220kV变电站设计说明书
220kV变电站设计

本科毕业设计(论文)题目:220kV降压变电站电气部分设计专业:电气工程及其自动化年级:学生姓名:学号:指导教师:220kV降压变电所(AD变电所)设计220kV降压变电所电气部分设计摘要随着国民经济的快速发展,工业化进程和城镇化建设步伐不断加快,电力的需求量也不断增长。
电网的供电能力和可靠性,对区域社会经济的发展是极为重要的。
变电站是电力系统中不可缺少的一个重要环节,它担负着电能转换和电能重新分配的繁重任务,对电网的安全和经济运行起着举足轻重的作用。
变电站的设计必须体现社会主义的技术经济政策,符合安全可靠、技术先进、经济合理和确保质量的要求,在本设计中充分体现了这些要求。
本论文中主要是电气一次部分的设计说明,其内容括:1)变电所电气主接线设计;2)所用电接线设计;3)短路电流计算;4)主要电气设备选型;5)变电所电气总平面布置;6)继电保护的配置根据未来经济发展的要求,变电站设计规模为2×180MVA。
220kV线路 2回;110kV线路8回; 10kV线路13回。
是该变电站是地区重要变电站,对地区负荷有巨大意义。
设计以中华人民共和国国家发展和改革委员颁布的220~500kV变电所设计技术规程(DL-T5218——2005)为标准,以水利电力部西北设计院编制的电力工程电气设计手册一次部分为原则。
设计中的设备的技术参数资料来自设备制造商发布的电子样本和参考文献中的相关资料。
第一章原始资料及分析第一节原始资料第(一)节待建变电站的规模、性质待建变电站为终端变电站,拟定2台变压器,远景规划三台。
本变电站的电压等级分别为220kV、110kV、10kV。
1、系统容量:A系统:S=2000MVA X=0.322、连接方式:A系统与待建变电站D的距离:130km,导线型号:LGJQ-400(以上为双回连接)第(二)节各保护1、变压器主保护时间:0.5秒,后备保护时间:3.5秒2、断路器主保护时间:0.2秒,后备保护时间:4.0秒系统图如下图所示:第(三)节设计原始资料1.电力系统部分(1)与电力系统联接的接线图(示意图)(2)本变电所通过两回220kV 线路与电力系统相连接,并由其供电。
220kV变电站电气一次部分设计设计

《发电厂电气部分》课程设计220kV变电站电气一次部分设计指导老师:学院名称:工程学院专业班级:目录变电站电气一次部分设计说明书 (4)一、原始资料 (4)二、电气主接线设计 (5)2.1电气主接线的概述 (5)2.2电气主接线的基本要求 (5)2.3电气主接线设计的原则 (5)2.4方案预定 (5)2.5方案选择 (5)2.6电气主接线图 (6)三、主变的选择 (7)3.1主变压器的选择原则 (7)3.2主变压器容量的确定 (9)四、站用电设计 (10)4.1站用变压器的选择 (10)4.2站用电接线 (10)五、高压电气设备选择 (11)5.1高压断路器的选择及校验 (11)5.2隔离开关的选择与校验 (12)5.3电流,电压互感器的选择及校验 (13)5.4高压熔断器的选择及校验 (15)5.5母线选择及校验 (16)六、防雷及过电压保护装置设计 (17)6.1变电站直击雷防护 (18)6.2侵入波过电压防护 (18)6.3进线段保护 (18)6.4接地装置设计 (18)变电站电气一次部分设计计算书 (20)一、负荷计算 (20)二、短路电流计算 (20)三、电气设备选择及校验计算 (24)3.1断路器的选择 (24)3.2隔离开关的选择 (31)3.3电流互感器的选择 (33)3.4电压互感器的选择 (35)3.5高压熔断器的选择 (36)3.6母线的选择 (36)四、防雷保护计算 (39)4.1 避雷针的选择 (39)4.2 避雷器的选择 (41)4.3 接地电阻 (42)变电站电气一次部分设计说明书一、原始资料220kV地区变电站电气一次部分设计原始资料一、地区电网的特点本地区变电站通过三回线(架空线50km)从系统获取电能,(每回架空线的单位长度等值电抗=0.5欧/km)二、建站规模(1)变电站类型:220kV变电工程(2)电压等级:220kV 、110kV、35kV三、环境条件变电所位于某城市,地势平坦,交通便利,空气较清洁,区平均海拔300米,最高气温36℃,最低气温-18℃,年平均雷电日45日/年,土壤电阻率高达800 .M四、电气主接线要求尽量考虑设置熔冰措施五、短路阻抗系统作无穷大电源考虑电气主接线设计二、电气主接线设计2.1电气主接线的概述电气主接线是由电气设备通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。
