高等数学.厦门大学出版社徐荣聪.高数课后习题详细参考答案

合集下载

高等数学(下)课后习题答案

高等数学(下)课后习题答案

高等数学(下)习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s=(4) s==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).s==故s==xs==ys==.5z6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则222222-++-=++--(4)1(7)35(2)z z解得149z=即所求点为M(0,0,149).7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直角三角形.8. 验证:()()++=++a b c a b c.证明:利用三角形法则得证.见图7-1图7-19. 设2,3.u v=-+=-+-a b c a b c 试用a, b, c表示23.u v-解:232(2)3(3)2243935117u v-=-+--+-=-++-+=-+a b c a b ca b c a b ca b c10. 把△ABC的BC边分成五等份,设分点依次为D1,D2,D3,D4,再把各分点与A 连接,试以AB=c,BC=a表示向量1D A,2D A,3D A和4D A.解:1115D A BA BD=-=--c a2225D A BA BD=-=--c a3335D A BA BD=-=--c a444.5D A BA BD=-=--c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M的投影为M',则1Pr j cos604 2.2uOM OM=︒=⨯=12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A的坐标.解:设此向量的起点A的坐标A(x, y, z),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP == (3) 12cos 14xa PP α== 12cos 14ya PP β==12cos 14za PP γ==(4) 12012{14PPPP ===-e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos coscos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a , b , c .解:||==a||==b||3==c, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17. 向量r 与三坐标轴交成相等的锐角,求这向量的单位向量e r .解:因αβγ==,故23cos 1 α=,cos αα==则{cos ,cos ,cos })r αβγ===++e i j k . 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x , y , z ),2222||(12)49PA x y z =++-=得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒== 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4a b ==,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b 222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b 36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 设重量为100kg 的物体从点M 1(3, 1, 8)沿直线移动到点M 2(1,4,2),计算重力所作的功(长度单位为m ).解:取重力方向为z 轴负方向,依题意有f ={0,0, -100×9.8}s = 12M M ={-2, 3,-6}故W = f ·s ={0,0,-980}·{-2,3,-6}=5880 (J)24. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b )=227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 25. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y-1)-4(z-1)=0整理得:2x +3y-4z-1=0即为动点M 的轨迹方程.26. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直.证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a-b ={-6,10,14}又(a +b )·(a-b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a-b ).27. 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ;(2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a .解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .28. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin 242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 29. 求垂直于向量3i-4j-k 和2i-j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 30. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.31. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--3{1,0,}2MP =- {4,4,4}AC =--{2,0,3}BC =- 22222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k 故 1()4MN MP AC BC ⨯=⨯. 32. 求同时垂直于向量a =(2,3,4)和横轴的单位向量.解:设横轴向量为b =(x ,0,0)则同时垂直于a ,b 的向量为3442230000x x ⨯=++a b i j k =4x j -3x k故同时垂直于a ,b 的单位向量为1(43)||5⨯=±=±-⨯a b e j k a b . 33. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =+. 34. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.35. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.36. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=037. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++= 得b =2. 故所求平面方程为1424x y z ++= 38. 求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.39. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x -3y -6=0; (4) x –y =0;(5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2)(2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x-3y-6=0表示平行于z轴且在x轴及y轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x–y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 40. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面. 解:设平面方程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平面法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A BA B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.41. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角. 解:(1)因平面过点(5,-4,6)故有 5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且122123π2cos cos||||42514kkθ⋅-====+⋅n nn n解得2k =±42. 确定下列方程中的l 和m :(1) 平面2x +ly +3z -5=0和平面mx -6y -z +2=0平行; (2) 平面3x -5y +lz -3=0和平面x +3y +2z +5=0垂直. 解:(1)n 1={2,l ,3}, n 2={m ,-6,-1}12232,18613l m l m ⇒==⇒=-=--n n (2) n 1={3, -5, l }, n 2={1,3,2}12315320 6.l l ⊥⇒⨯-⨯+⨯=⇒=n n43. 通过点(1,-1,1)作垂直于两平面x -y +z -1=0和2x +y +z +1=0的平面.解:设所求平面方程为Ax +By +Cz +D =0 其法向量n ={A ,B ,C }n 1={1,-1,1}, n 2={2,1,1}12203203A C A B C A B C CB ⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n n n n 又(1,-1,1)在所求平面上,故A -B +C +D =0,得D =0故所求平面方程为2033CCx y Cz -++= 即2x -y -3z =044. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 45. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3). 解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 46. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩;(2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-i j ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+= 解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333- 54. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离. 55. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d ==56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程. 解:球的半径为22213(2)14.R =++-=设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ),由题意知222222(2)(0)(3) 3.(4)(6)(6)x y z x y z -+-++=-+++-化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-12 59. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22220x y z -+=; (6)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的椭圆锥面,其中心轴是y 轴,如图7-17. (6) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-18.图7-17 图7-1860. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1. 解:(1)(2)(3)(4)分别如图7-19,7-20,7-21,7-22所示.图7-19 图7-20图7-21 图7-22 61. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1. 得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线.解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.66. 求单叶双曲面22211645x y z +-=与平面x -2z +3=0的交线在xOy 平面,yOz 平面及xOz 平面上的投影曲线. 解:以32x z +=代入曲面方程得 x 2+20y 2-24x -116=0.故交线在xOy 平面上的投影为2220241160x y x z ⎧+--=⎨=⎩ 以x =2z -3代入曲面方程,得 20y 2+4z 2-60z -35=0.故交线在yOz 平面上的投影为2220460350y z z x ⎧+--=⎨=⎩ 交线在xOz 平面上的投影为230,0.x z y -+=⎧⎨=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界:(1) {(x ,y )|x ≠0};(2) {(x ,y )|1≤x 2+y 2<4};(3) {(x ,y )|y <x 2};(4) {(x ,y )|(x -1)2+y 2≤1}∪{(x ,y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}. (2)既非开集又非闭集,有界集,聚点集:{(x ,y )|1≤x 2+y 2≤4},边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )| x 2+y 2=4}. (3)开集、区域、无界集,聚点集:{(x ,y )|y ≤x 2},边界:{(x ,y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}. 2. 已知f (x ,y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f (x +y , x -y , xy ) =(x +y )xy+(xy )x +y +x -y=(x +y )xy +(xy )2x.4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z=+(3)z =(4)u =+(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10y x y →→22001(2)lim;x y x y →→+00x y →→0x y →→00sin (5)lim ;x y xyx →→222222001cos()(6)lim .()e x y x y x y x y +→→-++ 解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=001.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x +-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z =x 2y +2xy;(2)s =22u v uv+;(3)z =x(4)z =lntan x y; (5)z =(1+xy )y; (6)u =z xy;(7)u =arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂ 222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .y yzzyy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y=+,求证:3u u x y u x y ∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y )=x +(yf x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z =x 4+ y 4-4x 2y 2; (2)z=arctan y x; (3)z =y x ;(4)z =2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x ,y ,z )=xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15.设z =x ln(xy ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =(3)zy u x =; (4)yzu x =.解:(1)∵2222e 2,e 2x y x y z zx y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )x y xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d0.05d0.07(4.05,2.93)(4,3)d(4,3)0.053(0.07)]15(0.01)54.998xyf f f==-=≈+=⨯+⨯-=+⨯-=(3)设f(x,y)=x y,则d f(x,y)=yx y-1d x+x y ln x d y,取x=2,y=1,d x=-0.03,d y=0.05,则1.05d0.03d0.05(1.97)(1.97,1.05)(2,1)d(2,1)20.0393 2.0393.xyf f f=-==≈+=+=19.矩型一边长a=10cm,另一边长b=24cm,当a边增加4mm,而b边缩小1mm时,求对角线长的变化.解:设矩形对角线长为l,则d d).l l x x y y==+当x=10,y=24,d x=0.4,d y=-0.1时,d0.4240.1)0.062l=⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20. 1mol理想气体在温度0℃和1个大气压的标准状态下,体积是22.4L,从这标准状态下将温度升高3℃,压强升高0.015个大气压,问体积大约改变多少?解:由PV=RT得V=RTP,且在标准状态下,R=8.20568×10-2,ΔV≈d v=-2d dRT Rp TP P+=d dV RP TP P-+222.48.20568100.01530.0911-⨯=-⨯+⨯≈-故体积改变量大约为0.09.21. 测得一物体的体积V=4.45cm3,其绝对误差限是0.01cm3,质量m=30.80g,其绝对误差限是0.01g,求由公式mvρ=算出密度ρ的绝对误差与相对误差.解:当V=4.45,m=30.80,d v=0.01,d m=0.01时,22130.801d d d0.010.014.45 4.450.01330.0133mv mv vρ==-+-⨯+⨯≈=-当v=4.45, m=30.80时30.806.92134.45ρ=≈d 0.00192160.19216%ρρ≈=.22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2) z =arc tanx y ,x =u +v ,y =u -v ,求z u ∂∂,z v∂∂; (3) ln(e e )xyu =+,y =x 3,求d d ux; (4) u =x 2+y 2+z 2,x =e cos tt ,y =e sin tt ,z =e t,求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx yu v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y x x x y x y x y x yx x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =-(2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xyz xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+ 25. 设22()yz f x y =-,其中f (u )为可导函数,验证:211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f ''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f ''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y ∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,z f x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂由对称性知,22224.z f y f y∂'''=+∂27. 设f 是c 2类函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂ 2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,。

高等数学课后习题答案--第九章

高等数学课后习题答案--第九章

9. 设 x n >0,
10. 讨论下列级数的收敛性(包括条件收敛与绝对收敛)
182
⑴ ⑶ ⑸ ⑺ ⑼
x sin ; n n =1 ∞ n (−1) n −1 n −1 ; ∑ 3 n =1 n +1 ∞ (−1) ( x > 0 ); ∑ n =1 n + x
∑ (−1)

n +1
⑵ ⑷ ⑹ ⑻ ⑽
180
(4) (6)



n =1 ∞

n =1
ln n ln n 1 ln n 1 n 1 , = = 3 . 收敛; < 2 2 n n n n n n n2 1 1 1 , < , 收敛; n ln (n + 2) ln(n + 2) 2
n
(5)
收敛;
(7) (8) (13) (14)
∑ (
n =1
n −1
)
n
发散
由于 lim (10
a −1
1 n
n →∞
= ln a , 而 n n − 1 > n a − 1 ;
(11)
发散;

n =1



n =1
( n + 1 − n − 1 ), ( n + 1 − (2n − n + 1 − n − 1) = (n −
2 2 2 2 2
(9) 收敛;
收敛;
5.利用级数收敛的必要条件,证明: nn (1) lim = 0, (2) n →∞ ( n !) 2

n →∞
lim
( 2 n) ! = 0. 2 n ( n +1)

高等数学课后习题及答案(共11单元)08无穷级数

高等数学课后习题及答案(共11单元)08无穷级数

习题9-11.写出下列级数的前五项:(1) ∑∞=++1211n n n; (2) ∑∞=⋅-12)12(1n nn ; (3) ∑∞=-1)1(n nn ; (4)∑∞=1n nne.解 (1)第一项为1,第二项为53,第三项为104,第四项为175,第五项为266。

