平行四边形的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学模拟考试试题(有答案)学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。
因此,精品编辑老师为大家整理了2019年中考数学模拟考试试题,供大家参考。
一、选择题1. (2019四川巴中,第8题3分)在Rt△ABC中,C=90,sinA=1/2 ,则tanB的值为()A. 1B.3C.1/2D.2考点:锐角三角函数.分析:根据题意作出直角△ABC,然后根据sinA= ,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tanB. 解答:∵sinA= ,设BC=5x,AB=13x,则AC= =12x,2. (2019山东威海,第8题3分)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则AOB的正弦值是( )A.1B. 1/2C. 3/5D.2/3考点:锐角三角函数的定义;三角形的面积;勾股定理分析:作ACOB于点C,利用勾股定理求得AC和AB的长,根据正弦的定义即可求解.解答:解:作ACOB于点C.则AC= ,3.(2019四川凉山州,第10题,4分)在△ABC中,若|cosA ﹣|+(1﹣tanB)2=0,则C的度数是( )A. 45B. 60C. 75D. 105考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理分析:根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出C的度数.解答:解:由题意,得 cosA=,tanB=1,A=60,B=45,4.(2019甘肃兰州,第5题4分)如图,在Rt△ABC中,C=90,BC=3,AC=4,那么cosA的值等于()A.1/2B.3/5C. 2D.1/5考点:锐角三角函数的定义;勾股定理.分析:首先运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.解答:解:∵在Rt△ABC中,C=90,AC=4,BC=3,5.(2019广州,第3题3分)如图1,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,则 ( ).(A) (B) (C) (D)【考点】正切的定义.【分析】 .【答案】 D6.(2019浙江金华,第6题4分)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为,则t的值是【】A.1B.1.5C.2D.3【答案】C.【解析】7.(2019滨州,第11题3分)在Rt△ACB中,C=90,AB=10,sinA= ,cosA= ,tanA= ,则BC的长为( )A. 6B. 7.5C. 8D. 12.5考点:解直角三角形分析:根据三角函数的定义来解决,由sinA= = ,得到BC= = .解答:解:∵C=90AB=10,8.(2019扬州,第7题,3分)如图,已知AOB=60,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=() A. 3 B. 4 C. 5 D. 6(第1题图)考点:含30度角的直角三角形;等腰三角形的性质分析:过P作PDOB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.解答:解:过P作PDOB,交OB于点D,在Rt△OPD中,cos60= = ,OP=12,OD=6,∵PM=PN,PDMN,MN=2,9.(2019四川自贡,第10题4分)如图,在半径为1的⊙O 中,AOB=45,则sinC的值为()A.1B. 1/2C. 2D.3考点:圆周角定理;勾股定理;锐角三角函数的定义专题:压轴题.分析:首先过点A作ADOB于点D,由在Rt△AOD中,AOB=45,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.解答:解:过点A作ADOB于点D,∵在Rt△AOD中,AOB=45,OD=AD=OAcos45= 1= ,BD=OB﹣OD=1﹣,AB= = ,∵AC是⊙O的直径,10.(2019浙江湖州,第6题3分)如图,已知Rt△ABC中,C=90,AC=4,tanA= ,则BC的长是()A.2B. 8C. 2D. 4分析:根据锐角三角函数定义得出tanA= ,代入求出即可.11.(2019广西来宾,第17题3分)如图,Rt△ABC中,C=90,B=30,BC=6,则AB的长为 4 .考点:解直角三角形.分析:根据cosB= 及特殊角的三角函数值解题.解答:解:∵cosB= ,即cos30= ,12.(2019年贵州安顺,第9题3分)如图,在Rt△ABC中,C=90,A=30,E为AB上一点且AE:EB=4:1,EFAC于F,连接FB,则tanCFB的值等于()A.30 AB.45C.60D.15考点:锐角三角函数的定义..