高中物理弹簧模型经典题型汇总

合集下载

弹簧类型题

弹簧类型题

弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。

弹簧问题专项复习及练习题(含详细解答)

弹簧问题专项复习及练习题(含详细解答)

高三物理第二轮专题复习(一)弹簧类问题轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。

问题类型:1、弹簧的瞬时问题弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。

弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。

2、弹簧的平衡问题这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。

3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。

弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。

有些问题要结合简谐运动的特点求解。

4、弹力做功与动量能量的综合问题弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。

如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。

在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。

它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。

分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。

规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。

当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。

系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。

(实际上应为机械能守恒)典型试题1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。

在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。

物块落在弹簧上,压缩弹簧,到达C点时,物块的速度为零。

高中物理弹簧模型经典题型汇总

高中物理弹簧模型经典题型汇总

弹簧专题1、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.例1、如图3-7-15所示,质量为m的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b、对质点的作用力均为F,则弹簧c对质点作用力的大小可能为( )A、0B、F mg+C、F mg-D、mg F-2、轻弹簧高中物理中描述一类物体时常在其前面加上限定词“轻”,如“轻结点”、“轻绳”、“轻弹簧”、“轻杆”、“轻滑轮”等.“轻"主要可以理解为物体质量对所研究的物理问题影响很小,可以忽略不计,它是一种理想化的物理模型。

根据牛顿第二定律F = ma知,由于“轻物体”质量为零,无论其加速度多大,所受合外力必然为零,与物体的运动状态无关.这也是它与常规物体的最大区别.例2、如图4所示,4个完全相同的轻质弹簧都处于水平位置,他们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以L1、L2、L3、L4依次表示4个弹簧的伸长量.则有()3、质量不可忽略的弹簧例3、如图所示,一质量为M、长为L的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.答案解析Fx=FLx图3-7-154、三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是轻质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变,即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变。

例4、如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.求解下列问题:(1)现将线L2剪断,求剪断L2的瞬间物体的加速度.(2)若将图甲中的细线L1换成长度相同,质量不计的轻弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体的加速度.例5、如图所示,一光滑圆环竖直固定在地面上,三个完全相同的质量均为m的小球穿在圆环上,其中小球A位于圆环最高点,小球B、C位于同一高度,小球A与小球B之间、小球A与小球C间用等长的轻质细绳相连,小球B与小球C用轻弹簧相连。

高中物理弹簧问题分类全解析

高中物理弹簧问题分类全解析

高中物理弹簧问题分类全解析一、有关弹簧题目类型 1、平衡类问题 2、突变类问题3、简谐运动型弹簧问题4、功能关系型弹簧问题5、碰撞型弹簧问题6、综合类弹簧问题 二、分类解析 1、平衡类问题例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k 1B.m2g/k 2C.m1g/k 2D.m2g/k 2解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即当上面木块离开弹簧时,受重力和弹力,则【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。

细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。

物体静止在斜面上,弹簧秤的示数为4.9N 。

关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。

则1m 所受支持力N 和摩擦力f 正确的是ACA .12sin N m g m g F θ=+-B .12cos N m g m g F θ=+-C .cos f F θ=D .sin f F θ=2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。

若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少?解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功),W 弹=-mgx -W F =-4.5J所以弹性势能增加4.5焦耳点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功2、突变类问题例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求(1)烧断细绳瞬间,小球的加速度(2)在C处弹簧与小球脱开瞬间,小球的加速度解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2,解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得F AC =mgsinθ2/sin(θ1+θ2)则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。

弹簧模型(原卷版)—动量守恒的十种模型解读和针对性训练

弹簧模型(原卷版)—动量守恒的十种模型解读和针对性训练

动量守恒的十种模型解读和针对性训练弹簧模型模型解读【典例分析】【典例】(2024高考辽吉黑卷)如图,高度0.8m h =的水平桌面上放置两个相同物块A 、B ,质量A B 0.1kg m m ==。

A 、B 间夹一压缩量Δ0.1m x =的轻弹簧,弹簧与A 、B 不栓接。

同时由静止释放A 、B ,弹簧恢复原长时A 恰好从桌面左端沿水平方向飞出,水平射程A 0.4m x =;B 脱离弹簧后沿桌面滑行一段距离B 0.25m x =后停止。

A 、B 均视为质点,取重力加速度210m/s g =。

求:(1)脱离弹簧时A 、B 的速度大小A v 和B v ;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能p E D。