220KV变电站电气设计说明书

220KV变电站电气设计说明书第1章引言1.1 国内外现状和发展趋势(1) 数字化变电站技术发展现状和趋势以往制约数字化变电站发展的主要是IEC61850的应用不成熟,智能化一次设备技术不成熟,网络安全性存在一定隐患。
但2005年国网通信中心组织的IEC61850互操作试验极大推动了IEC61850在数字化变电站中的研究与应用。
目前IEC61850技术在变电站层和间隔层的技术已经成熟,间隔层与过程层通信的技术在大量运行站积累的基础上正逐渐成熟。
(2) 当前的变电站自动化技术20世纪末到21世纪初,由于半导体芯片技术、通信技术以及计算机技术飞速发展,变电站自动化技术也已从早期、中期发展到当前的变电站自动化技术阶段。
其重要特点是:以分层分布结构取代了传统的集中式;把变电站分为两个层次,即变电站层和间隔层,在设计理念上不是以整个变电站作为所要面对的目标,而是以间隔和元件作为设计依据,在中低压系统采用物理结构和电器特性完全独立,功能上既考虑测控又涉及继电保护这样的测控保护综合单元对应一次系统中的间隔出线,在高压超高压系统,则以独立的测控单元对应高压或超高压系统中的间隔设备;变电站层主单元的硬件以高档32位工业级模件作为核心,配大容量内存、闪存以及电子固态盘和嵌入式软件系统;现场总线以及光纤通信的应用为功能上的分布和地理上的分散提供了技术基础;网络尤其是基于TCP/IP的以太网在变电站自动化系统中得到应用;智能电子设备(IED)的大量应用,诸如继电保护装置、自动装置、电源、五防、电子电度表等可视为IED而纳入一个统一的变电站自动化系统中;与继电保护、各种IED、远方调度中心交换数据所使用的规约逐渐与国际接轨。
这个时期国内代表产品有CSC系列、NSC系列及BSJ系列。
(3) 国外变电站自动化技术国外变电站自动化技术是从20世纪80年代开始的,以西门子公司为例,该公司第一套全分散式变电站自动化系统LSA678早在1985年就在德国汉诺威正式投入运行,至1993年初,已有300多套系统在德国和欧洲的各种电压等级的变电站运行。
220kv变电站电气部分设计说明书

220kv变电站电气部分设计说明书第1章原始资料分析1、建设规模:该电力系统需建一座220kv降压变电站,建成后与110kv和220kv电网相连,规划装设两台容量为120MVA主变压器。
该所有220kv、110kv和10kv三个电压等级,220kv侧出线6回,110kv侧出线8回,10kv侧出线12回。
根据建厂规模,对本电所的电气主接线进行设计,确定2~3种方案,进行技术和经济比较,确定最佳方案。
2、该地区负荷情况:110kv有两回出线供给远方大型冶铁厂,其容量为40MVA,10kv侧总负荷为30MVA。
根据负荷情况,确定主变压器台数及容量。
3、各级电压侧功率因数和最大负荷利用小时数为:220kv侧 T=3800小时/年110kv侧 T=4200小时/年10kv侧 T=4500小时/年根据最大负荷利用小时,可查表得出导体经济电流密度,进而按经济电流密度进行母线截面的选择。
4、系统阻抗:220kv侧电源近似为无穷大容量系统,归算至本所220kv母线为0.16(S=100MVA),110kv侧电源侧容量为1000MVA,归算至本所110kv母线侧阻抗0.32(S=100MVA),10kv侧无电源。
计算短路电流,对主要电气设备和导体进行选择。
5、该地区最热平均温度为28度,年平均气温16度,绝对最高温度为40度,土壤温度为18度海拔153米。
根据以上数据对导体及母线进行选择。
6、该变电所位于市郊荒土地上,地势平坦,交通便利,环境污染小。
根据变电所配电系统和配电装置的设计原则,对配电所进行高压配电系统设计,接近负荷中心,则要求供电的可靠性,调度的灵活性更高,有10kv电压送电,该负荷侧可采用双回路供电。
