高等代数第九章检测题

合集下载

高等代数习题答案

高等代数习题答案

高等代数(北大版第三版)习题答案I I(总95页)-本页仅作为预览文档封面,使用时请删除本页-高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。

证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。

故必存在非退化线性替换Y C X 1-=使()BY Y ACY C Y AX X '=''='-12222122221n p p p y y y y y y ----+++=++ ,且在规范形中必含带负号的平方项。

于是只要在Y C Z 1-=中,令p y y y === 21,1,021=====++n p p y y y 则可得一线性方程组 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++1102211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21 =使()0111000<--=----+++='p n AX X s s, 即证存在0≠X ,使0<'A X X 。

13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。

证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X ,于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。

高等代数第九章单元测试

高等代数第九章单元测试

高等代数第九章单元测试高等代数第九章单元测试一、选择题1. 设A 是欧氏空间V 的正交变换,A 是A 在V 的一组标准基下的矩阵,则( ) A.±=A 1 B. A 的特征值是1 C. 秩)(A =±1 D. A 的迹是12. 设A 是n 维欧氏空间V 的对称变换,s λλλ,,,21 是A 的所有不同特征值,i V λ是A 的特征子空间,则 ( )A.∑=s 1i 维n V i <)(λ B.∑=s1i 维n V i =)(λ C.∑=s 1i 维n V i >)(λ D.∑=s 1i 维n V i ≠)(λ 3. 设A 是欧氏空间V 中的一组基n εεε,,,21 的度量矩阵,向量α与β在这组基下的坐标分别为),,,(n 21x x x X =,),,,(n 21y y y Y =,则( )A.AX Y /),(=βαB./),(XAY =βαC.X Y /),(=βαD./),(XY =βα 4. 设n 21εεε,,, 与n 21ηηη,,, 是欧氏空间V 的两组基,A 与B 分别是这两组基的度量矩阵,则A 与B 的关系是 ( )A.相似B.合同C.相等D.不等价5. ),(),,(2121b b a a ==βα是实数域上线性空间2R 中任意向量,如下定义的二元函数,使2R 作成欧氏空间的是 ( )A.1221b a b a +=),(βαB.221121b a 2a b a a )()(),(+++=βαC.2211b a b a -=),(βαD.1b a b a 2211++=),(βα6.如下定义的3R 的线性变换中是正交变换的为 ( )A.A ),,(),,(3221321x x x x x x x +=B. A ),,(),,(3321321x x x x x x x +=C. A ),,(),,(3221321x x x x x x x +=D.A ),,(),,(321321x x x x x x -= 1 7.若A ,B 是欧氏空间V 的对称变换,以下变换1.A+B 2. AB 3. A 2 4. AB +BA中对称变换的个数是 ( )A.1B.2C.3D.48.设A 是n 维欧氏空间的对称变换,则 ( )A. A 关于V 的任意基的矩阵是对称矩阵. B . A 关于V 的任意基的矩阵是对角矩阵.C. A 关于V 的任一组标准正交基的矩阵是对称矩阵. D. A 关于V 的任一组标准正交基的矩阵是对角矩阵二、判断题1.设V 是欧氏空间,V ∈≠α0,如果向量V ∈β满足0=),(αβ,则0=β. ()2.在n 维欧氏空间V 中,一组基1ε,2ε,…..,n ε的度量矩阵必定是正定矩阵. ()3.在R 3中,对于任意向量α=(a 1,2a ),β=(b 1,b 2),定义(βα,)=a 1b 2+a 2b 1,那么R 2对于定义的内积构成欧氏空间.()4.在欧氏空间V 中,如果向量β与向量组1α,2α,…..,s α中的每一个正交,那么β与1α,2α,…..,s α的任意一个线性组合也正交. ()5.正交向量组是线性无关的. ()6.正交变换在一组基下的矩阵为正交矩阵. ()7.实对称矩阵都相似于对角形矩阵. ()8.定义R 3上线性变换σ:σ(x 1,x 2,x 3)=(x 3,x 2,x 1),则σ是对称变换. ()三、计算题1.设A 是欧氏空间V 的线性变换,A 在V 的一组标准正交基321,,εεε下的矩阵为------=312132220A ,(1)求A 的特征值及相应的一组线性无关的特征向量.(2)求正交矩阵T ,使AT T 1-为对角矩阵.(3)写出V 的一组标准正交基,使A 在这组基下的矩阵为对角矩阵.2.求矩阵--θθθθco s sin 0sin co s0001在复数域上的特征值与特征向量(θ≠ k π). 3.1α=(1, 1, 0, 1),2α=(-1, 0, 0, 1)是R 4的一组向量,V 1=L(1α,2α),求⊥1V 的一组基.四、证明题1.设R[x]3是次数小于3的多项式函数及零多项式构成的线性空间.验证:内积(f(x),g(x))=?-11)()(dx x g x f ,3][)(),(x R x g x f ∈?使得R[x]3成为一个欧氏空间.2.设欧氏空间V 中)0(,,≠γγβα线性相关且α与γ正交,β与γ正交,证明:α与β线性相关.3.两对称变换之积是对称变换的充要条件是它们的乘法可交换.4.设A 是反对称矩阵,那么A+E 可逆,且1))((-+-=A E A E U 是正交阵.。