(2)第一项为21,第二项为121,第三项为401,第四项为1121,第五项为2881。

(3)第一项为-1,第二项为21,第三项为31-,第四项为41,第五项为51-。

(4)第一项为e ,第二项为22e ,第三项为33e ,第四项为44e ,第五项为55e 。

2.写出下列级数的一般项:(1) 1111357++++… (2) 1112ln 23ln 34ln 4+++…(3) 11234024567-++++++…(4)2345625101726a a a a a -+-+-…解 (1) 121-=n u n (2)()()1ln 11++=n n u n(3)12+-=n n u n (4)()11211-+-=+n a u n n n3.根据级数收敛与发散的定义,判别下列级数的敛散性,如果收敛,并求其和. (1)∑∞=12n n ; (2)∑∞=+-1)12)(12(1n n n ; (3)∑∞=++-+1)122(n n n n .解:(1) 级数的部分和为()222-12-121-==+n nn S 因为 ()+∞=-=+∞→∞→22lim lim 1n n n n S所以级数∑∞=12n n发散.(2)因为()()⎪⎭⎫⎝⎛+=+-121-1-212112121n n n n所以级数的部分和为 ()()12121751531311+-++⨯+⨯+⨯=n n S n⎪⎭⎫⎝⎛+++++=121-1-2171-5151-3131-121n n ⎪⎭⎫ ⎝⎛+=121-121n 12+=n n而 21121lim12limlim =+=+=∞→∞→∞→nn nS n n n n 所以级数∑∞=+-1)12)(12(1n n n 收敛.且级数的和为21.(3)因为()()()n n n n n n n -+-+-+=+++11212-2所以级数的部分和为()()n n n S n ++++++++=12-2232-4122-3 )(()()()()()nn n n -11-22-3-3-41-2-2-3+-+++++= )(()()1212--+-+=n n()()12121--+++=n n而 ()()2-112lim121limlim =--+++=∞→∞→∞→n n n n n n s所以级数∑∞=+-1)12)(12(1n n n 收敛.且级数的和为2-1. 4.判别下列级数的敛散性,若收敛,并求其和. (1) 1111124816-+-+-… (2) 234e e e e -+-+… (3) 2233121212()()()232323++++++… (4) 231ln 3ln 3ln 3++++ (5)∑∞=+1)11ln(n n n(6)∑∞=1sinn nn π(7) 231sin1sin 1sin 1-+-+ (8)++-++⋅+⋅+⋅)15)(45(1161111161611n n解:(1) 级数的部分和可写为∑=-⎪⎭⎫ ⎝⎛⨯-=nn n n n s 1142141因为∑∞=-1141n n 是41=q 的等比数列,收敛并且和为3441-11=.同理∑∞=⨯1421n n是41=q 的等比数列,收敛并且和为3241-1121=⨯. 根据级数性质,∑∞=-⎪⎭⎫⎝⎛⨯-1142141n n n 也收敛,其和为 ∑∞=-⎪⎭⎫ ⎝⎛⨯-1142141n n n =∑∞=-1141n n -∑∞=⨯1421n n=3232-34=(2) 级数的部分和可写为()()()()n n n nn nn n e e e ee e e e e ees 2222221212111111-+=-----=-=∑=- 因为 ()-∞=-+=∞→∞→n n n n e ees 211limlim所以根据定义,该级数发散。

高等数学课后习题及参考答案(第十章)

高等数学课后习题及参考答案(第十章)

