光合作用速率的测定方法

合集下载

光合作用速率测定方法

光合作用速率测定方法

光合作用速率测定方法谭家学(湖北省十堰市郧阳区第二中学442500)光合作用强度的大小直接影响植物的生长,可以设置装置来测定植物的光合作用强度。

一、 光合作用速率的表示方法1.净光合速率表示方法:单位时间内单位面积叶片CO 2的吸收量或O 2的释放量或有机物积累量。

2.真正光合速率表示方法:单位时间内单位面积叶片CO 2的固定量或O 2的产生量或有机物生产量。

光合速率测定时,在黑暗(遮光)条件下测呼吸速率,在光下测净光合速率,真正光合速率等于呼吸速率加净光合速率。

3.看清这些词语是准确解题的关键:CO 2是“消耗量”还是“吸收量”, O 2是“产生量”还是“释放量”,有机物是“生产量”还是“积累量”,因为CO 2的消耗量等于呼吸作用CO 2释放量加从外界CO 2吸收量;O 2的产生量等于呼吸作用消耗的O 2量加释放到外界环境O 2量;有机物的生产量等于呼吸作用消耗有机物量加净积累量。

二、光合作用速率的测定方法1.测定方法:将右图装置的广口瓶中加入碳酸氢钠稀溶液,给予适宜光照,光合作用消耗的CO 2由碳酸氢钠稀溶液提供,玻璃管红色液滴右移的数值(记作S 1)表示光合作用释放的O 2量;再用一套装置,不给予光照,其它条件均相同,玻璃管红色液滴左移的数值(记作S 2)表示呼吸作用消耗O 2量。

2.结果分析:净光合作用速率等于光照条件下单位时间内O 2的释放量(即S 1);真正光合作用强度等于光照条件下单位时间内O 2的释放量与呼吸作用O 2消耗量之和(S 1+ S 2)。

3.物理误差的校正:由于装置的气体体积的变化也可能会由温度等物理因素所引起,为使测定结果更趋准确,应设置对照实验,以校正物理膨胀等因素对实验结果造成的误差。

此时,对照实验与该装置相比,应将所测生物灭活,而其他各项处理应与实验组完全一致。

三、典例引领【例】某转基因作物有很强的光合作用强度。

某中学生物兴趣小组在暑假开展了对该转基因作物光合强度测试的研究课题,设计了如下装置。

光合速率的测定方法

光合速率的测定方法

光合速率的测定方法
光合速率是指光合作用产生的氧气释放速率或者二氧化碳吸收速率。

测定光合速率的方法有以下几种:
1. 氧气传感器法:使用氧气传感器,测量培养液中氧气的变化,通过记录氧气消耗量或释放量来计算光合速率。

2. 二氧化碳传感器法:使用二氧化碳传感器,测量培养液中二氧化碳的变化,通过记录二氧化碳吸收量或释放量来计算光合速率。

3. 酸碱滴定法:通过测量培养液中的酸碱度变化,借助酸碱指示剂来确定二氧化碳释放量或吸收量,从而计算光合速率。

4. 放射性同位素标记法:使用放射性同位素标记二氧化碳,测量标记二氧化碳在光合作用中的吸收速率,以此计算光合速率。

5. 叶绿素荧光法:测量叶片表面叶绿素荧光的参数,如最大荧光效率、非光化学淬灭等,来推断光合速率。

这些方法都有各自的优缺点和适用范围,根据实验需求和条件选择适合的方法。

光合速率测定的几种方法

光合速率测定的几种方法

光合速率测定的几种方法光合速率是指植物通过光合作用所固定的二氧化碳量,它可以用于评估植物对光的利用效率以及其生物质生产的能力。

测定光合速率是研究植物生理生态学和农业生产的重要手段之一、以下是几种常用的光合速率测定方法。

一、传统气体混合法传统气体混合法是一种较为常用的光合速率测定方法。

通过测定固定在葉片表面的气体浓度变化来推算光合速率的。

测定的原理是将一定浓度的CO2与空气以一定比例混合,然后将混合气在特定压力下冲入封闭的光合室内,再通过一定时间的光合作用后,取样测定光合室内的气体组成,计算出被吸收的CO2量,进而计算出光合速率。