的【针对性训练】1. (2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A 、B 两物块,质量分别为2kg 、6kg ,B 的左端拴接着一劲度系数为200N/m 3的水平轻质弹簧,它们的中心在同一水平线上。

A 以速度v 0向静止的B 方向运动,从A 接触弹簧开始计时至A 与弹簧脱离的过程中,弹簧长度l 与时间t 的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能2p 12E kx =(x 为弹簧的形变量),则( )A. 在0~2t 0内B 物块先加速后减速B. 整个过程中,A 、B 物块构成的系统机械能守恒C. v 0=2m/sD. 物块A 在t 0时刻时速度最小2. (2024河南新郑实验高中3月质检)如图甲所示,一轻弹簧的两端与质量分别为m 1、m 2的两物块A、B 相连接,并静止在光滑水平面上。

现使A 获得水平向右、大小为3m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都处于伸长状态B.从t 3到t 4时刻间弹簧由压缩状态恢复到原长C.两物体的质量之比为m 1:m 2=1:2D.在t 2时刻A 、B 两物块的动能之比为E k 1:E k 2=8:13. (2024山东济南期末)如图甲所示,物块A 、B 用轻弹簧拴接,放在光滑水平面上,B 左侧与竖直墙壁接触。

弹簧模型专题(有答案)

弹簧模型专题(有答案)

高中物理弹簧模型专题一、弹簧称的示数例1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上;②中弹簧的左端受大小也为 F 的拉力作用;③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以 l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则判断l 1、l 2、l 3、l 4的大小关系。

变式训练.一个质量为m 的物体在一弹簧称的作用下沿竖直向上做加速度为a 的匀加速直线运动,忽略空气阻力,重力加速度为g ,求弹簧称的示数.规律总结:弹簧称的示数等于轻质弹簧一端的拉力大小,并不一定等于物体的重力二、与物体平衡相关的弹簧问题例2.如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为 ( C )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2三、弹簧的瞬时性问题例3.质量分别为m 和2m 的小球P 、Q 用轻弹簧相连,P 用细线悬挂在天花板下,开始系统处于静止。

求:(1)剪断细线瞬间,P 、Q 的加速度(2)剪断弹簧瞬间,P 、Q 的加速度 变式训练.如图所示,小球P 、Q 质量均为m ,分别用轻弹簧b 和细线c 悬挂在天花板下,再用另一细线d 、e 与左边的固定墙相连,静止时细线d 、e 水平,b 、c 与竖直方向夹角均为θ=37º。

下列判断正确的是A .剪断d 瞬间P 的加速度大小为0.6gB .剪断d 瞬间P 的加速度大小为0.75gC .剪断e 前c 的拉力大小为0.8mgD .剪断e 后瞬间c 的拉力大小为1.25mg规律总结:当弹簧两端都有约束时,弹簧弹力不发生突变;细绳的弹力可以发生突变四、与动力学相关的弹簧问题例4.如图所示,一轻质弹簧竖直放在水平地面上,小球A 由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是( BD )A.小球加速度方向始终向上B.小球加速度方向先向下后向上C.小球速度一直减小D.小球速度先增大后减小边式训练:如图所示,轻弹簧下端固定,竖立在水平面上。

│ ├─弹簧模型经典考法提炼.pdf

│ ├─弹簧模型经典考法提炼.pdf

弹簧模型经典考法提炼
弹簧模型是高中物理中一个重要的模型,涉及到力学、运动学和能量等多个方面。

以下是一些弹簧模型的经典考法提炼:
1.胡克定律:胡克定律是弹簧的基本性质,即弹簧的弹力与
弹簧的形变量成正比。

在胡克定律中,要注意区分弹簧的
压缩和伸长状态,以及初始长度和形变量的大小关系。

2.弹簧的振动:弹簧的振动是常见的运动形式之一,涉及到
周期、振幅、速度和加速度等物理量。

在解决弹簧振动的
题目时,要特别注意平衡位置和最大位移处的特点和性质。

3.弹性势能:弹簧的弹性势能是弹簧形变时所具有的能量,
与形变量和劲度系数有关。

在计算弹性势能时,要注意弹
簧处于压缩或伸长状态时的不同,以及弹性势能与动能之
间的转换关系。

4.动能和势能的转化:弹簧可以与其他物体组成各种运动系
统,通过分析物体的速度、加速度和位移等物理量,可以
判断出能量的转化方向和数量关系。

5.共点力的平衡:在分析弹簧的平衡问题时,要注意区分弹
簧的弹力和其他外力,并根据平衡条件列出方程进行求解。

6.牛顿运动定律:弹簧可以与其他物体组成各种运动系统,
通过分析物体的加速度、速度和位移等物理量,可以判断
出物体的运动状态和受力情况。

以上是弹簧模型的经典考法提炼,通过理解这些考法,可以更
好地掌握弹簧模型的基本性质和运动规律,提高解题能力。

高中物理模型-弹簧模型(动力学问题)