高等代数(北大版)第9章习题参考答案

高等代数(北大版)第9章习题参考答案

第九章欧氏空间1.设a ij是一个n阶正定矩阵,而(x1,x2,,x n),(y1,y2,,y n),在nR中定义内积(,),1)证明在这个定义之下,nR成一欧氏空间;2)求单位向量1(1,0,,0),(0,1,,0)2,⋯,(0,0,,1)n,的度量矩阵;3)具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解1)易见(,)是nR上的一个二元实函数,且(1)(,)()(,),(2)(k,)(k)k()k(,),(3)(,)()(,)(,),(4) (,)aij xy,iji,j由于A是正定矩阵,因此i,j a ij xyij是正定而次型,从而(,)0,且仅当0时有(。

,)02)设单位向量11,00),(0,1,,0)(,,2,⋯,(0,0,,1)n,的度量矩阵为()Bb,则ija 11 a12a1nbij (,)(0,,ij1,(i)0)a22a22a2n 1 ( j)=a ij,(i,j1,2,,n),an1an2ann 0因此有BA。

4)由定义,知(,) a ij xy(,)a ij x i x jij (,)a ij y i y ji,j,i,ji,j,,故柯西—布湿柯夫斯基不等式为axyaxxayyijijijijijiji,ji,ji,j2.在4R中,求,之间,(内积按通常定义),设:1)(2,1,3,2),(1,2,2,1),2)(1,2,2,3),(3,1,5,1),3)(1,1,1,2),(3,2,1,0)。