二、氧电极法氧电极法是一种常用的间接测定光合速率的方法。

氧电极法是利用氧电极测定叶绿素蒸腾产生的氧气来推算光合速率的。

测定的原理是将叶片置于氧电极下,测定放氧荧光的强度随时间的变化。

光合速率可以通过氧电极的输出信号来推算。

三、原位测定法原位测定法是一种利用挂在植物叶片上的CO2和H2O气体测定光合速率的方法。

此方法通过将CO2和H2O气体源直接与光合叶盘表面相接触,测得的CO2和H2O浓度变化来推算光合速率。

在该方法中,CO2和H2O的浓度是测定光合速率的关键,因此需要精准的测量设备。

四、地上蒸散法地上蒸散法是一种通过测定叶片或整个植物的蒸散量来间接推算光合速率的方法。

测定的原理是根据光合产生的O2和CO2的摩尔比例,将蒸散量转化为光合速率。

这种方法测定简便,但需要注意与植物蒸腾速率的关系以及测量误差的产生。

五、传导法传导法是一种通过测量阳光照射下植物干重的增加来间接推算光合速率的方法。

测定的原理是劈片的叶片从植物中剪下,然后用适当的方法阻止其呼吸和光合作用,使叶片处于可见光的照射下,一定时间后,再测定其干重的增加。

通过干重的增加来推算光合速率。

光合速率的测定方法有很多种,每种方法都有其优点和限制。

因此,在选择使用哪种方法时,需要考虑到具体的实验条件和研究目的,并进行合理的评估。

浅谈测定光合速率的常用方法

浅谈测定光合速率的常用方法

浅谈测定光合速率的常用方法
测定光合速率是研究光合作用的重要手段,可以帮助我们了解植物对光合效率的影响以及调控机制。

下面将介绍几种常用的测定光合速率的方法。

一、氧气电极法
氧气电极法是测定光合速率最常用的方法之一。

它通过测量在光照条件下,光合产氧过程中所释放的氧气来得出光合速率。

实验步骤如下:首先将一个含有光合作用物质(如菠菜叶片)的盛有一定体积的溶液放置在氧气电极下,然后在光照条件下记录一定时间内溶液中氧气浓度的变化,通过计算得到单位时间内溶液所释放的氧气量,从而得到光合速率。

二、溴酸法
溴酸法是另一种测定光合速率的常用方法。

它是通过观察溴水的颜色变化来反映光合速率的大小。

实验步骤如下:首先将一片植物叶片放置在盛有溴水的容器中,然后将容器置于光照条件下。

溴水中的溴酸逐渐被光合作用所消耗,当溴水颜色由橙黄色转变为无色时,可以得出光合速率的大小。

三、CO2吸收法
CO2吸收法是利用光合作用过程中植物对CO2吸收的特性来测定光合速率的一种方法。

实验步骤如下:在一个密闭的容器中放置一片叶片,然后将该容器连接到一个CO2含量确定的溶液上。

在光照条件下,叶片会光合作用吸收CO2,导致溶液中CO2浓度下降。

通过测量单位时间内CO2浓度下降的大小,来得到光合速率。

四、光合色素吸收法
实验步骤如下:将一片植物叶片置于一个溶液中。

然后,使用特定波长的光源照射叶片,测量透过叶片的光强度。

根据光的强度减弱程度,可以得出光合速率的大小。

光合作用速率的测定方法

光合作用速率的测定方法

光合作用速率的测定方法一、“半叶法”-测光合作用有机物的生产量。

即单位时间、单位叶面积干物质的量【例1】某研究小组用番茄进行光合作用实验,采用“半叶法”对番茄叶片的光合作用强度进行测定。

其原理是:将对称叶片的一部分(A)遮光,另一部分(B)不做处理(见图1),并采用适当的方法(可先在叶柄基部用热水或热石蜡液烫伤,或用呼吸抑制剂处理)阻止两部分的物质和能量转移。