高等数学课后习题及参考答案(第十章)习题10-11.设在xOy面内有一分布着质量的曲线弧L,在点(x,y)处它的线密度为μ(x,y),用对弧长的曲线积分分别表达:(1)这曲线弧对x轴、对y轴的转动惯量I x,I y;(2)这曲线弧的重心坐标,.解在曲线弧L上任取一长度很短的小弧段ds(它的长度也记做ds),设(x,y)为小弧段ds上任一点.曲线L对于x轴和y轴的转动惯量元素分别为dI x=y2μ(x,y)ds,dI y=x2μ(x,y)ds.曲线L对于x轴和y轴的转动惯量分别为,.曲线L对于x轴和y轴的静矩元素分别为dM x=yμ(x,y)ds,dM y=xμ(x,y)ds.曲线L的重心坐标为,.2.利用对弧长的曲线积分的定义证明:如果曲线弧L分为两段光滑曲线L1和L2,则.证明划分L,使得L1和L2的连接点永远作为一个分点,则.令λ=max{∆s i}→0,上式两边同时取极限,即得.3.计算下列对弧长的曲线积分:(1),其中L为圆周x=a cos t,y=a sin t (0≤t≤2π);解=.(2),其中L为连接(1, 0)及(0, 1)两点的直线段;解L的方程为y=1-x (0≤x≤1);.(3), 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) ..(4), 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界;解 L =L 1+L 2+L 3, 其中L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t ,L 3: x =x , y =x ,因而 ,.(5)⎰Γ++ds zy x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧;解,.(6), 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、(0, 0, 2)、(1, 0, 2)、(1, 3, 2);解 Γ=AB +BC +CD , 其中AB : x =0, y =0, z =t (0≤t ≤1),BC : x =t , y =0, z =2(0≤t ≤3),CD : x =1, y =t , z =2(0≤t ≤3),故.(7), 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解.(8), 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解.4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心.解 建立坐标系如图10-4所示, 由对称性可知, 又ϕϕsin a =, 所以圆弧的重心为)0 ,sin (ϕϕa 5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心.解 .(1).(2),,,,故重心坐标为.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明: .证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段,则L : x =a , y =t , t 从b 1变到b 2. 于是.2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线,证明.证明L : x =x , y =0, t 从a 变到b , 所以.3. 计算下列对坐标的曲线积分:(1), 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以.(2), 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π,L 2: x =x , y =0, x 从0变到2a ,因此.(3), 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到的一段弧;解.(4)⎰+--+L yx dy y x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行); 解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以⎰+--+L y x dy y x dx y x 22)()(.(5), 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧;解 ⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x .(6), 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1..(7), 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1);解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0,BC : x =0, y =1-z , z =z , z 从0变到1,CA : x =x , y =0, z =1-x , x 从0变到1,故.(8), 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故4. 计算, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧;解 L : x =y 2, y =y , y 从1变到2, 故.(2)从点(1, 1)到点(4, 2)的直线段;解 L : x =3y -2, y =y , y 从1变到2, 故(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线;解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2,L 2: x =x , y =2, x 从1变到4,故dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰ .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧.解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故.5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为x =R cos θ, y =R sin θ,θ从0变到, 于是场力所作的功为.6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1)沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线,则重力所作的功为7.把对坐标的曲线积分化成对弧长的曲线积分,其中L为:(1)在xOy面内沿直线从点(0, 0)到(1, 1);解L的方向余弦,故.(2)沿抛物线y=x2从点(0, 0)到(1, 1);解曲线L上点(x,y)处的切向量为τ=(1, 2x),单位切向量为,故.(3)沿上半圆周x2+y2=2x从点(0, 0)到(1, 1).解L的方程为,其上任一点的切向量为,单位切向量为,故.8.设Γ为曲线x=t,y=t2,z=t3上相应于t从0变到1的曲线弧,把对坐标的曲线积分化成对弧长的曲线积分.解曲线Γ上任一点的切向量为τ=(1, 2t, 3t2)=(1, 2x, 3y),单位切向量为,.习题10-31.计算下列曲线积分,并验证格林公式的正确性:(1),其中L是由抛物线y=x2及y2=x所围成的区域的正向边界曲线;解L=L1+L2,故,而 dxdy x dxdy y P x Q DD )21()(-=∂∂-∂∂⎰⎰⎰⎰ ,所以 ⎰⎰⎰+=∂∂-∂∂l D Qdy Pdx dxdy yP x Q )(. (2), 其中L 是四个顶点分别为(0, 0)、(2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界.解 L =L 1+L 2+L 3+L 4, 故dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰ ⎰⎰⎰⎰+-+-+=202002022222)8()4(dy y dx x x dy y y dx x ,而,所以 ⎰⎰⎰+=∂∂-∂∂l D Qdy Pdx dxdy yP x Q )(. 2. 利用曲线积分, 求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t , y =a sin 3t ;解.(2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2 =144的参数方程为x =4cos θ, y =3sin θ, 0≤θ≤2π, 故.(3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π,故.3. 计算曲线积分,其中L为圆周(x-1)2+y2=2,L的方向为逆时针方向.解,.当x2+y2≠0时.在L内作逆时针方向的ε小圆周l:x=εcosθ,y=εsinθ(0≤θ≤2π),在以L和l为边界的闭区域Dε上利用格林公式得,即.因此.4.证明下列曲线积分在整个xOy面内与路径无关,并计算积分值:(1);解P=x+y,Q=x-y,显然P、Q在整个xOy面内具有一阶连续偏导数,而且,故在整个xOy面内,积分与路径无关.取L为点(1, 1)到(2, 3)的直线y=2x-1,x从1变到2,则.(2);解P=6xy2-y3,Q=6x2y-3xy2,显然P、Q在整个xOy面内具有一阶连续偏导数,并且,故积分与路径无关,取路径(1, 2)→(1, 4)→(3, 4)的折线,则.(3).解P=2xy-y4+3,Q=x2-4xy3,显然P、Q在整个xOy面内具有一阶连续偏导数,并且,所以在整个xOy面内积分与路径无关,选取路径为从(1, 0)→(1, 2)→(2, 1)的折线,则.5. 利用格林公式, 计算下列曲线积分:(1), 其中L 为三顶点分别为(0, 0)、(3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂yP x Q , 故由格林公式,得.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正 向星形线(a >0);解 , ,,由格林公式⎰-+-+L x x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222.(3), 其中L 为在抛物线2x =πy 2上由点(0, 0)到的一段弧;解 , ,,所以由格林公式,其中L 、OA 、OB 、及D 如图所示.故.(4), 其中L 是在圆周上由点(0, 0)到点(1, 1)的一段弧.解 P =x 2-y , Q =-x -sin 2y ,0)1(1=---=∂∂-∂∂yP x Q , 由格林公式有,其中L 、AB 、BO 及D 如图所示.故.6.验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求这样的一个u(x,y):(1)(x+2y)dx+(2x+y)dy;证明因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy面内的函数u(x,y )的全微分..(2)2xydx+x2dy;解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy面内的函数u(x,y)的全微分..(3)4sin x sin3y cos xdx–3cos3y cos2xdy解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy平面内的函数u(x,y)的全微分..(4)解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy平面内的函数u(x,y)的全微分..(5)解因为,所以P(x,y)dx+Q(x,y)dy是某个函数u(x,y)的全微分.7.设有一变力在坐标轴上的投影为X=x+y2,Y=2xy-8,这变力确定了一个力场,证明质点在此场内移动时,场力所做的功与路径无关.解场力所作的功为.由于,故以上曲线积分与路径无关,即场力所作的功与路径无关.习题10-41.设有一分布着质量的曲面∑,在点(x,y,z)处它的面密度为μ(x,y,z),用对面积的曲面积分表达这曲面对于x轴的转动惯量.解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为dI x =(y 2+z 2)μ(x , y , z )dS ,对于x 轴的转动惯量为.2. 按对面积的曲面积分的定义证明公式,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅⋅⋅, ∆S m ;划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅⋅⋅, ∆S m +n ,则∆S 1, ⋅⋅⋅, ∆S m , ∆S m +1, ⋅⋅⋅, ∆S m +n 为∑的一个划分, 并且.令, , , 则当λ→0时, 有.3. 当∑是xOy 面内的一个闭区域时, 曲面积分与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,,故 .4. 计算曲面积分, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下:(1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,.因此⎰⎰+=πθ2020241rdr r d .(2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x 22224411++=++=.因此 dxdy y x y x dS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑ ⎰⎰+=πθ2020241rdr r d.(3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,.因此dxdy y x y x xyD 2222441)](2[3+++-=⎰⎰.5. 计算, 其中∑是:(1)锥面及平面z =1所围成的区域的整个边界曲面; 解 将∑分解为∑=∑1+∑2, 其中∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:, D 2: x 2+y 2≤1, .+.提示: .(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:, D xy : x 2+y 2≤3,,因而 .提示: .6. 计算下面对面积的曲面积分:(1), 其中∑为平面在第一象限中的部分;解 , ,,.(2), 其中∑为平面2x +2y +z =6在第一象限中的部分; 解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,,⎰⎰--+--=x dy y xy x x dx 30230)22236(3.(3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分;解 ∑:, D xy : x 2+y 2≤a 2-h 2,,(根据区域的对称性及函数的奇偶性).提示:,(4), 其中∑为锥面被x 2+y 2=2ax 所截得的有限部分. 解 ∑: , D xy : x 2+y 2≤2ax ,,dxdy y x y x xy dS zx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑421564a =. 提示: .7. 求抛物面壳的质量, 此壳的面密度为μ=z .解 ∑: , D xy : x 2+y 2≤2,.故.8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量.解 ∑: , D xy : x 2+y 2≤a 2,,.提示:.习题10-51. 按对坐标的曲面积分的定义证明公式:.解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点, λ是各小块曲面的直径的最大值, 则.2. 当∑为xOy 面内的一个闭区域时, 曲面积分与二重积分有什么关系?