解1)由定义,得(,)21123(1)210,所以,2。

2)因为(,,)1321253118(,)11222233 18,(,,)3311223336cos,1818 36 2 2,所以,。

4 3)同理可得(,(,)17,(,)3, ,)33 cos,,7731,cos所以77。

3.d(,)通常为,的距离,证明;d。

(,)d(,)d(,)证由距离的定义及三角不等式可得d(,)()()d(,)d(,)。

(完整版)高等数学第九章课外习题

(完整版)高等数学第九章课外习题

第九章习题A 组1. xyy x y x 1sin)(lim 2200+→→是( ) (A )∞;(B )1;(C )0;(D )振荡地不存在 2.xzy u =,则xu∂∂=( ) (A )12-x zy x z ;(B )121--x zy x;(C )y y x z x zln 2-;(D )y y x x zln 12- 3.设(,)()(,)w f x y g x h x y =+,其中,,f g h 均为可微函数,则xw∂∂=( ) (A )x h g f +'⋅;(B )x x h g f +⋅;(C )x x h g f +'⋅;(D )x x h g f g f +'⋅+⋅ 4.设(,)z f x y =,()x y y ϕ=+,其中,f ϕ是可微函数,则dzdx=( ) (A )()yf x ϕ++'11;(B )()y f f y x ϕ'+'+'1;(C )()[]y f x ϕ'++'1;(D )()[]y f f y x ϕ'+'+'15.设()22ln z x y =+,则)1,1(|dz =( ) (A )dx dy +;(B )1()2dx dy +;(C )22y x dydx ++;(D )06.若z xy e z-=,则yz∂∂=( ) (A )zxe-;(B )()zex --1;(C )1+ze x ;(D )ze -1 7.曲线t z t y t x cos ,sin ,sin 2===在相应于4π=t 的点处一个切线向量与z 轴正方向成锐角,则此向量与y 轴正向的夹角余弦为( ) (A )21-;(B )21;(C )22-;(D )228.曲面22y x z +=在点(1,2,5)处的切平面方程为( )(A )2411x y z ++=;(B )245x y z --+=-;(C )2415x y z --=-;(D )245x y z -+=-9.函数223246u x y y x z =-++在原点沿(2,3,1)OA =u u r的方向导数为( )(A )148-;(B )148;(C )68-;(D )6810.设22z xy u -=,则u 在点(2,1,1)-处的方向导数的最大值为( ) (A )62;(B )4;(C )22;(D )24 11.若yxy x y x f arcsin)1(),(2-+=,则)1,2(x f = 12.函数)ln(1xy z -=的定义域为 13.设tanxy yz e x=,则z y ∂=∂ ________ 14.设()1x y z f x =+,其中()f u 可导,则z x ∂=∂15.设xy z =,而)(x y φ=是可导的正值函数,则=dxdz16.设yx ez 23+=,而t x cos =,2t y =,则dtdz=17.设()z f u =,yu xy x=+,()f u 可导,则y z ∂∂=18.设2y xu =,则du =19.已知sin(21)xyu e x y =++,则du =________20.设函数()zu xy =,则(1,2,1)du =21.设()xyey x f z ,22-=,则dz =22.已知(,)z z x y =是由0zx y z e +++=所确定,则z x∂∂=23.设),(z y x x =由方程1)arctan(=+zz ye xe 确定,则=∂∂zx24.由方程xyz +=所确定的函数(),z z x y =在点()1,0,1-处的全微分()1,0,1________dz -=25.设023=+-y xz z 确定了),(y x z z =,则)1,1,0(-dz = 26.曲线2,sin ,cos3x t y t z t ===在()0,0,1处切线的方程为________27.曲线t e x t cos = t e y tsin = te z 2= 在相应于t =0点处的切线方程为28.曲线22x y z x ⎧=⎨=⎩上点()1,1,1-处的法平面方程是 29.曲线⎩⎨⎧==)()(x z z x y y 由方程组⎩⎨⎧=-+=++46222222z y x z y x 所确定,则此曲线在点(2,1,1)处的切线方程为_______________30.曲面2222312x y z ++=在点()1,2,1处的切平面方程为31.曲面arctanyz x=在点(1,1,)4P π处的切平面方程为32.曲面2132222=++z y x ,在点(1,2,2)-处的法线方程为 33.曲面32=+-xy e z z在点()0,2,1处的切平面与平面1342=+-z y x 的相互关系为34.已知曲面224z x y =--上的点P 处的切平面平行于平面2210x y z ++-=,则点P 的坐标是________35.设(1,1,2)-是曲面(,)z f x y =上一点,若3)1,1(=-x f ,在任一点(,)x y 有),(),(),(y x f y x yf y x xf y x =+,则曲面在这一点的切平面方程是________________36.曲面222()ax by cz f x y z ++=++在点000(,,)M x y z 处的法向量是_____ 37.arctan yx u z =在点()1,0,1A 处沿点A 指向点()3,2,2B -方向的方向导数为____________38.