在适宜光照下照射6h后,在A、B的对应部位截取同等面积的叶片。

烘干称重,分别记为M A—M B,获得相应数据,则可计算出该叶片的光合作用强度,其单位是mg (dm2·h)。

问题:若M=M B—M A,则M表示____ 。

【解析】如图l所示,A部分遮光,这半片叶片虽不能进行光合作用,但仍可照常进行呼吸作用。

另一半B部分叶片既能进行光合作用,又可以进行呼吸作用。

设初始质量为a,呼吸作用消耗质量为b,净光合质量为b,则:M A=a—b,M B=a+c,所以:M=M B -M A=c+b,即M表示总光合作用质量。

这样,真正光合速率(单位:mg/dm2.h)就是M值除以时间再除以叶面积。

【答案]B叶片被截取部分在6h内光合作用合成的有机物总量二、气体体积变化法—一测光合作用O2产生(或CO2消耗)的体积【例2】某生物兴趣小组设计了如图2所示的装置进行光合速率的测试实验(忽略温度对气体膨胀的影响)。

(1)测定植物的呼吸作用强度:在该装置的小烧杯中放入适宜浓度的NaOH溶液适量;将玻璃钟罩遮光处理,放在适宜温度的环境中;th后记录红墨水滴移动的方向和刻度,得X值。

(2)测定植物的净光合作用强度:在该装置的小烧杯中放入NaHCO3缓冲溶液适量;将装置放在光照充足、温度适宜的环境中;1h后记录红墨水滴移动的方向和刻度,得Y值。

请你预测在植物生长期红墨水滴最可能移动的方向并分析原因,并将结果填入表中:项目红墨水滴移动原因分析测定植物呼吸作用 a. C.测定植物净光合作 b. d.【解析】(1)测定植物的呼吸作用强度时,将玻璃钟罩遮光处理,绿色植物只进行呼吸作用。

光合速率的测量方法

光合速率的测量方法

光合速率的测量方法光合速率是指单位时间内光合作用下光能转化为化学能的速度,是植物生长和养分吸收的重要指标之一。

测量光合速率的方法很多,主要包括密闭法、气体分析法、放射性同位素标记法和荧光测量法等。

下面将详细介绍这些方法及其原理。

密闭法是一种比较常用的测量光合速率的方法,其基本原理是通过测量植物在密闭环境中消耗或释放的氧气(O2)或二氧化碳(CO2)来确定光合速率。

在实验中,一般会用密闭容器将植物样品封闭起来,然后利用气体分析仪测量容器中氧气或二氧化碳的浓度变化,从而计算光合速率。

此方法的优点是简单易行,但需要严格控制环境条件,如光照强度、温度和湿度等,才能获得准确的测量结果。

气体分析法是另一种常用的测量光合速率的方法,其原理是通过测量光合作用中释放或吸收的氧气或二氧化碳来确定光合速率。

在实验中,植物样品会放置在容器中,然后利用气体分析仪测量容器中氧气或二氧化碳的浓度变化,并根据浓度变化计算光合速率。

与密闭法相比,气体分析法不需要封闭整个系统,易于操作,并且可以实时监测光合速率的变化。

放射性同位素标记法是一种较为精确的测量光合速率的方法,其原理是利用放射性同位素标记光合产物来跟踪光合作用的过程。

具体操作中,可以将CO2或H2O 中的放射性同位素标记后输入到植物中,标记的同位素会随光合作用的进行被固定在有机物中,然后通过测量有机物中的同位素浓度变化来计算光合速率。