解 因为∑: z =0, (x , y )∈D xy , 故dxdy z y x R dxdy z y x R xyD ),,(),,(⎰⎰⎰⎰±=∑,当∑取的是上侧时为正号, ∑取的是下侧时为负号.3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为, D xy : x 2+y 2≤R , 于是zdxdyy x 22∑⎰⎰dxdy y x R y x xyD )(22222----=⎰⎰.(2), 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧;解 ∑在xOy 面的投影为零, 故.∑可表示为, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故⎰⎰⎰⎰⎰⎰⎰-=-=-=∑3010102221311dy y dy y dz dydz y xdyz yz D ∑可表示为, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故dzdx x ydzdx zx D 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=30101022131dx x dx x dz . 因此 .解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为,由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy )cos cos cos (γβα++=++∑∑⎰⎰⎰⎰.提示: 表示曲面的面积.(3), 其中f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧;解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为,由两类曲面积分之间的了解可得dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰.(4), 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧.解 ∑=∑1+∑2+∑3+∑4, 其中∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z ,∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x ,∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x ,于是 xzdxdy 4000∑⎰⎰+++=由积分变元的轮换对称性可知.因此 .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块;∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x .显然在∑1、∑2、∑3上的曲面积分均为零, 于是yzdzdx xydydz xzdxdy ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰dS xz yz xy )(34++=∑⎰⎰.4. 把对坐标的曲面积分化成对面积的曲面积分:(1)∑为平面在第一卦限的部分的上侧;解 令, ∑上侧的法向量为:,单位法向量为,于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰.(2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量n =(F x , F y , F z )=(2x , 2y , 1),单位法向量为,于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰10-61.利用高斯公式计算曲面积分:(1),其中∑为平面x=0,y=0,z=0,x=a,y=a,z=a所围成的立体的表面的外侧;解由高斯公式原式(这里用了对称性).(2),其中∑为球面x2+y2+z2=a2的外侧;解由高斯公式原式.(3),其中∑为上半球体x2+y2≤a2,的表面外侧;解由高斯公式原式.(4)其中∑界于z=0和z=3之间的圆柱体x2+y2≤9的整个表面的外侧;解由高斯公式原式.(5),其中∑为平面x=0,y=0,z=0,x=1,y=1,z=1所围成的立体的全表面的外侧.解由高斯公式原式.2.求下列向量A穿过曲面∑流向指定侧的通量:(1)A=yz i+xz j+xy k,∑为圆柱x+y2≤a2(0≤z≤h )的全表面,流向外侧;解P=yz,Q=xz,R=xy,⎰⎰⎰dv.=0=Ω(2)A=(2x-z)i+x2y j-xz2k,∑为立方体0≤x≤a, 0≤y≤a, 0≤z≤a,的全表面,流向外侧;解P=2x-z,Q=x2y,R=-xz2,.(3)A=(2x+3z)i-(xz+y)j+(y2+2z)k,∑是以点(3,-1, 2)为球心,半径R=3的球面,流向外侧.解P=2x+3z,Q=-(xz+y),R=y2+2z,⎰⎰⎰dv.π=3=108Ω3.求下列向量A的散度:(1)A=(x2+yz)i+(y2+xz)j+(z2+xy)k;解P=x2+yz,Q=y2+xz,R=-z2+xy,.(2)A=e xy i+cos(xy)j+cos(xz2)k;解P=e xy,Q=cos(xy),R=cos(xz2),.(3)A=y2z i+xy j+xz k;解P=y2,Q=xy,R=xz,.4.设u (x,y,z)、v (x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,,依次表示u (x,y,z)、v (x,y,z)沿∑的外法线方向的方向导数.证明,其中∑是空间闭区间Ω的整个边界曲面,这个公式叫作林第二公式.证明由第一格林公式(见书中例3)知,.将上面两个式子相减,即得.5.利用高斯公式推证阿基米德原理:浸没在液体中所受液体的压力的合力(即浮力)的方向铅直向上,大小等于这物体所排开的液体的重力.证明取液面为xOy面,z轴沿铅直向下,设液体的密度为ρ,在物体表面∑上取元素dS上一点,并设∑在点(x,y,z)处的外法线的方向余弦为cos α, cos β, cos γ, 则dS 所受液体的压力在坐标轴x , y , z 上的分量 分别为-ρz cos αdS , -ρz cos β dS , -ρz cos γ dS ,∑所受的压力利用高斯公式进行计算得,,||cos Ω-=-=-=-=ΩΩ∑⎰⎰⎰⎰⎰⎰⎰⎰ρρργρdv dv dS z F z ,其中|Ω|为物体的体积. 因此在液体中的物体所受液体的压力的合力, 其方向铅直向上, 大小等于这物体所排开的液体所受的重力, 即阿基 米德原理得证.习题10-71. 利用斯托克斯公式, 计算下列曲线积分:(1), 其中Γ为圆周x 2+y 2+z 2=a 2, , 若从z 轴的正向看去, 这圆周取逆时针方向;解 设∑为平面x +y +z =0上Γ所围成的部分, 则∑上侧的单位法向量为.于是.提示: 表示∑的面积, ∑是半径为a 的圆.(2), 其中Γ为椭圆x 2+y 2=a 2,(a >0, b >0), 若从x 轴正向看去, 这椭圆取逆时针方向;解 设∑为平面上Γ所围成的部分, 则∑上侧的单位法向量为.于是.提示: ∑(即)的面积元素为.(3), 其中Γ为圆周x 2+y 2=2z , z =2, 若从z 轴的正向看去, 这圆周是取逆时针方向;解 设∑为平面z =2上Γ所围成的部分的上侧, 则.(4), 其中Γ为圆周x 2+y 2+z 2=9, z =0, 若从z 轴的正向看去, 这圆周是取逆时针方向.解 设∑为xOy 面上的圆x 2+y 2≤9的上侧, 则.2. 求下列向量场A 的旋度:(1)A =(2z -3y )i +(3x -z )j +(-2x )k ;解 .(2)A =(sin y )i -(z -x cos y )k ;解 .(3)A =x 2sin y i +y 2sin(xz )j +xy sin(cos z )k .解=[x sin(cos z )-xy 2cos(xz )]i -y sin(cos z )j +[y 2z cos(xz )-x 2cos y ]k . 3. 利用斯托克斯公式把曲面积分化为曲线积分, 并计算积分值, 其中A 、∑及n 分别如下:(1)A =y 2i +xy j +xz k , ∑为上半球面, 的上侧, n 是∑的单位法向量;解 设∑的边界Γ : x 2+y 2=1, z =0, 取逆时针方向, 其参数方程为x =cos θ, y =sin θ, z =0(0≤θ≤2π,由托斯公式.(2)A =(y -z )i +yz j -xz k , ∑为立方体0≤x ≤2, 0≤y ≤2, 0≤z ≤2的表面外侧 去掉xOy 面上的那个底面, n 是∑的单位法向量.解.4. 求下列向量场A 沿闭曲线Γ(从z 轴正向看依逆时针方向)的环流量:(1)A =-y i +x j +c k (c 为常量), Γ为圆周x 2+y 2=1, z =0;解.(2)A =(x -z )i +(x 3+yz )j -3xy 2k , 其中Γ为圆周, z =0.解 有向闭曲线Γ的参数方程为x =2cos θ, y =2sin θ, z =0(0≤π≤2π). 向量场A 沿闭曲线Γ的环流量为⎰⎰-++-=++L L dz xy dy yz x dx z x Rdz Qdy Pdx 223)()(.5.证明rot(a+b)=rot a+rot b.解令a=P1(x,y,z)i+Q1(x,y,z)j+R1(x,y,z)k,b=P2(x,y,z)i+Q2(x,y,z)j+R2(x,y,z)k,由行列式的性质,有.6.设u=u(x,y,z)具有二阶连续偏导数,求rot(grad u)解因为grad u=u x i+u y j+u z k,故=(u zy-u yz)i+(u zx-u xz)j+(u yx-u xy)k=0.*7.证明:(1)∇(uv)=u∇v+v∇u解=u∇v+v∇u.(2)解==u∆v+v∆u+2∇u⋅∇u.(3) ∇⋅(A⨯B )=B⋅(∇⨯A )-A⋅(∇⨯B )解B=P2i+Q2j+R2k,而所以∇⨯(A⨯B)=B⨯(∇⨯A)-A⨯( ∇⨯B )(4) ∇⨯(∇⨯A )=∇(∇⋅A )-∇2a解令A=Pi+Q j++R k,则从而命题地证总习题十1. 填空:(1)第二类曲线积分化成第一类曲线积分是____________, 其中α、β、γ为有向曲线弧Γ上点(x , y , z )处的_____________的方向角.解 , 切向量.(2)第二类曲面积分Rdxdy Qdzdx Pdydz ++∑⎰⎰化成第一类曲面积分是_______, 其中α、β、γ为有向曲面∑上点(x , y , z )处的________的方向角.解 , 法向量.2. 选择下述题中给出的四个结论中一个正确的结论:设曲面∑是上半球面: x 2+y 2+z 2=R 2(z ≥0), 曲面∑1是曲面∑在第一卦限中的部分, 则有________.(A )xdS xdS 14∑∑⎰⎰⎰⎰=; (B );(C )xdS zdS 14∑∑⎰⎰⎰⎰=; (D )xyzdS xyzdS 14∑∑⎰⎰⎰⎰=.解 (C ).3. 计算下列曲线积分:(1), 其中L 为圆周x 2+y 2=ax ;解 L 的参数方程为, (0≤θ≤2π), 故θθθθπd y x ax ds ax ds y x L L )()()(222022'+'⋅==+⎰⎰⎰().(2), 其中Γ为曲线x =t cos t , y =t sin t , z =t (0≤t ≤t 0);解.(3), 其中L 为摆线x =a (t -sin t ), y =a (1-cos t )上对应t 从0到2π的一段弧;解 ⎰⎰⋅-+-⋅+-=+-π20]sin )sin ()cos 1()cos 2[()2(dt t a t t a t a t a a a xdy dx y a L.(4), 其中Γ是曲线x =t , y =t 2, z =t 3上由听t 1=0到t 2=1的一段弧;解.(5), 其中L 为上半圆周(x -a )2+y 2=a 2, y ≥0, 沿逆时针方向;解 这里P =e x sin y -2y , Q =e x cos y -2, .令L 1为x 轴上由原点到(2a , 0)点的有向直线段, D 为L 和L 1所围成的区域, 则由格林公式,.(6), 其中Γ是用平面y =z 截球面x 2+y 2+z 2=1所得的截痕, 从z 轴的正向看去, 沿逆时针方向.解 曲线Γ的一般方程为, 其参数方程为, t 从0变到2π.于是.4. 计算下列曲面积分:(1), 其中∑是界于平面z =0及z =H 之间的圆柱面x 2+y 2=R 2;解 ∑=∑1+∑2, 其中, D xy : -R ≤y ≤R , 0≤z ≤H , ;, D xy : -R ≤y ≤R , 0≤z ≤H , ,于是.(2), 其中∑为锥面(0≤z ≤h ) 的外侧;解 这里P =y 2-z , Q =z 2-x , R =x 2-y , 0=∂∂+∂∂+∂∂zR y Q x P . 设∑1为z =h (x 2+y 2≤h 2)的上侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式,而40222024)sin cos ()(1h d r r d dxdy y x h πθθθθπ=-=-⎰⎰⎰⎰∑, 所以 .(3)zdxdy ydzdx xdydz ++∑⎰⎰, 其中∑为半球面的上侧;解 设∑1为xOy 面上圆域x 2+y 2≤R 2的下侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式得,而 ,所以 33202R R zdxdy ydzdx xdydz ππ=-=++∑⎰⎰.(4), 其中∑为曲面(z ≥0)的上侧;解 这里, , , 其中., , ,.设∑1为z =0的下侧, Ω是由∑和∑1所围成的空间区域, 则由高斯公式,32223222)()(1z y x zdxdy ydzdx xdydz z y x zdxdy ydzdx xdydz ++++-=++++∑∑⎰⎰⎰⎰. (5)xyzdxdy∑⎰⎰, 其中∑为球面x 2+y 2+z 2=1(x ≥0, y ≥0)的外侧. 解 ∑=∑1+∑2, 其中∑1是(x 2+y 2≤1, x ≥0, y ≥0)的上侧;∑2是(x 2+y 2≤1, x ≥0, y ≥0)的下侧,xyzdxdy xyzdxdy xyzdxdy 21∑∑∑⎰⎰⎰⎰⎰⎰+=dxdy y x xy dxdy y x xy xyxy D D )1(12222------=⎰⎰⎰⎰ ⎰⎰⎰⎰-⋅⋅=--=103220221sin cos 212ρρρθθθπd d dxdy y x xy xy D .5. 证明22y x ydy xdx ++在整个xOy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分, 并求出一个这样的二元函数.解 这里, . 显然, 区域G 是单连通的, P 和Q 在G 内具有一阶连续偏导数, 并且 , 所以22y x ydy xdx ++在开区域G 内是某个二元函数u (x , y )的全微分. .6. 设在半平面x >0内有力构成力场, 其中k 为常数, . 证明在此力场中场力所作的功与所取的路径无关.解 场力沿路径L 所作的功为.令, . 因为P 和Q 在单连通区域x >0内具有一阶连续的偏导数, 并且,所以上述曲线积分所路径无关, 即力场所作的功与路径无关.7. 求均匀曲面的质心的坐标.解 这里∑:, (x , y )∈D xy ={(x , y )|x 2+y 2≤a 2}.设曲面∑的面密度为ρ=1, 由曲面的对称性可知, . 因为,222421a a dS ππ=⋅=∑⎰⎰, 所以 .因此该曲面的质心为.8. 设u (x , y )、v (x , y )在闭区域D 上都具有二阶连续偏导数, 分段光滑的曲线L 为D 的正向边界曲线. 证明:(1);(2),其中、分别是u 、v 沿L 的外法线向量n 的方向导数, 符号称为二维拉普拉斯算子. 证明 设L 上的单位切向量为T =(cos α, sin α), 则n =(sin α, -cos α).(1),所以 .(2)dxdy u v v u dxdy y u x u v y v x v u DD )()]()([22222222∆-∆=∂∂+∂∂-∂∂+∂∂=⎰⎰⎰⎰. 9. 求向量A =x i +y j +z k 通过闭区域Ω={(x , y , z )|0≤x ≤1, 0≤y ≤1, 0≤z ≤1}的边界曲面流向外侧的通量.解 设∑为区域Ω的边界曲面的外侧, 则通量为33==Ω⎰⎰⎰dv .10. 求力F =y i +z j +x k 沿有向闭曲线Γ所作的功, 其中Γ为平面x +y +z =1被三个坐标面所截成的三角形的整个边界, 从z 轴正向看去, 沿顺时针方向.解 设∑为平面x +y +z =1在第一卦部分的下侧, 则力场沿其边界L (顺时针方向)所作的功为.曲面∑的的单位法向量为, 由斯托克斯公式有.温馨提示-专业文档供参考,请仔细阅读后下载,最好找专业人士审核后使用!。