第2章电气主接线的设计电气主接线又称为一次接线或电气主系统,代表了发电厂和变电所电气部分的主体结构,直接影响着配电装置的布置、继电保护配置、自动装置和控制方式的选择,对运行的可靠性、灵活性和经济性起决定性的作用。
220KV变电站一次部分设计

220KV变电站一次部分设计1.前言本课题研究的是220KV变电站一次部分设计。
变电站是电力系统的重要组成部分,它直接影响了电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着交换和分配电能的作用。
这就要求变电站的一次部分设计的经济合理,采取合理的电气主接线形式,采用合适电气设备的数量和质量,变电站平面布置和配电装置也要符合国家规定标准,只有这样变电站才能正常的运行工作,为国民经济服务。
由于现代科学技术的发展,电力网容量的增大,电压等级的提高,综合自动化水平的需求,使变电所设计问题变得越来越复杂,除了常规变电所之外,还出现了微机变电所、综合自动化变电所、小型化变电所和无人值班变电所等。
当前随着我国城乡电网建设与改造工作的开展,对变电所设计也提出了更高更新的要求。
设计说明书2.主变压器的选择2.1主变压器形式的选择2.1.1相数的确定330KV及以下的电力系统中,在不受运输条件限制的情况下,一般选用三相变压器。
因为单相变压器组相对投资大,占地多,运行损耗较大,配电装置结构复杂,维修的工作量大。
2.1.2绕组数的确定当三绕组变压器的每个绕组的通过容量达到该变压器的额定容量的15%以上时才采用三绕组变压器。
否则,绕组未能充分利用,反而不如选用2台双绕组变压器在经济上更加合理。
2.2主变压器容量和台数的确定2.2.1变电所主变压器容量的确定(1)主变压器的容量,一般应按5-10年的规划负荷来选择,并适当考虑10-30年的发展,根据城市规划,负荷性质,电网结构等综合考虑确定其容量。
(2)装有两台以上的变压器的变电所,应考虑到当一台主变停运时,其余主变的容量满足70%-80%的全部负荷,并应满足一类及二类负荷的供电。
由上述两点得出一台主变压器容量应满足:根据任务书:10KV侧的负荷为: Pmax=100MW 功率因数为:0.85110KV侧出线负荷Pmax=20MW 功率因数为0.85总的负荷为:Pmax=100+20=120MW总的容量为:Smax=Pmax/cosø=120/0.85=141MVA这样根据公式,考虑到变压器的本身损耗容量还应有5%的裕度.这样变压器的容量为S变=0.75⨯K0⨯Smax(1+5%) 其中K0为同时率,一般取0.9.所以S主=0.75⨯0.9⨯141⨯1.05=100MV A所以根据容量选择两台SSPSL-的三相有载调压变压器。
220KV变电站电气一次部分初步设计说明书

220KV变电站电气一次部分初步设计说明书第一章电气主接线设计1.1主接线设计要求电气主接线又称为电气一次接线,它是将电气设备以规定的图形和文字符号,按电能生产、传输、分配顺序及相关要求绘制的单相接线图。
主接线代表了变电站高电压、大电流的电器部分主体结构,是电力系统网络结构的重要组成部分。
它直接影响电力生产运行的可靠性、灵活性,同时对电气设备选择、配电装置布置、继电保护、自动装置和控制方式等诸多方面都有决定性的关系。
因此,主接线设计必须经过技术与经济的充分论证比较,综合考虑各个方面的影响因素,最终得到实际工程确认的最终方案。
电气主接线设计的基本要求,概况地说应包括可靠性、灵活性和经济性三方面。
1.可靠性安全可靠是电力生产的首要任务,保证供电可靠是电气主接线最基本的要求,而且也是电力生产和分配的首要要求。
主接线可靠性的基本要求通常包括以下几个方面。
(1)断路器检修时,不宜影响对系统供电。
(2)线路、断路器或母线故障时,以及母线或母线隔离开关检修时,尽量减少停运出线回路数和停电时间,并能保证对全部I类及全部或大部分II 类用户的供电。
(3)尽量避免变电站全部停电的可能性。
(4)大型机组突然停运时,不应危及电力系统稳定运行。
2.灵活性电气主接线应能适应各种运行状态,并能灵活地进行运行方式的转换。
灵活性包括以下几个方面。
(1)操作的方便性。