函数xyz u =在点M (5,1,2)处沿点(5,1,2)到点()9,4,14的方向的方向导数为____________ 39.设222lnz y x u ++=,则grad u =__________40.z y x xy z y x u 42432222-+-+++=在点(1,2,3)A 处的梯度是______ 41.若函数y xy ax x y x f 22),(22+++=在点(1,1-)取得极值,则常数=a42.判断点(1,0)P 是否函数y x y xy x z +-+-=222的极值点______ B 组 1.设zy xu =,则=∂∂)2,2,3(yu( ) (A )3ln 4;(B )3ln 8;(C )3ln 324;(D )3ln 162 2.若曲线cos x t t =+,1y t =+,1sin z t =-在02t π≤≤上的对应P 点处的切线向量与三个坐标轴正向的夹角相等,则P 点对应的t 值为( ) (A )0; (B )2π; (C )2π; (D )π 3.曲线sin x t =,2cos y t =,sin cos x t t =在对应于π=t 那点处的切线与xoy 面的夹角是( ) (A )2π;(B )4π;(C )3π;(D )31arccos 4.函数223333y x y x z --+=的极小值点是( ) (A )(0,0);(B )(2,2);(C )(0,2);(D )(2,0)5.设()(),,y x g y x y x f -++=若()20,x x f =,则()y x f ,=6.由曲线2232120x y z ⎧+=⎨=⎩绕y 轴旋转一周得到的旋转曲面在点处指向外侧的单位法向量为____________.7.设)(x y xy f z +=,其中f 可导,求yx zx z ∂∂∂∂∂2,.8.设(),f u v 二阶偏导数连续,()sin ,x z f e y x y =-,求2z x y∂∂∂.9.设2(2,)y z xf x x =,f 具有二阶连续的偏导数,求2z x y ∂∂∂.10.设22(,)z f x y xy =-,f 有二阶连续偏导,求x z∂∂,y x z ∂∂∂2.11.已知(2,)w f x y xy =+,f 有二阶连续偏导,求2w x y∂∂∂. 12.,ϕψ有连续二阶导数, ()()()1122y axy ax z y ax y ax t dt ϕϕψ+-=++-+⎡⎤⎣⎦⎰, 证明:222220z z a x y∂∂-=∂∂. 13.设)()(x y xg y x yf u +=,其中g f ,二阶连续可导,求yuy x u x 2222∂∂+∂∂.14.设),(v u f 可微,0),32(=-+xyz z y x f 确定了),(y x z z =,求y zx z ∂∂∂∂,. 15.设方程0),,(=+xz z y xy F 确定),(y x z z =,其中F 可微,求yz x z ∂∂∂∂,. 16.设0),(=--z y z x ϕ确定),(y x z z =,其中),(v u ϕ可微,求yzx z ∂∂+∂∂. 17. .,,2yx z x z z xy e z∂∂∂∂∂-=求若 18.设由()ln 2xyz yz -=-确定(),z f x y =,求()01y z ',,()0,1yx z ''. 19.设(),z z x y =是由222()yx y z xf x++=确定的隐函数,f 可微,求z x∂∂.20.设函数),(y x z z =是由0)sin(2=+-z x eyx 所确定,求dz .21.设()y x f z ,=是由方程yx z xex y z -++-=所确定,求dz .22.设函数),(y x z z =由)(z y x f z ++=所确定,f 可导,1≠'f 求dz . 23.),(y x z z =由),(zy z x g z =确定,),(v u g 具有连续偏导数,求dz .24.设3,xu e yz =其中(),z z x y =是由方程230zx y e xyz +-+=所确定的隐函数,求()1,1,0x u .25.求曲线⎪⎩⎪⎨⎧===t z t y t x cos sin 2 )20(π≤≤t 平行于平面1y z +=的切线方程.26.求曲线2226x y z x y z ⎧++=⎨++=⎩在点()01,2,1M -处的切线与法平面方程.27.在第一卦限内求曲面z xy =上一点,使过该点的切平面垂直于平面230x y z ++=,且与三个坐标面所围立体的体积为61.28.平面λ=-+z By Ax 是曲面2232y x z +=在点115(,,)224处的切平面,求λ.29.设平面123=-+z y x λ与曲面1222=-++xz z y x在点(0,22处的切平面垂直,求λ. 30.设方程2222=+++z y x xyz 确定了),(y x z z =,求曲面),(y x z z =在点()1,0,1-处的法线方程.31.过直线⎩⎨⎧=-+=-+0272210z y x z y x 作曲面273222=-+z y x 的切平面,求此切平面的方程.32.证明:曲面1=xyz 上任一点处的切平面与三个坐标面所形成的四面体体积为常数. 33.证明:锥面322++=y x z 的所有切平面都通过锥面的顶点.34.证明:曲面,0y b x a f z c z c -⎛⎫-= ⎪--⎝⎭的切平面总通过一定点(其中(),f u v 可微分,,,a b c 均为常数).35.设),,(000z y x M 是曲面)(xyxf z =上任一点,试证明在这点处曲面的法线垂直于向径OM ,其中(),f u v 是可导函数.36.设曲面方程为0)((≠++=a cz by f ax z 、c 、b 都是常数),)(u f 可微.证明该曲面的任一切平面都与一常向量(,,)b c b a=-A 平行.37.设曲面方程为0),(=--by z ax z F ,(b a ,为正常数)。