微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分王宝富 钮海第二章习题解答(下)

微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分王宝富 钮海第二章习题解答(下)

习题2-1 1、解:在任意一个面积微元σd 上的压力微元σρg x d dF =,所以,该平面薄片一侧所受的水压力⎰⎰=Dgxd F σρ2、解:在任意一个面积微元σd 上的电荷微元σμd y x dF ),(=,所以,该平面薄片的电荷总量⎰⎰=Dd y x Q σμ),(3、解:因为10,10≤≤≤≤y x ,所以1122++≤++y x y x ,又u ln 为单调递增函数,所以()()1ln 1ln 22++≤++y x y x ,由二重积分的保序性得()()⎰⎰⎰⎰≤≤≤≤≤≤≤≤++≤++10101010221ln 1ln y x y x d y x d y x σσ4、解:积分区域D 如图2-1-1所示,所以该物体的质量34)384438()()(1032122222=-+-=+=+=⎰⎰⎰⎰⎰-dy y y y dx y x dy d y x M y yDσ 5、解:(1)积分区域如图2-1-2所示,所以⎰⎰⎰⎰=1101),(),(xy dy y x f dx dx y x f dy(2)积分区域如图2-1-3所示,所以⎰⎰⎰⎰=xx y ydy y x f dx dx y x f dy 2/4022),(),(2(3)积分区域如图2-1-4所示,所以⎰⎰⎰⎰+----=1121222122),(),(y yx x xdx y x f dy dy y x f dx(4)积分区域如图2-1-5所示,所以⎰⎰⎰⎰=eexey dx y x f dy dy y x f dx ),(),(10ln 06、解:(1)积分区域如图2-1-6所示,所以()⎰⎰⎰⎰⎰=⎪⎭⎫ ⎝⎛-=-==101054/1134/3105565111432322x x dx x x x dy y x dx d y xxxDσ (2)积分区域如图2-1-7所示,所以1564)4(2122224022222=-==⎰⎰⎰⎰⎰--dy y y dx xy dy d xy y Dσ (3)积分区域如图2-1-8所示,所以11021011211011111101101)()()()(----+-----+-+-++--+-+-=-+-=-+-=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰e e dx e e e dx e ee dxe e e dx e e e dy e dx dy e dx d e x x x x x x x x xxy x x xy x Dyx σ(4)积分区域如图2-1-9所示,所以613832419)()(20232/22222=⎪⎭⎫ ⎝⎛-=-+=-+⎰⎰⎰⎰⎰dy y y dx x y x dy d x y x yy Dσ 7、解:(1)积分区域如图2-1-10所示,令θθsin ,cos r y r x ==,所以ar ≤≤≤≤-0,22πθπ,故()⎰⎰⎰⎰⋅=-aDdr r r f r d d y x f 022sin)cos,(,ππθσ(2)积分区域如图2-1-11所示,令θθsin ,cos r y r x ==,所以θπθsin 20,0≤≤≤≤r ,故⎰⎰⎰⎰⋅=θπθθθσsin 20)sin ,cos (),(dr r r f r d d y x f D8、解:(1)积分区域如图2-1-12所示,令θθsin ,cos r y r x ==,所以θθπθ2cos sin 0,40≤≤≤≤r ,故[]12sec tan sec )(4040cos sin 014021221022-===⋅=+⎰⎰⎰⎰⎰--ππθθπθθθθθd dr r r d dy y x dx xx(2)积分区域如图2-1-13所示,令θθsin ,cos r y r x ==,所以θπθsin 20,0≤≤≤≤r ,故8)(432022022a dr r d dx y x dy ay a aπθπ==+⎰⎰⎰⎰-9、解:(1)积分区域如图2-1-14所示,故49)(12131221222=+-==⎰⎰⎰⎰⎰dx x x dy y dx x d yx x x D σ (2)积分区域如图2-1-15所示,令θθsin ,cos r y r x ==,所以10,20≤≤≤≤r πθ,故()28)1(21a r c2121)1(41121211211************21010444210143410421022202222-=⎥⎥⎦⎤⎢⎢⎣⎡-+=⎪⎪⎭⎫⎝⎛--+-=⎪⎪⎭⎫⎝⎛---=--=⋅+-=++--⎰⎰⎰⎰⎰⎰⎰⎰⎰ππππππθσπr rr r d r dr dr r r dr r rrdr rr rdr r r d d y x y x D(3)积分区域如图2-1-16所示, 故433222232214)32()()(a dy a y a ay dx y x dy d y xaayay a aD=+-=+=+⎰⎰⎰⎰⎰-σ(4)积分区域如图2-1-17所示,令θθsin ,cos r y r x ==,所以b r a ≤≤≤≤,20πθ,故()33220212232)(a b dr r d d y xbaD-==+⎰⎰⎰⎰πθσπ10、解:积分区域如图2-1-18所示,由图形的对称性得:⎰⎰==1441D d S S σ,所以24024022sin 0402cos 2sin 24a a d a rdr d S a =-===⎰⎰⎰ππθπθθθθ图2-1-1 图2-1-2 图2-1-3 图2-1-4图2-1-5 图2-1-6 图2-1-7 图2-1-8图2-1-9 图2-1-10 图2-1-11 图2-1-12图2-1-13 图2-1-14 图2-1-15 图2-1-16图2-1-17 图2-1-18习题2-21、解:⎰⎰⎰Ω=dv z y x Q ),,(μ2、化三重积分为直角坐标中的累次积分解:(1)因为积分区域Ω的上曲面为开口向上的旋转抛物面22y x z +=,下曲面为0=z ,积分区域Ω在xoy 坐标面上的投影区域x y x D xy -≤≤≤≤10;10:,所以()()⎰⎰⎰⎰⎰⎰-+Ω=101022,,,,xy x dz z y x f dy dx dv z y x f(2)因为积分区域Ω的上曲面为开口向下的抛物柱面22x z -=与下曲面为开口向上的旋转抛物面222y x z +=围成,二曲面的交线在x o y平面上的投影为圆122=+y x ,即⎪⎩⎪⎨⎧-≤≤+-≤≤--≤≤-Ω22222221111:x z y x x y x x ,所以()()⎰⎰⎰⎰⎰⎰-----+Ω=11112222222,,,,x x x y x dz z y x f dy dx dv z y x f(3)因为积分区域Ω的上曲面为开口向上的旋转抛物面22y x z +=,下曲面为0=z ,积分区域Ω在xoy 坐标面上的投影区域1;11:2≤≤≤≤-y x x D xy ,所以()()⎰⎰⎰⎰⎰⎰-+Ω=111222,,,,xy x dz z y x f dy dx dv z y x f3、解:积分区域Ω如图2-2-1所示0)1(61211161211111022=-===⎰⎰⎰⎰⎰⎰⎰⎰⎰--Ω-dx x x dy y xdx zdz dy xdx xzdxdydz xxy 另解:因为积分区域Ω关于坐标面yoz 对称,又xz z y x f =),,(关于第一坐标是奇函数,所以0=⎰⎰⎰Ωxzdxdydz 。