电气主接线应该在服从可靠性的基本要求条件下,接线简单,操作方便,尽可能地使操作步骤少,以便于运行人员掌握,不至在操作过程中出差错。
(2)调度的方便性。
可以灵活地操作,投入或切除某些变压器及线路,调配电源和负荷能够满足系统在事故运行方式,检修方式以及特殊运行方式下的调度要求。
(3)扩建的方便性。
可以容易地从初期过渡到其最终接线,使在扩建过渡时,无论在一次和二次设备装置等所需的改造为最小。
3.经济性主接线在满足可靠性、灵活性要求的前提下做到经济合理。
(1)投资省。
主接线应简单清晰,并要适当采用限制短路电流的措施,以节省开关电器数量、选用价廉的电器或轻型电器,以便降低投资。
220KV降压变电所设计

摘要本设计是220KV降压变电站设计。
主要包括系统情况及负荷说明,主变压器的选择,电气主接线方案的选择,短路电流计算,高压电气设备的选择,各种电器和导线的选择计算,同时对所选择的电气设备进行动稳定和热稳定校验,判断是否满足要求。
本设计涉及到发电厂电气部分、电力系统分析等专业知识,并参考了相关的电气设计和设备手册。
总体来说,本设计是对电力系统及其发电厂电气部分专业所学课程的综合和运用能力的一次考察。
关键词:变电站、主变压器、电气主接线、电气设备第一章内容提要一、变电站原始资料:1、所址概况:位于喀什市郊区,城市工农业,发展较快。
变电所有两回220KV出线,分别与电力系统和一所发电厂相连。
2、自然条件:所区地势较平坦,交通方便,有铁路公路经过本所附近。
最高气温+30°C,最低气温-25°C,最高月平均温度25°C,年平均温度+10°,最大风速20m/s,覆冰厚度5mm,地震烈度< 6级,土壤电阻率< 500Ω.m ;雷电日30;周围环境较清洁、化工厂对本所影响不大;冻土深度1.5;主导风向、夏南、冬西北。
3、负荷资料:(1)110KV侧,16回出线,最大综合负荷256MW,功率因数cosΦ=0.85,年最大负荷利用小(2)10kv侧,20回出线,综合最大负荷为50MW,功率因数cosΦ=0.88,年最大负荷利用小4、系统图:二、设计任务:1、选择主变压器的容量、台数、型号、参数。
2、进行经济、技术比较、选择电气主接线方案。
3、计算电路电流,选择电气设备;4、全所平面总布置;5、继电保护规划;6、防雷保护;三、成品要求:1、说明书,计算书各一本;2、图纸;(1)主接线图;(2)全所总平面布置图;(3)配电装置断面图;(4)防雷保护图;(5)继电保护规划图。
第二章变压器的选择2.1 主变压器台数的确定该变电站一、二类负荷占总负荷的70%以上,为保证供电可靠性,变电站装设两台主变压器。
220KV降压变电所设计(详细)

毕业设计(论文)任务书附录一1.拟建变电所与电力系统连接情况如下图,图1:图1 变电所与电力系统连接图2、地区环境条件海拔700米,年最高气温:35℃;年最低气温:-5℃;年平均气温:28℃;年雷暴日小于30天;污秽程度轻级。
3、负荷资料(1)220kV线路5回,预留1回备用,最大负荷利用时间为5200h。
(2)110kV线路10回,另外备用2回,最大负荷利用时间为5500h。
具体情况如下表1所示。
上述各负荷间的同时系数为0.85。
(3) 10kV线路共16回,其中2回备用,最大负荷利用时间为5600h,负荷具体情况如下表2所示(4)110kV负荷与10kV负荷的同时系数为0.85。
(5)所用电负荷统计如下表3所示(6)保护:各电器主保护动作时间为0s,后备保护动作时间为4s。
(7)220kV输电线路电抗取0.4Ω/km。
220kV降压变电所设计摘要变电站是电力系统中不可缺少的一个重要环节,它担负着电能转换和电能重新分配的繁重任务,对电网的安全和经济运行起着举足轻重的作用。
本论文对220kV降压变电所中电气一次部分的设计原理及计算方法进行了较为全面的论述,其内容包括有变电所主变压器的选择,电气主接线设计,短路电流计算,电气设备及配电装置选择,变电所电气总平面布置和对一些特殊问题的解决方法。
本文所遇到的问题在220kV变电所中也是较为普遍的。