这种方法的优点是非常准确可靠,可以同时测量不同物质的光合速率,但使用放射性同位素存在较高的风险和技术要求。

荧光测量法是一种新型的测量光合速率的方法,它利用叶绿体中叶绿素的荧光特性来间接测量光合速率。

荧光测量法通过测量叶绿素荧光在不同光照强度下的变化来确定光合速率。

当光照强度较强时,荧光强度会降低,而光合速率会增加,反之亦然。

这种方法简单易行,可以实时监测光合速率的变化,并且不需要复杂的仪器和试剂,因此具有广泛的应用前景。

除了以上介绍的方法外,还有一些其他的测量光合速率的方法,如光谱测量法、光合膜片测量法等。

光合作用速率的测定

光合作用速率的测定

光合作用速率的测定一、光合作用速率的测定方法:1.排气法:通过测量光照条件下溶液中氧气含量的变化来计算光合作用速率。

该方法适用于水生植物或耐水培植物的测定。

2.密闭法:通过密闭系统中二氧化碳浓度的变化来计算光合作用速率。

该方法适用于陆生植物的测定。

二、实验步骤:1.准备实验材料:藻类或陆生植物样本、荧光光度计、剪刀、试管、液氮、气压计等。

2.收集样本:为了得到准确的测定结果,应选择新鲜健康的植物样本,并进行预处理。

对于陆生植物,需要将叶片放置在完全恒温下、明亮的环境中恢复光合作用。

对于水生植物,需要用液氮冷冻杀菌并保存。

3.准备实验装置:根据测定方法选择合适的实验装置。

对于排气法,需将植物样本放入溶液中的光照箱中,并通过导管连接到荧光光度计。

对于密闭法,需将植物样本放入密闭的玻璃容器中,并通过管道连接到气压计和荧光光度计。

4.测定光合作用速率:对于排气法,将植物样本放入光照箱中,设置合适的光照强度和温度,并通过导管将溶液和荧光光度计连接起来。

测量一段时间内光度计的荧光强度变化,并计算出氧气的产生速率。

对于密闭法,将植物样本放入密闭的玻璃容器中,设置合适的光照强度和温度,并通过管道将气压计和荧光光度计连接起来。

测量一段时间内光度计的荧光强度变化,并计算出二氧化碳的吸收速率。

5.分析结果:根据实验测得的光合速率数据,可以分析植物在不同光强、温度和浓度等条件下的光合活性。

比较不同样本的光合速率,可以进行实验结果的统计学分析。

三、注意事项:1.实验环境要保持稳定,尽量减小干扰因素的影响,确保测定结果的准确性。

2.植物样本要在光照充足、温度适宜的条件下进行实验,以保证植物的生理活性。

3.测定前应校准实验装置,确保其工作正常,并在实验过程中对装置进行监控。

4.实验过程中要随时记录观察数据,以便后续分析和结果展示。

5.实验结束后要及时清理实验设备,确保实验室环境的整洁和安全。

光合作用实验的解析方法

光合作用实验的解析方法

光合作用实验的解析方法光合作用是一种生物体内的基本代谢过程,它是绿色植物和蓝藻细菌等光合有机生物对光能进行利用的过程。

光合作用通过将光能转化为化学能,使植物能够吸收二氧化碳并释放氧气,从而维持整个生态系统的能量来源和氧气供应。

为了研究光合作用的机理,科学家们开展了许多实验研究,并发展了一系列解析方法。

下面将介绍几种常用的光合作用实验解析方法。

1. 氧气释放法:这是最常用的测量光合作用速率的方法之一。

实验中,使用一个水培植物样品,将其光照,然后将样品装入一个密闭的容器中,并通过分析其溶解氧水平的变化来测量光合作用速率。

首先,装入的容器中只含有水,并在光照条件下进行一段时间,以达到平稳的氧气释放速率。

然后,将植物样品加入容器中,并再次记录一段时间内的氧气释放速率。

通过比较两个阶段的氧气释放速率,可以得出植物光合作用的速率。

2. 光谱法:光合作用依赖于色素分子对光的吸收,因此光谱法可以用来研究这些吸收的过程。

实验中,将叶片浸泡在提取液中(如酒精、醚等),使其色素溶解,并用分光光度计逐渐扫描叶片提取液的吸光度。

通过绘制吸光度与波长之间的关系曲线,可以确定吸收光线的最大吸收峰,并进一步确定光合作用色素的光谱特性。

3. CO2吸收法:光合作用是将二氧化碳转化为有机物的过程,因此测量二氧化碳的吸收可以用来研究光合作用速率。

实验中,将一片叶片或整个植物样品浸泡在吸收二氧化碳的溶液中,然后将溶液中的二氧化碳浓度进行测量。

通过定期取样并分析二氧化碳浓度的变化,可以计算出单位时间内二氧化碳的吸收速率,从而得到光合作用的速率。

4. 光合色素荧光法:叶绿素是植物光合作用的主要色素之一,其荧光可以用来间接测量光合作用速率。

实验中,使用荧光仪测量样品叶片或全植物的荧光发射。

在暗处预激发绿蛋白,并在光照条件下测量其发射光强度的变化。

通过分析荧光信号的参数,例如叶绿素最大荧光量(Fm)和最小荧光量(F0),可以计算出光合作用的效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光合作用速率的测定方法
一、“半叶法”-测光合作用有机物的生产量。