高等数学课后习题及参考答案(第八章)

高等数学课后习题及参考答案(第八章)

高等数学课后习题及参考答案(第八章)习题8-11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界. (1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为 {(x , y )|x =0或y =0}. (2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为 {(x , y )|1≤x 2+y 2≤4}, 边界为 {(x , y )|x 2+y 2=1或x 2+y 2=4}. (3){(x , y )|y >x 2}; 解 开集, 区域, 无界集, 导集为 {(x , y )| y ≥x 2}, 边界为 {(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}. 解 闭集, 有界集, 导集与集合本身相同, 边界为 {(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ).解 )(tan )()()()(),(22ty tx ty tx ty tx ty tx f ⋅⋅-+=),()tan (2222y x f t y x xy y x t =-+=.3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v =F (x , u )+F (x , v )+F (y , u )+F (y , v ). 4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ). 解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域: (1)z =ln(y 2-2x +1); 解 要使函数有意义, 必须 y 2-2x +1>0, 故函数的定义域为D ={(x , y )|y 2-2x +1>0}. (2)y x y x z -++=11;解 要使函数有意义, 必须 x +y >0, x -y >0, 故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须 y ≥0,0≥-y x 即y x ≥, 于是有 x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }. (4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须 y -x >0, x ≥0, 1-x 2-y 2>0, 故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221r z y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}. (6)22arccos y x z u +=.解 要使函数有意义, 必须 x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限: (1)22)1,0(),(1lim y x xyy x +-→;解110011lim22)1,0(),(=+-=+-→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y yx . (3)xyxy y x 42lim )0,0(),(+-→; 解xy xy y x 42lim)0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1lim )0,0(),(-=++-=→xy y x .(4)11lim )0,0(),(-+→xy xyy x ;解11lim)0,0(),(-+→xy xyy x )11)(11()11(lim)0,0(),(-+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xyxy xy y x y x . (5)yxy y x )sin(lim)0,2(),(→;解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xy xyy x .(6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 2222)()(21lim )()cos(1lim 22222)0,0(),(2222)0,0(),(yx y x y x y x e y x y x e y x y x ++=++-→→ 0lim 212222)0,0(),(=+=→y x y x e y x (用等价无穷小代换). 7. 证明下列极限不存在: (1)yx yx y x -+→)0,0(),(lim;证明 如果动点p (x , y )沿y =0趋向(0, 0), 则1lim lim00 )0,0(),(==-+→=→x x y x yx x y y x ;如果动点p (x , y )沿x =0趋向(0, 0), 则1lim lim00 )0,0(),(-=-=-+→=→y yy x y x y x y x .因此, 极限yx yx y x -+→)0,0(),(lim不存在.(2)22222)0,0(),()(lim y x y x y x y x -+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0), 则1lim )(lim 44022222 )0,0(),(==-+→=→x x y x y x y x x xy y x ;如果动点p (x , y )沿y =2x 趋向(0, 0), 则044lim )(lim 2440222222 )0,0(),(=+=-+→=→x x x y x y x y x x xy y x .因此, 极限22222)0,0(),()(lim y x y x y x y x -+→不存在.8. 函数xy xy z 2222-+=在何处间断?解 因为当y 2-2x =0时, 函数无意义, 所以在y 2 -2x =0处, 函数xy x y z 2222-+=间断.9. 证明0lim 22)0,0(),(=+→yx xyy x . 证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+,所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x y x xyy x y x .因此 0lim22)0,0(),(=+→yx xyy x . 方法二:证明 因为2||22y x xy +≤, 故22||22222222y x y x y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤-+22|0|2222y x y x xy,所以 0lim22)0,0(),(=+→yx xyy x .10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x -x 0|<δ时, 有|f (x )-f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x -x 0|<δ, 从而|F (x , y )-F (x 0, y 0)|=|f (x )-f (x 0)|<ε, 所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8-21. 求下列函数的偏导数: (1) z =x 3y -y 3x ; 解 323y y x xz -=∂∂,233xy x y z -=∂∂.(2)uvvu s 22+=;解 21)(uv v u v v u u u s -=+∂∂=∂∂,21)(vu u u v v u v v s -=+∂∂=∂∂.(3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理 )ln(21xy y y z =∂∂.(4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅-⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y -=根据对称性可知)]2sin()[cos(xy xy x yz -=∂∂.(5)yx z tan ln =;解 yx y y y x yx x z 2csc 21sec tan 12=⋅⋅=∂∂,yx y x y x y x yx y z 2csc 2sec tan 1222-=-⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(--+=⋅+=∂∂y y xy y y xy y xz ,]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xyxy xy y ++++=.(7)zy x u =;解 )1(-=∂∂z y x zy x u ,x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂,x x zy z y x x z u z yz y ln )(ln 22⋅-=-=∂∂.(8) u =arctan(x -y )z ;解 zz y x y x z x u 21)(1)(-+-=∂∂-, zz y x y x z y u 21)(1)(-+--=∂∂-, zz y x y x y x z u 2)(1)ln()(-+--=∂∂. 2. 设g l T π2=, 试证0=∂∂+∂∂g T g l T l .解 因为lg l T ⋅⋅=∂∂1π,gg g l g T 1)21(223⋅-=⋅-⋅=∂∂-ππ, 所以 0=⋅-⋅=∂∂+∂∂g l g l g T g l T l ππ. 3. 设)11(yx ez +-=, 求证z yz y x z x 222=∂∂+∂∂.解 因为2)11(1x ex z yx ⋅=∂∂+-, 2)11(1y e yz y x ⋅=∂∂+-, 所以 z eeyz y x z x yx yx 2)11()11(22=+=∂∂+∂∂+-+-4. 设y x y x y x f arcsin )1(),(-+=, 求)1 ,(x f x .解 因为x x x x f =-+=1arcsin )11()1 ,(,所以 1)1 ,()1 ,(==x f dx d x f x .5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 因为242x x x z ==∂∂,αtan 1)5,4,2(==∂∂xz ,故 4πα=.6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4-4x 2y 2;解 2384xy x xz -=∂∂, 2222812y x x z -=∂∂; y x y yz 2384-=∂∂, 2222812x y y z -=∂∂;xy y x y yy x z 16)84(232-=-∂∂=∂∂∂. (2)xyz arctan =;解 22222)(11y x y x y xy x z +-=-⋅+=∂∂,22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy yz +=⋅+=∂∂, 22222)(2y x xy y z +-=∂∂;22222222222222)()(2)()(y x x y y x y y x y x y y y x z +-=+-+-=+-∂∂=∂∂∂. (3) z =y x .解 y y xz xln =∂∂, y y x z x 222ln =∂∂; 1-=∂∂x xy yz , 222)1(--=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂--y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, -1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x , f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0, 所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2, f yz (0, -1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyyx xy x z ,x xy y x z 122==∂∂, 023=∂∂∂y x z ,y xy x y x z 12==∂∂∂, 2231y y x z -=∂∂∂. 9. 验证:(1)nx e y tkn sin 2-=满足22xy k t y ∂∂=∂∂;证明 因为nx e kn kn nx e t y t kn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx ne x y tkn cos 2-=∂∂, nx e n x y t kn sin 2222--=∂∂, nx e kn xy k t kn sin 2222--=∂∂,所以 22xyk t y ∂∂=∂∂.(2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂. 证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r xr -=∂∂-=∂∂, 由对称性知32222ry r y r -=∂∂, 32222r z r z r -=∂∂,因此 322322322222222rz r r y r r x r z r y r x r -+-+-=∂∂+∂∂+∂∂ rr r r r z y x r 23)(332232222=-=++-=. 习题8-31. 求下列函数的全微分: (1)yx xy z +=;解 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y y )()1(2-++=.(2)xy e z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+-=∂∂+∂∂=.(3) 22yx y z +=;解 因为2/3222322)()(21y x xy y x y x z +-=+-=∂∂-, 2/3222222222)(y x x y x y x yy y x y z +=++⋅-+=∂∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++-=)()(2/322xdy ydx y x x -+-=.(4)u =x yz . 解 因为1-⋅=∂∂yz x yz x u , x zx yu yz ln =∂∂, x yx z u yz ln =∂∂,所以 xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-.2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分. 解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x xz, 3221=∂∂==y x y z , 所以 dy dx dz y x 323121⋅+===.3. 求函数xyz =当x =2, y =1, ∆x =0.1, ∆y =-0.2时的全增量和全微分. 解 因为xy x x y y z -∆+∆+=∆, y x x x ydz ∆+∆-=12,所以, 当x =2, y =1, ∆x =0.1, ∆y =-0.2时,119.0211.02)2.0(1-=-+-+=∆z , 125.0)2.0(211.041-=-⨯+⨯-=dz .4. 求函数z =e xy 当x =1, y =1, ∆x =0.15, ∆y =0.1时的全微分. 解 因为y xe x ye y yz x x z dz xy xy ∆+∆=∆∂∂+∆∂∂=所以, 当x =1, y =1, ∆x =0.15, ∆y =0.1时, e e e dz 25.01.015.0=⋅+⋅=.*5. 计算33)97.1()102(+的近似值. 解 设33y x z +=, 由于y yz x x z y x y y x x ∆∂∂+∆∂∂++≈∆++∆+3333)()(332233233y x y y x x y x +∆+∆++=, 所以取x =1, y =2, ∆x =0.02, ∆y =-0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+-⋅⋅+⋅++≈+. *6. 计算(1.97)1.05的近似值(ln2=0.693). 解 设z =x y , 由于y yz x x z x x x y y y ∆∂∂+∆∂∂+≈∆+∆+)(y x x x yx x y y y ∆+∆+=-ln 1,所以取x =2, y =1, ∆x =-0.03, ∆y =0.05可得(1.97)1.05≈2-0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cm 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z ∆+∆+=∆+∆=≈∆,当x =6, y =8, ∆x =0.05, ∆y =-0.1时,05.0)1.0805.06(86122-=⋅-⋅+≈∆z .这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h , ∆V ≈dV =2πRh ∆R +πR 2∆h , 当R =4, h =20, ∆R =∆h =0.1时,∆V ≈2⨯3.14⨯4⨯20⨯0.1+3.14⨯42⨯0.1≈55.3(cm 3), 这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差. 解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z ∆⋅∂∂+∆⋅∂∂≤≈∆|)|||(122y y x x y x ∆+∆+=.令x =7, y =24, |∆x |≤0.1, |∆y |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm .*10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60︒±1︒, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=.zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈∆.令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则55.2718021278631.0232631.023278=⨯⨯⨯+⨯⨯+⨯⨯≈πδs ,82.21273sin 786321=⋅⋅⋅=πS ,%29.182.212755.27==S s δ,所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和.证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u ∆+∆≤∆+∆=∆∂∂+∆∂∂=≈∆.所以两数之和的绝对误差|∆u |等于它们各自的绝对误差|∆x |与|∆y |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和. 证明 设u =xy , y x v =, 则∆u ≈du =ydx +xdy ,2yxdyydx dv v -=≈∆, 由此可得相对误差;||||||||y dy x dx xy xdy ydx u du u u +=+=≈∆||||||||yyx x y dy x dx ∆+∆=+≤;||||||||2y dy x dx yxy xdy ydx v dv v v -=⋅-==∆||||||||y yx x y dy x dx ∆+∆=+≤.习题8-41. 设z =u 2-v 2, 而u =x +y , v =x -y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x ,y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(-1)=2(u -v )=4y .2. 设z =u 2ln v , 而y x u =, v =3x -2y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2y y x x y x y x -+-=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2()(ln 222-+-⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x ----=. 3. 设z =e x -2y , 而x =sin t , y =t 3, 求dtdz .解 dt dyy z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅-⋅+=--)6(cos )6(cos 22sin 223t t e t t e t t y x -=-=--.4. 设z =arcsin(x - y ), 而x +3t , y =4t 3, 求dtdz .解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--= 232)43(1)41(3t t t ---=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz .解 dx dy y z x z dx dz ⋅∂∂+∂∂=x xxe x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+-=a z y e u ax , 而y =a sin x , z =cos x , 求dxdu .解 dxdz dz u dx dyy u x u dx du ⋅∂+⋅∂∂+∂∂=)sin (1cos 11)(222x a e x a a e a z y ae ax ax ax -⋅+-⋅+++-= )sin cos cos sin (122x x a x a x a a e ax ++-+=x e ax sin =. 7. 设yx z arctan =, 而x =u +v , y =u -v , 验证22v u v uv z u z +-=∂∂+∂∂. 证明)()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂)()(111)(11222y x yx y y x -⋅++⋅+=)1()()(111)(11222-⋅-⋅++⋅++y x yx y y x22222v u v u y x y +-=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1) u =f (x 2-y 2, e xy );解 将两个中间变量按顺序编为1, 2号, 2122212)()(f ye f x xe f x y x f x u xy xy '+'=∂∂⋅'+∂-∂⋅'=∂∂, 212)2212)((f xe f y y e f y y x f y u xy xy '+'-=∂∂⋅'+∂-∂⋅'=∂∂.(2)) ,(zyy x f u =;解1211)()(f yz y x f y x x f x u '=∂∂⋅'+∂∂⋅'=∂∂, )()(21z yy f y x y f y u ∂∂⋅'+∂∂'=∂∂2121f z f y x '+'-=,)()(21z y z f z x z f z u ∂∂⋅'+∂∂'=∂∂22f zy'⋅-=.(3) u =f (x , xy , xyz ).解 yz f y f f x u ⋅'+⋅'+⋅'=∂∂3211321f yz f y f '+'+'=,3232f xz f x xz f x f y u '+'=⋅'+⋅'=∂∂,33f xy xy f zu '=⋅'=∂∂.9. 设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z yz y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅])([])()([y u u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .10. 设)(22y x f yz -=, 其中f (u )为可导函数, 验证211y z y z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222'-=⋅'⋅-=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()('-+=-⋅'⋅-=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+'+'-=∂∂⋅+∂∂⋅211yz zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22x z ∂∂, y x z ∂∂∂2, 22yz ∂∂. 解 令u =x 2+y 2, 则z =f (u ), f x xu u f x z '=∂∂'=∂∂2)(,f y yu u f y z '=∂∂'=∂∂2)(,f x f x u f x f x z ''+'=∂∂⋅''+'=∂∂2224222,f xy yu f x y x z ''=∂∂⋅''=∂∂∂422, f y f yu f y f y z ''+'=∂∂⋅''+'=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数):(1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).ufy v f y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0,vfu f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )()()(22uf x y u f y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=,)(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yvv u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂=v u fy u f xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(,)()()()(22vf y u f y x v f u f x y y z y y z∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ y vv f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)(1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=v fx u v f v u f x u f x 2222222vf v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =;解 令u =x ,yx v =, 则z =f (u , v ).v fy u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1,vfy x dy dv v f y z ∂∂⋅-=⋅∂∂=∂∂2.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和v f ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xvv f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂=22222212vfy v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=,)1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂ )(1)1()(vfy y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂=y vv f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅-∂∂⋅∂∂∂=222112232221v f y x v f y v u f y x ∂∂⋅-∂∂⋅-∂∂∂⋅-= )()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅-∂∂⋅-∂∂=∂∂∂∂=∂∂ 22423222322v f y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅-∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1'⋅y 2+f 2'⋅2xy =y 2f 1'+2xyf 2',z y=f1'⋅2xy+f2'⋅x2=2xyf1'+x2f2';z xx=y2[f11''⋅y2+f12''⋅2xy]+2yf2''+2xy[f21''⋅y2+f22''⋅2xy]=y4f11''+2xy3f12''+2yf2''+2xy3f21''+4x2y2 f22''=y4f11''+4xy3f12''+2yf2''+4x2y2 f22'',z xy=2y f1'+y2[f11''⋅2xy+f12''⋅x2]+2xf2'+2xy[f21''⋅2xy+f22''⋅x2]=2y f1'+2xy3f11''+x2y2f12''+2xf2'+4x2y2f21''+2x3yf22''=2y f1'+2xy3f11''+5x2y2f12''+2xf2'+2x3yf22'',z yy=2xf1'+2xy[f11''⋅2xy+f12''⋅x2]+x2[f21''⋅2xy+f22''⋅x2]=2xf1'+4x2y2f11''+2x3y f12''+2x3yf21''+x4f22''=2xf1'+4x2y2f11''+4x3y f12''+x4f22''.(4) z=f(sin x, cos y,e x+y).解z x=f1'⋅cos x+ f3'⋅e x+y=cos x f1'+e x+y f3',z y=f2'⋅(-sin y)+ f3'⋅e x+y=-sin y f2'+e x+y f3',z xx=-sin x f1'+cos x⋅(f11''⋅cos x+ f13''⋅e x+y)+e x+y f3'+e x+y(f31''⋅cos x+ f33''⋅e x+y)=-sin x f1'+cos2x f11''+e x+y cos x f13''+e x+y f3'+e x+y cos x f31''+e2(x+y) f33''=-sin x f1'+cos2x f11''+2e x+y cos x f13''+e x+y f3'+e2(x+y) f33'', z xy=cos x[f12''⋅(-sin y)+ f13''⋅e x+y]+e x+y f3'+e x+y [f32''⋅(-sin y)+ f33''⋅e x+y]=-sin y cos x f12''+e x+y cos x f13'+e x+y f3'-e x+y sin y f32'+e2(x+y)f33'=-sin y cos x f12''+e x+y cos x f13''+e x+y f3'-e x+y sin y f32''+e2(x+y)f33'',z yy=-cos y f2'-sin y[f22''⋅(-sin y)+ f23''⋅e x+y]+e x+y f3'+e x+y[f32''⋅(-sin y)+ f33''⋅e x+y]=-cos y f 2'+sin 2y f 22''-e x +y sin y f 23'' +e x +y f 3'-e x +y sin y f 32''+ f 33''⋅e 2(x +y )=-cos y f 2'+sin 2y f 22''-2e x +y sin y f 23''+e x +y f 3'+f 33''⋅e 2(x +y ). 13. 设u =f (x , y )的所有二阶偏导数连续, 而23t s x -=,23ts y +=, 证明2222)()()()(tu s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂.证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321yu x u t yy u t x x u t u ∂∂⋅+∂∂⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂22)()(yu x u ∂∂+∂∂=.又因为)2321()(22yu x u s s u s s u∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ )(23)(21222222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= )2321(23)2321(21222222yu x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅=22222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(22yu x u t t u t t u ∂∂⋅+∂∂⋅-∂∂=∂∂∂∂=∂∂ )(21)(23222222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂-= )2123(21)2123(23222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅-+∂∂∂⋅+∂∂⋅--= 22222412343yu y x u x u ∂∂⋅+∂∂∂⋅-∂∂⋅=, 所以 22222222yu x u t u s u ∂∂+∂∂=∂∂+∂∂. 习题8-51. 设sin y +e x-xy 2=0, 求dxdy.解 令F (x , y )=sin y +e x -xy 2, 则F x =e x -y 2, F y =cos y -2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222--=---=-=. 2. 设xy y x arctan ln 22=+, 求dx dy.解 令xy y x y x F arctan ln ),(22-+=, 则22222222)()(11221y x y x x y xy y x x y x F x ++=-⋅+-+⋅+=, 22222221)(11221yx x y x xy y x y y x F y +-=⋅+-+⋅+=, y x y x F F dx dyy x -+=-=. 3. 设022=-++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(-++=, 则 xyz yz F x -=1, xyzxz F y -=2, xyz xyF z -=1, xy xyz xyz yz F F x z z x --=-=∂∂, xy xyz xyz xz F F y z z y --=-=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及y z ∂∂,解 令yz z x z y x F ln ),,(-=, 则 z F x 1=, y y z y z F y 1)(12=-⋅-=, 2211z z x y yz z x F z +-=⋅--=, 所以 z x z F F x z z x +=-=∂∂, )(2z x y z F F yz z y +=-=∂∂.5. 设2sin(x +2y -3z )=x +2y -3z , 证明1=∂∂+∂∂y z x z证明 设F (x , y , z )=2sin(x +2y -3z )-x -2y +3z , 则F x =2cos(x +2y -3z )-1, F y =2cos(x +2y -3z )⋅2-2=2F x ,F z =2cos(x +2y -3z )⋅(-3)+3=-3F x ,313=--=-=∂∂x x z x F F F F x z ,3232=--=-=∂∂x x z y F F F F y z , 于是 13231=+=--=∂∂+∂∂z z z x F FF F y z x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1-=∂∂⋅∂∂⋅∂∂x z z yy x .解 因为x y F F y x -=∂∂, y z F F z y -=∂∂, zx F F x z -=∂∂, 所以 1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx -az , cy -bz )=0 所确定的函数z =f (x , y )满足 c y z b x z a =∂∂+∂∂.证明 因为vu u v u u b a c b a c x z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,所以 c b a c b b a c a y z b x z a vu v v u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z-xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z -xyz , 则F x =-yz , F z =e z-xy , xye yz F F x z zz x -=-=∂∂, 222)()()()(xy e y x z e yz xy e x z y x z x x z z z z --∂∂--∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y zz z z ----+=32232)(22xy e e z y z xy ze y z zz ---=. 9. 设z 3-3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3-3xyz -a 3, 则 xy z yzxy z yz F F x z z x -=---=-=∂∂22333,xyz xz xy z xz F F y z z y -=---=-=∂∂22333, )()(22xyz yz y x z y y x z -∂∂=∂∂∂∂=∂∂∂ 222)()2())((xy z x yz z yz xy z y z y z --∂∂--∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz yz -----⋅-+=322224)()2(xy z y x xyz z z ---=. 10. 求由下列方程组所确定的函数的导数或偏导数: (1)设⎩⎨⎧=+++=203222222z y x y x z , 求dx dy , dx dz ; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得 ⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧-=+-=-xdx dzz dxdy y x dx dz dx dy y 3222.解方程组得 )13(2)16(++-=∂∂z y z x x y , 13+=z x dx dz.(2)设⎩⎨⎧=++=++10222z y x z y x , 求dz dx ,dz dy ; 解 视x =x (z ), y =y (z ), 方程两边对z 求导得 ⎪⎩⎪⎨⎧=++=++022201z dz dy y dz dx x dz dy dz dx , 即⎪⎩⎪⎨⎧-=+-=+zdz dy y dzdxx dz dy dz dx 2221.解方程组得y x z y z x --=∂∂, yx xz z y --=∂∂.(3)设⎩⎨⎧-=+=),(),(2y v x u g v y v ux f u , 其中f , g 具有一阶连续偏导数, 求x u ∂∂,xv ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅'+-∂∂⋅'=∂∂∂∂⋅'+∂∂+⋅'=∂∂x v yv g x u g xv x vf x u x u f x u 21212)1()( , 即 ⎪⎩⎪⎨⎧'=∂∂⋅⋅-'+∂∂'''-=∂∂⋅'+∂∂-'121121)12()1(g x v g yv xu g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ''--'-'''--''-=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ''--'-'-'+''=∂∂.(4)设⎩⎨⎧-=+=vu e y v u e x u u cos sin , 求x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得⎩⎨⎧+-=++=vdv u vdu du e dy vdv u vdu du e dx u u sin cos cos sin , 即 ⎩⎨⎧=+-=++dy vdv u du v e dx vdv u du v e u u sin )cos (cos )sin (, 从中解出du , dv 得dy v v e v dx v v e v du u u 1)cos (sin cos 1)cos (sin sin +--++-=, dy v v e u e v dx v v e u e v dv u u u u ]1)cos (sin [sin ]1)cos (sin [cos +-+++--=, 从而 1)cos (sin sin +-=∂∂v v e v x u u , 1)cos (sin cos +--=∂∂v v e v y u u , ]1)cos (sin [cos +--=∂∂v v e u e v x v u u , ]1)cos (sin [sin +-+=∂∂v v e u e v y v u u . 11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tFy F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂-∂∂⋅∂∂=. 证明 由方程组⎩⎨⎧==0),,(),(t y x F t x f y 可确定两个一元隐函数⎩⎨⎧==)()(x t t x y y , 方程两边对x 求导可得 ⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dx dt t f x f dx dy , 移项得 ⎪⎩⎪⎨⎧∂∂-=∂∂+⋅∂∂∂∂=⋅∂∂-x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂-=y F t f t F t F y F t fD 的条件下 yF t f t F x F t f t F x f t F x F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂-∂∂⋅∂∂=∂∂∂∂-∂∂-∂∂⋅=1.习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12 (-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T . 因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程. 解 令F (x , y , z )=e z -z +xy -3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为 ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++,法线方程为00000cz z z by y y ax x x -=-=-.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z ,解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为 n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6). 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8-71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数.解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故 )cos ,(cos )23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy '=4, 解得y y 2='.。