关键词:220kV降压变电所;主接线;电气设备选目录前言 (8)本书使用符号说明 (9)第1章变压器选择 (12)1.1主变压器台数和容量的确定 (12)1.1.1主变压器台数的确定 (12)1.1.2 主变压器容量的确定 (12)1.2主变压器型式的选择 (14)1.2.1 相数的选择 (14)1.2.2 绕组数量和连接方式的选择 (14)1.2.3 变压器调压方式和冷却方式的确定 (14)1.3主变压器的选择 (15)1.4所用变压器的选择 (15)第2章电气主接线设计 (17)2.1电气主接线的设计原则与要求 (17)2.1.1 电气主接线的设计原则 (17)2.1.2 电气主接线的设计要求 (17)2.2主接线方案的确定 (18)2.2.1 各电压等级的主接线方案设计 (18)2.2.2 主接线方案的比较与确定 (18)第3章短路电流计算 (22)3.1短路计算的一般规定和基本假设 (22)3.2短路电流的计算 (22)第4章电气设备的选择 (24)4.1电器选择的一般要求 (24)4.2断路器的选择 (24)4.2.1 断路器的选择原则 (24)4.2.2变电所断路器的选择 (25)4.3隔离开关的选择 (28)4.3.1隔离开关的选择原则 (28)4.3.2变电所隔离开关的选择 (29)4.4互感器的选择 (31)4.4.1 电压互感器的选择 (31)4.4.2 电流互感器的选择 (32)4.5避雷器的选择 (37)4.5.1本变电站的防雷措施 (37)4.5.2避雷器参数计算与选择 (38)第5章导线的选择 (44)5.1导体选择的一般要求 (44)5.2导线的选择 (45)5.2.1220kV侧导线的选择 (45)5.2.2110kV侧导线的选择 (51)5.2.310kV侧导线的选择 (56)5.2.4本变电所导线选择结果 (60)第6章配电装置选择 (61)结束语 (62)参考文献 (63)附录1短路电流计算 (64)附录2 电气设备选择表 (69)英文参考文献................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
220kV变电站设计说明书1.1 220kV变电站在国发展现状与趋势电力工业是国民经济的重要部门之一,它是负责把自然界提供的能源转换为供人们直接使用的电能的产业。
它即为现代工业、现代农业、现代科学技术和现代国防提供不可少的动力,又和广大人民群众的日常生活有着密切的关系。
电力工业的发展必须优先于其他的工业部门,整个国民经济才能不断前进。
但是,随着近年来我国国民经济的高速发展与人民生活用电的急剧增长,电力行业的发展水平越来越高,特别是在电的输送方面有了更高的要求。
因此,确定合理的变压器的容量是变电所安全可靠供电和网络经济运行的保证。
在选择主变压器时,要根据原始资料和设计变电所的自身特点,在满足可靠性的前提下,要考虑到经济来选择主变压器。
1.2 220kV变电站设计规(1)国家电网公司《关于印发<国家电网公司110(66)~500kV变电站通用设计修订工作启动会议纪要>的通知》(基建技术〔2010〕188号)(2)《国家电网公司220kV变电站典型设计》(2005版)(3)《国家电网公司输变电工程通用设备(2009年版)》(4)《国家电网公司输变电工程典型设计-220kV变电站二次系统部分》(2007年版)(5)Q/GDW166-2007 《国家电网公司输变电工程初步设计容深度规定》(6)Q/GDW204-2009 《220kV变电站通用设计规》(7)Q/GDW383-2009 《智能变电站技术导则》(8)Q/GDW393-2009 《110(66)~220kV智能变电站设计规》(9)Q/GDW161-2007 《线路保护及辅助装置标准化设计规》1.3变电站位置的选择图1为广西大学西校园用电量比较大的建筑物简化地图,对于变电站位置的选取,我们通常选择图形的几何中心位置,但根据实际情况,我们应该考虑到:第一,为保证安全,变电站应该选择放在人少走动的位置。
第二,变电站的选择应该距离二级负荷比较近的位置,这样可以保证在发生故障的时候二级负荷仍然能够得到供电。
而查询资料可以知道,广西大学的教学楼、学院楼属于二级负荷,宿舍楼属于三级负荷。
由此我们就可以知道,变电站最合理的位置如图所示,应该放在综合楼的后面。
这样的安排可以大大减小布线的长度,既减小了前期的成本同时对线路的检修也有很大的帮助。