高中物理模型-弹簧模型(动力学问题)

模型组合讲解——弹簧模型(动力学问题)李涛[模型概述]弹簧模型是高考中出现最多的模型之一,在填空、实验、计算包括压轴题中都经常出现,考查范围很广,变化较多,是考查学生推理、分析综合能力的热点模型。

[模型讲解]一. 正确理解弹簧的弹力例1. 如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。

②中弹簧的左端受大小也为F 的拉力作用。

③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。

④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有( )① ②③④图1A. l l 21>B. l l 43>C. l l 13>D. l l 24= 解析:当弹簧处于静止(或匀速运动)时,弹簧两端受力大小相等,产生的弹力也相等,用其中任意一端产生的弹力代入胡克定律即可求形变。

当弹簧处于加速运动状态时,以弹簧为研究对象,由于其质量为零,无论加速度a 为多少,仍然可以得到弹簧两端受力大小相等。

由于弹簧弹力F 弹与施加在弹簧上的外力F 是作用力与反作用的关系,因此,弹簧的弹力也处处相等,与静止情况没有区别。

在题目所述四种情况中,由于弹簧的右端受到大小皆为F 的拉力作用,且弹簧质量都为零,根据作用力与反作用力关系,弹簧产生的弹力大小皆为F ,又由四个弹簧完全相同,根据胡克定律,它们的伸长量皆相等,所以正确选项为D 。

二. 双弹簧系统例2. (2004年苏州调研)用如图2所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度。

该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器。

用两根相同的轻弹簧夹着一个质量为2.0kg 的滑块,滑块可无摩擦的滑动,两弹簧的另一端分别压在传感器a 、b 上,其压力大小可直接从传感器的液晶显示屏上读出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧专题
1、弹簧弹力的双向性
弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.
例1、如图3-7-15所示,质量为m的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0
120,已知弹簧a b
、对质点的作用力均为F,则弹簧c对质点作用力的大小可能为
( )
A、0
B、F mg
+C、F mg
-D、mg F
-
2、轻弹簧
高中物理中描述一类物体时常在其前面加上限定词“轻”,如“轻结点”、“轻绳”、“轻弹簧”、“轻杆”、“轻滑轮”等.“轻"主要可以理解为物体质量对所研究的物理问题影响很小,可以忽略不计,它是一种理想化的物理模型。

根据牛顿第二定律F = ma知,由于“轻物体”质量为零,无论其加速度多大,所受合外力必然为零,与物体的运动状态无关.这也是它与常规物体的最大区别.
例2、如图4所示,4个完全相同的轻质弹簧都处于水平位置,他们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以L1、L2、L3、L4依次表示4个弹簧的伸长量.则有()
3、质量不可忽略的弹簧
例3、如图所示,一质量为M、长为L的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.
答案解析F
x
=F

x
图3-7-15
4、三、弹簧的弹力不能突变(弹簧弹力瞬时)问题
弹簧(尤其是轻质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变,即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变。

例4、如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.求解下列问题:
(1)现将线L2剪断,求剪断L2的瞬间物体的加速度.
(2)若将图甲中的细线L1换成长度相同,质量不计的轻
弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体
的加速度.
例5、如图所示,一光滑圆环竖直固定在地面上,三个完全相同的质量均为m的小球穿在圆环上,其中小球A位于圆环最高点,小球B、C位于同一高度,小球A与小球B之间、小
球A与小球C间用等长的轻质细绳相连,小球B与小球C用轻弹簧相连。

两绳与
弹簧轴线构成正三角形,三个小球处于静止状态,此时弹簧处在伸长状态,且F
弹=mg,小球A与小球B间轻绳拉力为F1,剪断小球与小球C间细绳的瞬间,小
球A与小球B间细绳拉力为的大小为F2,则F1与F2的比值为()
A.1:1B.2:1C.2−√3
3D.1+√3
2
5、弹簧串、并联组合
弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;完全相同的两根弹簧并联时,每根弹簧的形变量相等.
串联:F=K
1∆x