高等数学课后答案 第八章 习题详细解答

高等数学课后答案 第八章 习题详细解答

习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆= .任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设12231()d D I x y σ=+⎰⎰其中1{(,)11,22}D x y x y =-≤≤-≤≤;又22232()d D I x y σ=+⎰⎰其中2{(,)01,02}D x y x y =≤≤≤≤.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面223()z x y =+的曲顶柱体1Ω的体积;2I 表示底为2D 、顶为曲面223()z x y =+的曲顶柱体2Ω的体积.由于位于1D 上方的曲面223()z x y =+关于yOz 面和zOx 面均对称,故yOz 面和zOx 面将1Ω分成四个等积的部分,其中位于第一卦限的部分即为2Ω.由此可知124I I =.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3)12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D D D= ,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。

徐荣聪,厦门大学出版社高数第2章参考答案详细解答

徐荣聪,厦门大学出版社高数第2章参考答案详细解答

第二章参考答案习题2-1 P431、(1)t g g V ∆--=2110,(2)g V -=10,(3)t g gt V ∆--=21100,(4)010gt V -=; 2、30;3、(1))(a f '-,(2))(a f '-,(3))(3a f ';4、(1)45x ,(2)332x⋅,(3)331xx ⋅-,(4)73717x x ⋅; 5、切线方程:216323++-=πx y ,法线方程:21932332+-=πx y ; 6、(1))0,0(,(2))41,21(,(3)221x x x +=对应的点; 7、(1)连续,不可导,(2)连续,可导,(3)连续,可导, (4)在0=x 处不连续,不可导,在4=x 连续,不可导; 习题2-2 P46 1、(1)5243++x x ,(2)1218-x ,(3)ϕϕϕϕ2sec tan 21+,(4)2sin cos x x x x - (5)23)21(21lnx x +⋅,(6)v v sin 52+,(7)x e x cos 2, (8)22sec tan sec sec tan uu u u u u u u -++,(9))cos 1(csc 523t t +-, (10)2)110(10ln 210--x x ,(11)38343537-+s s ,(12)x x x 2cos 2sin 21+,(13)1ln -+a x ax a a ,(14)222)1(sec 4)1(tan sec 2x xx x x x +-+,(15)2)1()1(t t t -+-, (16)232)cos (sin )cos (sin 3)cos (sin 9x x x x x x x x -+--; 2、(1)1-,2-,(2)181-3、(1)0123=+-y x ,(2)03133=-+-πy x ;4、2=y ,32=y ; 习题2-3 P491、(1)xx x x x xy +++++='21)211)(211((2)221x x y -='(3))sin 2sin cos (2222cos x x x x e y x ⋅-⋅='(4)6)53(21+='x y(5)u u u cos )cos(sin )]n cos[sin(si ⋅⋅='ω(6))32()2(313323x x e e x y +⋅+='-(7)x y x cos 2ln 2sin ⋅='(8)21)1(1t t y --='(9)422sec 2122+-='t t y (10)2ln )1(122⋅+--='x x x y (11)25214x x y +-='(12)2ln )1(122⋅+--='x x x y (13)22x a y -='(14)x x x x y cot 112+--='(15)xx y 2arcsin 4122⋅-=' (16)x x x x x y 1cos 11sin 3cot 3csc31-+-='(17))ln 1(1t t S +=' (18))72(2sin 2+-='x a y (19)22)cot )(1(1x arc x y +='(20)x x y tan 3sec 62=' (21)xx y 2sin22='(22)2tan 2sec 41x x y ⋅=' 2、kt e T T k T v ---='=)(10 3、kt e km m --='0 习题2-4 P51 1、(1)12124,2++=''='x x e y ey (2))tan()(sec 2),(sec 22a x a x y a x y ++=''+='(3)2728)2(,)1(26)(,)1(1)(323222-=''-+=''-+='f x x x x f x x x f (4)2)ln 2sin()ln 2cos(2)(,)ln 2sin()(t t t t f t t t f -=''=' 2、(1)x n e x n y)()(+=(2)x x x y 2sin cos sin 2==')22s i n (22c o s2x x y +==''π)222s i n (2))22(2sin(22)22cos(222x x x y +=++=⋅+='''ππππ)223s i n (2))222(2sin(22)222cos(2332)4(x x x y+=++=⋅+=ππππ……)22)1(s i n (21)(x n yn n +-=-π(3)1)1(2112121111-+=-+=++--=+-=-x xx x x x y 2)1(2)1(-+⋅⋅-='x y 3)1(2)2()1(-+⋅⋅-⋅-=''x y 4)1(2)3()2()1(-+⋅⋅-⋅-⋅-='''x y……)1()4()1(2!)1(+-+⋅⋅⋅-=n n x n y(4))2(,)!2()1()1()(≥⋅--=--n x n y n n n (5)!)(n y n =3、解:因为t A S ωsin =所以物体的运动速度为t A S v ωωcos ='=,物体运动的加速度为t A S a ωωsin 2-=''=,且有0sin sin 22222=⋅+-=+t A t A S dtS d ωωωωω习题2-5 P551、(1)y x a b y ⋅-='22(2))1(322-='y a y (3)2221yy y ++='(4)x e y e y y x y x ---='++ (5)两边同时取对数得,y x x y ln ln = 两边同时对x 求导得,y y x y x y x y '⋅+=+'ln ln ,所以)1(ln )1(ln --='x x y y y (6)yyxee y +-='12、(1)32222)()(,yy x y yxx y y y x y y x y y x y +-=---='--='-=''-=' (2)3))cos(1()sin(,)cos(1)cos(y x y x y y x y x y +-+-=''+-+=' 3、(1)两边取对数得,))1ln()25ln()23(ln(21ln -----=x x x y 两边同时对x 求导得,)11252233(211---+-='⋅x x x y y 所以)11252233()1)(25(2321)11252233(21---+-⋅---=---+-⋅='x x x x x x x x x y y (2)两边取对数得,)1ln(31)6ln(21)32ln(4ln +--++=x x x y 两边同时对x 求导得,)1(31)6(213281+--++='⋅x x x y y 所以))1(31)6(21328(16)32(34+--++⋅+-+='x x x x x x y(3)令3222)4()1(--=x x x u ,则u x e y x⋅⋅=sin , 对于3222)4()1(--=x x x u,两边同时取对数得,))4ln(2)1ln((ln 31ln 22---+=x x x u求得)44121()4()1(31223222---+⋅--⋅='x xx x x x x x u 所以)sin ('⋅⋅='u x e y xu x e u x e u x e xx x '⋅⋅+⋅⋅+⋅⋅=s i n c o s s i n)44121()4()1(sin 31cos sin 223222---+⋅--⋅⋅+⋅⋅+⋅⋅=x xx x x x x x x e u x e u x e x xx(4)两边取对数得,x x y sin ln cos ln ⋅=两边同时对x 求导得, xxx x y y sin cos sin ln sin 12+⋅-='⋅所以)sin cos sin ln sin ()(sin )sin cos sin ln sin (2cos 2xx x x x x x x x y y x+⋅-⋅=+⋅-=' 4、(1)t b dx dy cot -=(2)θθθθθθcos sin 1sin cos ---=dx dy 5、(1)解:当4π=t 时,0,2==y x ,即当4π=t 时,曲线经过点)0,2(2s i n 2c o s22s i n 2444-=-=-====πππt t t t t tdx dy所求的切线方程为:)2(20--=-x y ,即22+-=x y 所求的法线方程为:)2(210-=-x y ,即121-=x y(2)解:当0=t 时,0,1==y x ,即当0=t 时,曲线经过点)0,1(2420220-=-+==-=t ttt t e te e dx dy所求的切线方程为:)1(20--=-x y ,即22+-=x y 所求的法线方程为:)1(210-=-x y ,即2121-=x y 习题2-6 P592、(1)16.2-(2)025.0-(3)dx x x dy )2326(35-+=(4)dx x xdy 122-=(5)dx x x dy 21arccos 2--=(6)dx xx dy 232ln 1-=(7)dx bx b ax a dy )2sin 2sin (33-=(8)dx e x x dy x2)1(2+=(9)dx xx x dy 221)2(++=(10)dx x x x dy 322)1tan()1sec(2--=-- 3、(1)C x +3(2)C x +arctan (3)C x +2sin (4)C x +sec(5)C x a ++23)(32(6)C x +2)(ln 21(7)C x +-cos ln (8)C ex +--22434、(1)0083.612016≈+(2)0052.219212≈+(3)8572.036023≈-π(4)99.0(5)002.0(6)0478.10005.05.01132≈⨯-+π5、面积2)(x x S π=,则Rh h R S R h R S πππ2)()(22=⋅'≈-+=∆6、(1)利用第5题结论得ππ6.92.0242=⋅⋅=∆S (2)0167.0246.92≈=∆ππS S 综合练习(二)一、填空题1、)()(0x f '+βα;2、)(210x f ';3、x x f x f ∆⋅'+)()(00;4、!100;5、yy xe e -1;6、0,!0n a ⋅;7、x e x n )(+;8、dx x f e e e f x f x x )]()([)('⋅+⋅';9、012=-+y x ;10、01=-+y x ;二、选择题1、A ;2、C ;3、C ;4、D ;5、B ;6、D ;7、B ;8、A ;9、A ;10、B ; 三、计算题 1、2211ln xa a a x a axy x a x a +++='-2、dx x x dy x x y 22)(arctan ,)(arctan ==' 3、dx x x x dy 232)1(ln -=4、15、解:两边取对数,得)11ln()(ln xx x f += 两边同时对x 求导,得x x x f x f +-+='⋅11)11ln()()(1 所以]11)11[ln()11(]11)11)[ln(()(xx x x x x f x f x +-++=+-+=' 所以)323(ln 3)21(-='f6、dx x x f x x f dy )2sin )(cos 2sin )(sin (22'-'=7、21032102210102)1()2(,1e xe xe e dxyd e xe e dx dy y x y y y y x y x yy y x =--==-=========8、52222)(2)(2,)(1y x y x dx y d y x dx dy +++-=+= 9、)!2()1()1(,)!2()1()()()1()(--=--=--n f x n x fn n n n n10、解:21111lim 11lim )(lim 00=-+=--=---→→→x x x x f x x x b b ax x f x x =+=++→→)(lim )(lim 0要使函数在0=x 处连续,须有)0()(lim )(lim 0f x f x f x x ==+-→→,所以21=b 2000212)2(lim 02111lim 0)0()(lim )0(x x x x x x x f x f f x x x ---=----=--='---→→→- 81)12)2((21lim )12)2((2)12)2)((12)2((lim 020=-+-=-+--+----=--→→x x x x x x x x x x xa x ax x f x f f x x =--+=--='-+→→+021)21(lim 0)0()(lim )0(00 要使函数在0=x 处可导,须有)0()0(-+'='f f ,所以81=a 所以当81=a ,21=b 时,函数)(x f 在0=x 处连续且可导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章参考答案习题3-1(P66) 1、(1)不满足,在1=x 处不连续;(2)不满足,在2=x 处不可导; 2、(1)、1-=e ξ;(2)ππξ-=4;3、证明:设任意区间),(],[+∞-∞⊂b a ,显然函数在],[b a 上连续,在),(b a 内可导, 所以函数满足拉格朗日中值定理的条件,所以有q b a p ab r qa pa r qb pb f ++=-++-++=')()()()(22ξ 又q p r qx px f x +='++='=ξξξ2)()(2所以q p q b a p +=++ξ2)(,从而2ba +=ξ 所以命题成立。