分析: tanCFB的值就是直角△BCF中,BC与CF的比值,设BC=x,则BC与CF就可以用x表示出来.就可以求解.解答:解:根据题意:在Rt△ABC中,C=90,A=30,∵EFAC,EF∥BC,∵AE:EB=4:1,=5,设AB=2x,则BC=x,AC= x.13.(2019年广东汕尾,第7题4分)在Rt△ABC中,C=90,若sinA= ,则cosB的值是()A. 1B.3C. 2D.-1分析:根据互余两角的三角函数关系进行解答.14.(2019毕节地区,第15题3分)如图是以△ABC的边AB 为直径的半圆O,点C恰好在半圆上,过C作CDAB交AB于D.已知cosACD= ,BC=4,则AC的长为( )A. 1B.4C. 3D.2考点:圆周角定理;解直角三角形分析:由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CDAB交AB于D.易得ACD=B,又由cosACD= ,BC=4,即可求得答案.解答:解:∵AB为直径,ACB=90,ACD+BCD=90,∵CDAB,BCD+B=90,ACD,∵cosACD= ,cosB= ,tanB= ,15.(2019年天津市,第2 题3分)cos60的值等于()A. 1/2B. 1C.3D.5考点:特殊角的三角函数值.分析:根据特殊角的三角函数值解题即可.二、填空题1. (2019年贵州黔东南11.(4分))cos60=.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算.2. (2019江苏苏州,第15题3分)如图,在△ABC中,AB=AC=5,BC=8.若BPC=BAC,则tanBPC=.考点:锐角三角函数的定义;等腰三角形的性质;勾股定理分析:先过点A作AEBC于点E,求得BAE=BAC,故BPC=BAE.再在Rt△BAE中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tanBPC=tanBAE= .解答:解:过点A作AEBC于点E,∵AB=AC=5,BE=BC=8=4,BAE=BAC,∵BPC=BAC,BPC=BAE.在Rt△BAE中,由勾股定理得3.(2019四川内江,第23题,6分)如图,AOB=30,OP平分AOB,PCOB于点C.若OC=2,则PC的长是 .考点:含30度角的直角三角形;勾股定理;矩形的判定与性质.专题:计算题.分析:延长CP,与OA交于点Q,过P作PDOA,利用角平分线定理得到PD=PC,在直角三角形OQC中,利用锐角三角函数定义求出QC的长,在直角三角形QDP中,利用锐角三角函数定义表示出PQ,由QP+PC=QC,求出PC的长即可.解答:解:延长CP,与OA交于点Q,过P作PDOA,∵OP平分AOB,PDOA,PCOB,PD=PC,在Rt△QOC中,AOB=30,OC=2,QC=OCtan30=2 = ,APD=30,在Rt△QPD中,cos30= = ,即PQ= DP= PC,QC=PQ+PC,即 PC+PC= ,4.(2019四川宜宾,第16题,3分)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny.据此判断下列等式成立的是②③④ (写出所有正确的序号)①cos(﹣60②sin75③sin2x=2sinx④sin(x﹣y)=sinxcosy﹣cosxsiny.考点:锐角三角函数的定义;特殊角的三角函数值.专题:新定义.分析:根据已知中的定义以及特殊角的三角函数值即可判断.解答:解:①cos(﹣60)=cos60=,命题错误;②sin75=sin(30+45)=sin30cos45+cos30sin45= + = + = ,命题正确;③sin2x=sinxcosx+cosxsinx═2sinxcosx,故命题正确;④sin(x﹣y)=sinxcos(﹣y)+cosxsin(﹣y)=sinxcosy﹣cosxsiny,命题正确.5.(2019甘肃白银、临夏,第15题4分)△ABC中,A、B都是锐角,若sinA= ,cosB=,则C= .考点:特殊角的三角函数值;三角形内角和定理.分析:先根据特殊角的三角函数值求出A、B的度数,再根据三角形内角和定理求出C即可作出判断.解答:解:∵△ABC中,A、B都是锐角sinA= ,cosB=,B=60.6. ( 2019广西贺州,第18题3分)网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA=. 考点:锐角三角函数的定义;三角形的面积;勾股定理.分析:根据正弦是角的对边比斜边,可得答案.解答:解:如图,作ADBC于D,CEAB于E,由勾股定理得AB=AC=2 ,BC=2 ,AD=3 ,由BCAD=ABCE,为大家推荐的2019年中考数学模拟考试试题的内容,还满意吗?相信大家都会仔细阅读,加油哦!。