=K

∆x

则有:∆x=∆x

+∆x

=F(1


+1



等效思想,设等效劲度系数为K’则有K
等效=(1


+1



并联: 如图6所示,请你参考串联等效劲度系数求解方法,求出弹簧并联时等效劲度系数。

例6: 一根轻质弹簧,其劲度系数为K . 现在弹簧
13
处用工具将其剪断,则原弹簧变
成长度分别为 原来的
13

23
的两根新弹簧.试分别求出两根新弹 簧的劲度系数.
例7、如图3-7-17所示,两个劲度系数分别为12k k 、的轻弹簧竖直悬挂,下端用光滑细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一重为G 的物体后滑轮下降,求滑轮静止后重物下降的距离.
6:与弹簧相关的临界问题
通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要高开地面;相互接触的物体恰好要脱离等。

此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。

例8、如图所示,斜面体M 的底面粗糙,斜面光滑,放在粗糙水平面上。

弹簧的一端固定在墙面上,另一端与放在斜面上的物块m 相连,弹簧的轴线与斜面平行,若物块在斜面上做周期性往复运动,斜面体保持静止,则地面对斜面体的摩擦力f 与时间t 的关系图像正确的( )。

变式:本题中弹簧上端固定在斜面上,则地面对斜面体的摩擦力f 与时间t 的关系图像正确的( )
图 3-7-17
例9、如图5所示,轻弹簧的一端固定在地面上,另一端与木块B 相连,木块A 放在木块B 上,两木块质量均为m ,在木块A 上施有竖直向下的力F ,整个装置处于静止状态.
(1)突然将力F 撤去,若运动中A 、B 不分离,则A 、B 共同运动到最高点时,B 对A 的弹力有多大?
(2)要使A 、B 不分离,力F 应满足什么条件?
7、弹簧中的能量和动量问题
例10、如图3-7-14所示,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为
2
m 的物体B 相连,弹簧的劲度系数为k ,物体A B 、都处于静止状态.一不可伸长的轻绳
一端绕过轻滑轮连接物体A ,另一端连接一轻挂钩.开始时各段绳都处于伸直状态,物体A 上方的一段绳沿竖直方向.现给挂钩挂一质量为2m 的物体C 并从静止释放,已知它恰好能使物体B 离开地面但不继续上升.若将物体C 换成质量较大的3m 的物体D ,仍从上述初
始位置由静止释放,则这次物体B 刚离地时,物体D 的速度大小是多少?已知重力加速度为g 10m /s 2
例11、如图所示,A 、B 两个矩形木块用轻弹簧相接静止在水平地面上,弹簧的劲度系数为k,木块A 和木块B 的质量均为m.(1)若用力将木块A 缓慢地竖直向上提起,木块A 向上提起多大高度时,木块B 将离开水平地面.
(2)若弹簧的劲度系数k 是未知的,将一物体C 从A 的正上方某位置处无初速释放,C 与A 相碰后立即粘在一
图 3-7-14
起(不再分离)向下运动,它们到达最低点后又向上运动.已知C的质量为m时,把它从距A高为H处释放,则
,要使B始终不离开地面,则释放时,C距A的高
最终能使B刚好离开地面.若C的质量为m

度h不能超过多少?
12.如图所示,固定于地面、倾角为的光滑斜面上有一轻质弹簧,轻质弹簧一端与固定于斜面底端的挡板C连接,另一端与物块A连接,物块A上方放置有另一物块B,物块A、B质量均为m且不粘连,整个系统在沿斜面向下的外力F作用下处于静止状态.某一时刻将力F撤去,在弹簧将A、B弹出过程中,若A、B能够分离,重力加速度为g.则下列叙述正确的是()
A.A、B刚分离的瞬间,两物块速度达到最大
B.A、B刚分离的瞬间,A的加速度大小为gsinθ
C.从力F撤去到A、B分离的过程中,A物块的机械能一直增加
D.从力F撤去到A、B分离的过程中,A、B物块和弹簧构成的系统机械能守恒
13.如图所示,一足够长固定斜面的倾角为37o,在斜面底端同定一垂直斜面的挡板。

劲度系数
的轻弹簧,下端固定在挡板上,上端固定在质量为的小滑块P上,此时弹簧平行斜面。

质量为的小滑块Q与P靠在一起,并不粘连。

P、Q与斜面间的动摩擦因数分别为
和。

对Q施加一个沿斜面向下的作用力,系统静止时弹簧压缩量
为。

已知,,重力加速度g=
10m/s2,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内。

求:(1)在撤去外力瞬间,P对Q的弹力大小;
(2)P、Q第一次分离前一起运动的位移。

相关文档
最新文档