4、方程有2个根,分别位于区间)2,1(和)3,2(内;5、)4,2(;6、证明:设x x f arctan )(=,显然函数)(x f 在),(+∞-∞内处处连续,处处可导, 设区间),(],[+∞-∞⊂a b ,则)(x f 在],[a b 上满足拉格朗日子中值定理的条件 所以),(a b 内至少存在一点ξ,使)(11arctan arctan 2b a b a -+=-ξ, 所以b a b a b a -≤-⋅+=-211arctan arctan ξ, 即b a b a -≤-arctan arctan习题3-2(P70)1、(1)1;(2)2;(3)a cos ;(4)53-;(5)81-; (6)0;(7)21-;(8)π2;(9)0;(10)21;2、(1)1,不能;(2)1,不能;习题3-3(P77)1、(1))1,(-∞增加,),1(+∞减少;(2)),(+∞-∞减少;(3))1,(--∞和),1(+∞增加,)1,1(-减少;(4))2,0(减少,),2(+∞增加;2、(1))3,(-∞减少,),3(+∞增加;(2)),0(1-e 减少,),(1+∞-e 增加;(3))0,(-∞增加,),0(+∞减少; (4))1,(-∞和),2735(+∞增加,)2735,1(减少; 3、证明:设1)(--=x e x f x ,则1)(-='xe xf ,当0>x 时,0)(>'x f所以函数)(x f 在),0(+∞上单调增加,所以当0>x 时,0)0()(=>f x f ,即01>--x e x ,从而x e x+>1 4、证明:设13)(23+-=x x x f ,显然函数)(x f 在]1,0[上连续,且01)1(,01)0(<-=>=f f由零点存在定理知,函数)(x f 在)1,0(至少有一个零点,又当)1,0(∈x 时,0)2(363)(2<-=-='x x x x x f ,函数单调减少所以函数)(x f 在)1,0(至多只有一个零点,即方程01323=+-x x 在)1,0(至多只有一个实根,因为0)1(,0)0(≠≠f f ,所以1,0==x x 不是方程的根,所以方程01323=+-x x 在]1,0[至多只有一个实根。

5、(1)极小值5)1(-=-f ,无极大值; (2)极小值3)2(-=f ,极大值23)1(=-f ; (3)极小值47)3(-=f ,极大值17)1(=-f ; (4)极小值45)43(=f ,无极大值; (5)极小值0)0(=f ,极大值24)2(ef =; (6)无极值;(7)极小值0)0(=f ,极大值1)1(=-f ; (8)提示:111-+-=x x y ,极小值2)0(-=f ,极大值2)2(=f ;6、解:显然函数)(x f 在),(+∞-∞上可导, 要使函数)(x f 在3π=x 处取得极值,须有0)3(='πf ,即0cos 3cos=+ππa ,解得2=a因为03)3sin 3sin 2()3(3<-=--=''=ππx x x f所以函数)(x f 在3π=x 处取得极大值,此时3sin 313sin2)3(=+=πππf 所以当2=a 时,函数)(x f 在3π=x 处取极大值3。

7、(1)最大值80)4(=f ,最小值5)1(-=-f ; (2)最大值11)3(=f ,最小值14)2()2(-==-f f ; (3)最大值1)1(=f ,最小值0)2()0(==f f ; (4)最大值0)0(=f ,最小值2ln )41(-=f ; (5)最大值21)1(=f ,最小值21)1(-=-f ; (6)最大值416)4(e f =-,最小值0)0(=f ;8、解:设车间靠墙壁的长为x 米,则不靠墙壁的长为)210(x -米,面积)210()(x x x S -=,200<<xx x S -='10)(,令0)(='x S ,得唯一驻点10=x ,因为01)(<-=''x S 所以)(x S 在10=x 处取极大值,又驻点唯一, 所以)(x S 在10=x 处取最大值,所以当小屋靠墙壁的长为10米,不靠墙壁的长为5米时,面积最大。

9、解:设经过x 小时两船相距为y 海里,则⎪⎩⎪⎨⎧>+-≤<+-=25.6,)6()]25.6(12[25.60,)6()1275(2222x x x x x x y当25.60≤<x 时,1125)5(180180036056251800180180036022+--=+--='x x x x x y ,令0='y ,得驻点5=x ,没有不可导点,依题意知目标函数存在最小值,且驻点唯一,所以当5=x 时,函数y 取最小值515 当25.6>x 时,5155.37)25.66(2>=⨯>y综上可知,经过5小时,两船距离最近。

10、解:设)(m x BM =,那么22200,600+=-=x CM x AM ,所以掘进费2220013)600(5++-=x x y )6000(≤≤x 52001322-+='x x y ,令0='y ,得唯一驻点3250=x ,没有不可导点 当0=x 时,5600=y ;当3250=x 时,2.4717≈y ;600=x 时,9.8221≈y 比较得2.4717≈y 最小,此时7.5163250600≈-=AM ,所以从A 处沿水平掘进516.7米后,再斜向下沿直线掘进到C 处,掘进费最省,为4717.2元。

11、解:矩形底宽为x 米,高为h 米,则周长2)2(2++=πx h y 由582=+x xh π得85x x h π-=,所以4)4(10++=πx x y )0(>x 21044x y -+='π,令0='y ,得驻点440+=πx 依题意目标函数存在最小值,且驻点唯一,所以当440+=πx 米时,截面的周长最小。

12、解:设漏斗的地面半径为r ,高为h ,则h r V ⋅=231π 由ϕπR r =2,得πϕ2R r =,222242ϕππ-=-=R r R h所以22223242431ϕπϕππ-=⋅=R h r V )20(πϕ<< 2222234)38(24ϕπϕπϕπ--⋅='R V ,令0='V ,解得πϕ38= 依题意,目标函数存在最大值,且驻点唯一,所以当πϕ38=时,函数取最大值,即当πϕ38=时,做成的漏斗容积最大。

13、解:设内接直圆柱的底半径为r ,高为h 2,则圆柱的体积h r V 22π=因为球内接圆柱,所以有222R h r =+,得22r R h -=所以6242rR r V -=π)0(R r <<, 2222)32(2rR r R r V --='π,令0='V ,得R r 32=,此时R h 342= 依题意,函数存在最大值,且驻点=唯一,所以当R r 32=时,函数取最大值, 所以内接直圆柱的半径为R 32、高为R 34时,体积最大。

14、解:如图ϕϕtan 3sin 152-=--=DC DA h 因为ϕϕtan 3,5.1sin 15=+=DC DA , 所以5.0tan 3sin 15--=ϕϕh )20(πϕ<<ϕϕϕϕ232cos 3cos 15sec 3cos 15-=-='h ,令0='h ,解得351cos =ϕ 此时81.02511cos1sin 32≈-=-=ϕϕ, 39.11251cos 11sec tan 322≈-=-=-=ϕϕϕ依题意知,函数存在最大值,且驻点唯一,所以当351cos =ϕ时,函数取最大值 648.75.039.1381.0155.0tan 3sin 15>≈-⨯-⨯≈--=ϕϕh 所该吊车能把屋架吊上去。

15、解:利润50015001.0)()()(2-+-=-=x x x C x R x L15002.0)(+-='x x L ,令0)(='x L ,得唯一驻点7500=x依题意,函数存在最大值,且驻点唯一,所以当7500=x 时,)(x L 最大, 即应生成7500台,才能获得最大利润。

习题3-4(P83)1、(1)凸区间为)35,(-∞,凹区间为),35(+∞,拐点为)2720,35(; (2)凸区间为)1,(--∞和),1(+∞,凹区间为)1,1(-,拐点为)2ln ,1(-和)2ln ,1(; (3)凸区间为)0,(-∞和),21(+∞,凹区间为)21,0(,拐点为)0,0(和)161,21(; (4)凸区间为)1,0(和),(2+∞e ,凹区间为),1(2e ,拐点为)2,(22e e ;(5)凸区间为)3,(--∞和)3,0(,凹区间为)0,3(-和),3(+∞,拐点为)43,3(--、)0,0(和)43,3(; 2、略;综合练习(三)(P83) 一、填空题1、2;2、2;3、)1,0(),,1(+∞;4、1,1-;5、)2,2(),1,1(2e e ;6、2;7、)0,(),,0(-∞+∞; 8、0;9、必要;10、)(bf ;二、选择题1、D ;2、C ;3、A ;4、B ;5、B ;6、C ;7、B ;8、D ;9、C ;10、B ; 三、计算题 1、(1)61;(2)21-; (3)原式)1ln(ln lim)1ln(ln 0ln 0)1ln(1lim lim --→→+→+-+===x x xx e e x exx xx e e ee e e exx xx xx x x x x xe e e xe e e ex ====+--+→+→+→00lim1lim11lim ;(4)原式xx x x x 22220sin sin lim -=→xx x x x xx x x cos sin 2sin 22cos sin 2lim220+-=→xx x x xx x 2sin sin 222sin lim 220+-=→xx x x x x x x x 2cos 22sin 22sin 2sin 222cos 2lim220+++-=→xx x x x x x 2cos 2sin 2sin 12cos lim220++-=→ xx x x x x x x xx 2sin 22cos 22cos 42sin 22sin 2sin 2lim20-+++-=→ xx x x x xx 2sin 22cos 62sin 32sin 2lim20-+-=→ xx x x x x x x 2sin 2cos 322sin 322sin 2lim 0-+⋅⋅-=→31-=2、解:函数的定义域为),(+∞-∞ 3232)6(3)4(3x x x x y -⋅-=',令0='y ,得驻点41=x ,导数不存在的点为6,032==x x所以,函数在区间)0,(-∞和),4(+∞单调减少,在区间)4,0(单调增加,极小值为0,极大值为342。

相关文档
最新文档