即单位时间、单位叶面积干物质的量
【例1】某研究小组用番茄进行光合作用实验,采用“半叶法”对番茄叶片的光合作用强度进行测定。

其原理是:将对称叶片的一部分(A)遮光,另一部分(B)不做处理(见图1),并采用适当的方法(可先在叶柄基部用热水或热石蜡液烫伤,或用呼吸抑制剂处理)阻止两部分的物质和能量转移。

在适宜光照下照射6h后,在A、B的对应部位截取同等面积的叶片。

烘干称重,分别记为M A—M B,获得相应数据,则可计算出该叶片的光合作用强度,其单位是mg (dm2·h)。

问题:若M=M B—M A,则M表示____ 。

【解析】如图l所示,A部分遮光,这半片叶片虽不能进行光合作用,但仍可照常进行呼吸作用。

另一半B部分叶片既能进行光合作用,又可以进行呼吸作用。

设初始质量为a,呼吸作用消耗质量为b,净光合质量为b,则:M A=a—b,M B=a+c,所以:M=M B -M A=c+b,即M表示总光合作用质量。

这样,真正光合速率(单位:mg/dm2.h)就是M值除以时间再除以叶面积。

【答案]B叶片被截取部分在6h内光合作用合成的有机物总量
二、气体体积变化法—一测光合作用O2产生(或CO2消耗)的体积
【例2】某生物兴趣小组设计了如图2所示的装置进行光合速率的测试实验(忽略温度对气体膨胀的影响)。

(1)测定植物的呼吸作用强度:在该装置的小烧杯中放入适宜浓度的NaOH溶液适量;将玻璃钟罩遮光处理,放在适宜温度的环境中;th后记录红墨水滴移动的方向和刻度,得X值。

(2)测定植物的净光合作用强度:在该装置的小烧杯中放入NaHCO3缓冲溶液适量;将装置放在光照充足、温度适宜的环境中;1h后记录红墨水滴移动的方向和刻度,得Y值。

请你预测在植物生长期红墨水滴最可能移动的方向并分析原因,并将结果填入表中:
【解析】(1)测定植物的呼吸作用强度时,将玻璃钟罩遮光处理,绿色植物只进行呼吸作用。

植物进行有氧呼吸消耗O2,而释放的CO2气体被装置中烧杯里的NaOH溶液吸收,导致装置内气体体积减小,压强减小。

红色液滴向左移动,向左移动的距离X就代表植物进行有氧呼吸消耗的O2量,即有氧呼吸产生的CO2量。

(2)测定植物的净光合作用强度:装置的烧杯中放入的NaHCO3缓冲溶液可维持装置中的CO2浓度;将装置放在光照充足、温度适宜的环境中。

又处在植物的生长期,其光合作用强度超过呼吸作用强度,表现为表观光合作用释放O2,致使装置内气体量增加,红色液滴向右移动,向右移动的距离Y就代表表观光合作用释放的O2量,也就是表观光合作用吸收的CO2量。

故,依据实验原理:真正光合速率=呼吸速率+表观光合速率,就可以计算出光合速率。

【答案】a.向左移动c.将玻璃钟罩遮光处理,绿色植物只进行呼吸作用,植物进行有氧呼吸消耗O2,而释放的CO2气体被装置中烧杯里的NaOH溶液吸收,导致装置内气体压强减小,红色液滴向左移动b.向右移动d.装置的烧杯中放入的NaHCO3缓冲溶液可维持装置中的CO2浓度;将装置放在光照充足、温度适宜的环境中,在植物的生长期,光合作用强度超过呼吸作用强度,表现为表观光合作用释放O2,致装置内气体量增加,红色液滴向右移动
三、黑白瓶法——测溶氧量的变化
【例3】某研究小组从当地一湖泊的某一深度取得一桶水样,分装于6对黑白瓶中,从剩余的水样中测得原初溶解氧的含量为10 mg/L,白瓶为透明玻璃瓶.黑瓶为黑布罩住的玻璃瓶。