《高等代数》各章习题+参考答案 期末复习用

《高等代数》各章习题+参考答案 期末复习用

1A = 1000 ,B = 0001 ,|A +B |=1,|A |=0,|B |=0.|A +B |=|A |+|B |.2A = 0100,A 2=0,A =0.3A (E +A )=E A 4A = 0100 ,B = 1000,AB =0,rank (A )=1,rank (B )=1,A,B 2.1B 2A 3C 4A 5D 6B 7B 8C 9D 10A 11D 12A 13C 14D 15D 16B 17C 18C 19C 20D 21C 22C 23D 24C 25C 26A 27A 28A 1−135,93m ×s,n k =1a jk b ki 4 1b 0001612012001a n1a 20···00...···············000 (1)910411(−1)mn ab12213I n2单元练习:线性方程组部分一、填空题 每空 1分,共 10分1.非齐次线性方程组 AZ = b (A 为 m ×n 矩阵)有唯一解的的充分必要条件是____________。

2.n +1 个 n 维向量,组成的向量组为线性 ____________ 向量组。

3.设向量组 3 2 1 , ,a a a 线性无关,则常数 l , m 满足____________时,向量组 3 1 2 3 1 2 , , a a a a a a -- - m l 线性无关。

4.设 n 阶矩阵 A 的各行元素之和均为零, 且 r (A ) = n -1则 Ax = 0 的通解为________。

5.若向量组 3 2 1 , , a a a 线性无关,则向量组 3 1 2 3 1 2 , , a a a a a a + + + ____________。

高等代数第9章习题参考答案

高等代数第9章习题参考答案

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ijy x a,),(αααα,由于A 是正定矩阵,因此∑ji j i ijy x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。

2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。

4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。

高等代数例题(全部)

高等代数例题(全部)

高等代数例题第一章 多项式1.44P 2 (1)m 、p 、q 适合什么条件时,有231x mx x px q +-++2.45P 7 设32()(1)22f x x t x x u =++++,3()g x x tx u =++的最大公因式是一个二次多项式,求t 、u 的值。

3.45P 14 证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x += 4.45P 18 求多项式3x px q ++有重根的条件。

5.46P 24 证明:如果(1)()n x f x -,那么(1)()n n x f x -6.46P 25 证明:如果23312(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x - 7.46P 26 求多项式1nx -在复数域内和实数域内的因式分解。

8.46P 28 (4)多项式1p x px ++ (p 为奇素数)在有理数域上是否可约?9.47P 1 设1()()()f x af x bg x =+,1()()()g x cf x dg x =+,且0ad bc -≠。

求证:11((),())((),())f x g x f x g x =。

10.48P 5 多项式()m x 称为多项式()f x ,()g x 的一个最小公倍式,如果(1)()()f x m x ,()()g x m x ; (2)()f x ,()g x 的任意一个公倍式都是()m x 的倍式。

我们以[(),()]f x g x 表示首项系数为1的那个最小公倍式。

证明:如果()f x ,()g x 的首项系数都为1,那么()()[(),()]((),())f xg x f x g x f x g x =。

11.设 m 、n 为整数,2()1g x x x =++除33()2mn f x xx =+-所得余式为 。

高等代数欧几里得空间知识点总结

高等代数欧几里得空间知识点总结

第九章 欧几里得空间( * * * )一、复习指导:在第九章中,有两个重要的考点:1.标准正交基(施密特正交化)2.实对称矩阵如何相似对角化,如何求标准形。

除此之外,欧氏空间的含义,概念,性质也要作为一个比较重要的内容来复习。

二、考点精讲:三、首师大真题:(一)欧氏空间1.设V 是是数域R 上一线性空间,在V 上定义了一个二元实函数,称为内积,记为(,)αβ,特具有一下性质:(1)(,)(,)αββα=;(2)(,)(,)k k αβαβ=(3)(,)(,)(,)αβγαγβγ+=+;(4)(,)0αα≥,当且仅当α=0时(,)αβ=0.这里,,αβγ是V 中任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间。

2.α的长度,记为α。

3.非零向量,αβ的夹角,β规定为(,),arccos ,0,ααββπαβ=≤≤4.如果向量,αβ的内积为零,即(,)0αβ=,那么,αβ称为正交或互相垂直,记为αβ⊥。

5.设V 是一个n 维欧几里得空间,在V 中取一组基1,2,......,n εεε令(,),(,1,2,....)ij i j a i j n εε==矩阵()ij n n A a ⨯= 称为基1,2,......,n εεε的度量矩阵。