将它们分别置于6种不同的光照条件下,分别在起始和1h后以温克碘量法测定各组培养瓶中O2的含量,记录数据如表所示:
(1)黑瓶中溶解氧的含量降低为3 mg/L的原因是。

该瓶中所有生物细胞呼吸消耗的O2量为mg/L·h。

(2)当光照强度为c时,白瓶中植物光合作用产生的O2量为mg/L·h。

(3)光照强度至少为(填字母)时,该水层产氧量才能维持生物正常生活耗
氧量所需。

【解析】黑白瓶法常用于水中生物光合速率的测定。

白瓶是透光瓶,里面可进行光合作用和呼吸作用;黑瓶是不透光瓶,只能进行呼吸作用。

在相同条件下培养一定时间,黑瓶中所测得的数据可以得知正常的呼吸耗氧量,白瓶中含氧量的变化可以确定表观光合作用量,然后就可以计算出总的光合作用量。

(l)黑瓶中溶解氧的含量降低为3 mg/L的原因是:黑瓶不透光,植物不能进行光合作用产生O2,其中的生物呼吸消耗O2,该瓶中所有生物细胞呼吸消耗的O2量为:原初溶解氧-lh后含氧量,即10 - 3-7 (mg/L·h)。

(2)当光照强度为c时,表观光合速率的大小为:1h后氧含量一原初溶解氧,即24 - 10=14 (mg/L·h)。

呼吸速率为10—3=7 (mg/L·h)。

真正光合速率为14+7=21 (mg/L·h)。

(3)黑暗时,黑白瓶都是3 mg/L·h。

说明水中生物呼吸速率为10—3=7 (mg/L·h)。

所以光照强度至少为a时,净光合速率为10—3=7 (mg/L·h),才能维持该水层中生物正常生活耗氧量所需。

【答案】(1)黑瓶中植物不能进行光合作用产生O2,生物呼吸消耗O27 (2) 21 (3)a 四、小叶片浮起数量法——定性比较光合作用强度的大小
【例4]探究光照强弱对光合作用强度的影响,操作过程如表所示:
本实验除通过观察相同时间内叶片上浮数量的多少来反映光合作用速率的大小,还可以通过3个烧杯中上浮相同叶片数量所用时间的长短进行描述,但该实验方法只能比较大小,无法测出具体的量变。

【答案】①台灯与实验装置间的距离②A
五、红外线CO2传感器——测量装置中CO2浓度的变化
由于CO2对红外线有较强的吸收能力,CO2的多少与红外线的降低量之间有一定的线性关系,因此CO2含量的变化即可灵敏地反映在检测仪上,常用红外线CO2传感器来测量CO2浓度的变化。

【例5】为测定光合作用速率,将一植物幼苗放人大锥形瓶中,瓶中安放一个CO2传感器来监测不同条件下瓶中CO2浓度的变化,如图3所示。

相同温度下,在一段时间内测得结果绘制成曲线,如图4所示。

请据图回答:
(1)在60-120 min时间段内,叶肉细胞光合作用强度的变化趋势为,理由是____ 。

(2)在60-120 min时间段,瓶内CO2浓度下降的原因是___ _。

此时间段该植物光合速率为ppm/min。

【解析】(1)在60-120min时间段内,叶肉细胞光合作用强度的变化趋势为逐渐降低,理由是CO2的浓度逐渐降低。

(2)在60-120 min时间段,瓶内CO2浓度下降的原因是:植物的光合作用强度大于呼吸作用强度,CO2不断减少。

用瓶中安放的CO2传感器来监测瓶中CO2浓度,60 min内的变化是1500 - 500-1000 (ppm).该数值是60 min内净光合作用消耗的CO2量。

在0-60 min时间段,瓶内CO2浓度上升的原因是:植物在黑暗条件下只进行呼吸作用,60 min内植物呼吸释放CO2量是l500 -1000=500 (ppm)。

所以,此时间段该植物光合速率为(1000+500) /60=25 (ppm/min)。

【答案】(1)逐渐降低CO2的浓度逐渐降低(2)植物光合作用强度大于呼吸作用强度25。

相关文档
最新文档