(1)度量矩阵是正定的;(2)不同基底的度量矩阵是合同的。

6.欧氏空间V 中一组非零向量,如果它们两两正交,就称为一正交向量组。

在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基。

(1)施密特正交化这是把线性无关向量组改造为单位正交向量组的方法.以3个线性无关向量α1,α2,α3为例.①令β1=α1,β2=α2-11112),(),(ββββα,β3=α3-11113),(),(ββββα-22223),(),(ββββα. 此时β1,β2,β3是和α1,α2,α3 等价的正交非零向量组.(二)同构1.实数域R 上欧氏空间V 与'v 称为同构,如果由V 到'v 有一个1-1上的映射σ,适合(1)()()()σαβσασβ+=+(2)()()k k σασα=(3)((),())(,)σασβαβ= 这里,,V k R αβ∈∈,这样的映射σ称为V 到'v 的同构映射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等代数第九章检测题
一、选择题
1. 要使2R 作为一个欧氏空间,可以对向量),(21a a =α ),(21b b =β规定内积为:
(A )1221),(b a b a +=βα (B )2
211),(b a b a -=βα (C )221153),(b a b a +=βα (D )))((),(2121b b a a ++=βα
2.关于欧氏空间与线性空间的关系,下列说法错误的是( )
(A ) 欧氏空间是特殊的线性空间;
(B ) 如果一个空间是线性空间则它一定是欧氏空间;
(C ) 如果一个空间是欧氏空间则它一定是线性空间;
(D ) 线性空间比欧氏空间范围大。

3.下面变换属于正交变换的有( )
(A )在V 2中,把向量旋转一个角Φ的线性变换;
(B )R 3中,/A ),,(),,(321321x x x x x x =
(C )位似变换;
(D )对称变换.
4.设,/A , /B ,是欧氏空间V 的两个正交变换,则
(A )./A +/B 也是正交变换; (B )./A B 也是正交变换;
(C ).k k k ,⊂∀/A 也是正交变换; (D )./A -1不是正交变换.
5.设/A 是欧氏空间的线性变换,则/A 是正交变换的必要而非充分的条件为( )
(A )V ∈∀βα,(/A ,α/A β)=(βα,) (B )V ∈∀α, αα=
/A
(C )V ∈∀βα, /A α,/A β夹角与βα,夹角相等;
(D )/A 在V 中任意一组标准正交基下的矩阵是正交矩阵。

二、判断题
1.设n ααα ,,21是欧氏空间V 的一组基,如果V ∈β,且满足,2,1,0),(n i i ==αβ则0=β. ( )
2.设321,,εεε是三维欧氏空间V 的一组基,332211332211,εεεβεεεαb b b a a a ++=++=则332211),(b a b a b a ++=βα. ( )
3.设V 1,V 2是欧氏空间V 的两个子空间,如果{}021=⋂V V 则21V V ⊥. ( )
4.设S ααα 21,是欧氏空间中两两正交的S 个向量,则S ααα 21,必线性无关。

( )
5.在n 维欧氏空间中,一组基的度量矩阵必是正定矩阵。

( )
三、填空题
1.按内积通常定义的R 4中,向量α=(1,2,2,3)与β=(3,1,5,1)的夹角为 .
2.设V 1,V 2是欧氏空间V 的两个子空间,若V 2是V 1的正交补,则V = .
3.设A 是欧氏空间V 中的一组基 n εεε 21,的度量矩阵,向量α与β在这两组基下的坐标分别为),,(),,,(2121n n y y y Y x x x X ==则(βα,)= .
4.实二次型32222121321442),,(x x x x x x x x x f -+-=可经正交线性替换化为 .
5.设α,β是欧氏空间中两个线性无关的向量,则),(βα .
四、计算题
1.在欧氏空间5
R 中,已知三个向量1α=(1,-2,1,-1,1),2α=(2,1,-1,2,-3),
3α=(3,-2,-1,1,-2)
,求两个相互正交的向量21,γγ使它们都与321,,ααα正交。

2.求一个正交的线性替换,把二次型312322213212),,(x x x x x x x x f -++=化成标准型。

3.设321,,εεε是三维欧氏空间V 的一组基,这组基的度量矩阵为⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--=401021111A (1)求内积);,(),,(32121εεεεε+
(2)求21εε+
(3)求V 的一组标准正交基。

五、证明题
1.设n εεε ,,21是n 维欧氏空间的一个基,求证:n εεε ,,21是标准正交基的充要条件是:任意向量的坐标可由内积给出 n n εεαεεαεεαα),(),(),(2211+++=
2.若λ是正交矩阵A 的一个特征值,则λ1也是A 的特征值。

3.证明:上三角的正交矩阵必为对角矩阵,且主对角线上的元素的1或者-1。

相关文档
最新文档