1.4 广西大学西校园各区域用电的分配情况如图1所示,我们把广西大学西校园分为五个区域,由红色直线圈住的部分为一个区域,这部分的建筑物所需要的用电由同一变压器分配,共有五个变压器。
由外网输入的220kV电压经过变电站变为10kV送给各个变压器。
然后由变压器变为380V给予分配,变压器具体供电分配见表1。
这样的分配虽然要增加变压器的个数,增加部分成本,但是可以减少由于导线电阻产生的电能消耗,减小变压器负荷,从长期来考虑还是划算的。
表1 各变压器供电区域1.5主变压器的选择变压器是变电所中的主要电气设备之一,其担任着向用户输送功率,或者两种电压等级之间交换功率的重要任务,同时兼顾电力系统负荷增长情况,并根据电力系统5~10年发展规划综合分析、合理选择。
如果主变压器容量选得过大,台数过多,不仅增加投资,扩大占地面积,而且会增加损耗,运行和检修不便,设备亦未能充分发挥效益;若容量选得过小,可能使变压器长期在过负荷中运行,影响主变压器的寿命和电力系统的稳定性。
因此,确定合理的变压器的容量是变电所安全可靠供电和网络经济运行的保证。
1.5.1主变电器容量的选择广西大学西校园居民楼集中在区域一中共21栋,学生宿舍楼25栋,教学楼共6栋,餐厅共4个,学院共11个,其他类包括综合楼、狗洞、超市等。
各楼最大负荷、功率因数和无功功率如表2所示:表2 广西大学西校园用电情况表各楼具体负荷计算如下:宿舍楼:每栋楼有个宿舍,每个宿舍三个灯100W,风扇60W,其他学生电脑和用电器总和320W,则每栋楼用电:(1-1)宿舍楼总用电:(1-2)(1-3)居民楼:每栋楼有间居民楼,每户居民用电功率平均点灯300W,冰箱120W,空调1600W,其他350W,每栋楼用电总共:(1-4)总用电:(1-5)(1-6)教学楼区:每栋楼有个教室,每个教室有20盏灯,共800W;14个风扇,共980W;电脑投影仪400W,每栋楼用电:(1-7)总共用电:(1-8)(1-9)餐厅区:空调,电灯,冰箱,其他12000W,因此每个食堂:(1-10)总共用电:(1-11)(1-12)学院区:每个学院有间办公室,每间办公室两盏灯80W,空调2000W,电脑140W,每栋楼用电:(1-13)所有的学院楼总用电:(1-14)(1-15)其他区:(1-16)(1-17)因此:(1-18)(1-19)考虑负荷同率,取0.85,则视在功率为:(1-20)由计算结果可知广西大学西校园最大总视在功率为16.03MVA,从长期考虑,它应该占变电站容量的50%~60%左右,变电站容量应该选择30MVA。
主变容量一般按变电所建成近期负荷,5~10年规划负荷选择,并适当考虑远期10~20年的负荷发展。
对于有重要负荷的变电所,应考虑当一台变压器停运时,其余变压器容量在过负荷能力后允许时间,应保证用户二级负荷,对学校的变电站,当一台主变压器停运时,其余变压器容量应保证全部负荷的70%~80%,该变电站是按70%全部负荷来选择。
如果主变压器容量选得过大,台数过多,不仅增加投资,扩大占地面积,而且会增加损耗,运行和检修不便,设备亦未能充分发挥效益;若容量选得过小,可能使变压器长期在过负荷中运行,影响主变压器的寿命和电力系统的稳定性。
因此,确定合理的变压器的容量是变电所安全可靠供电和网络经济运行的保证。
即:(1-21)其中,为变电所最大负荷n为变电所主变压器台数。
由于变电所最大负荷为30MVA,因此主变压器容量为:(1-22)在满足可靠性的前提下,结合经济性,从长期来烤炉,应该选择容量为30MVA的主变压器。
1.5.2主变压器型号的选择根据以上条件选择,变电站的容量选取30MVA,电压等级是220V,确定采用型号为SFS11-30000/220的三绕组有载调压电力变压器,其具体参数如表3:表3变压器详细参数表注:型号中各符号表示意义S:三相 F:风冷却 S:三绕组 11:性能水平号 30000:额定容量 220:电压等级1.6主接线的选择变电所的电气主接线应根据该变电所在电力系统中的地位、变电所的规划容量、负荷性质、线路、变压器连接元件总数、设备特点等条件确定。
并应综合考虑供电可靠、运行灵活、操作检修方便、投资节约和便于过渡或扩建等要求。
1.6.1电气主接线的基本要求1.可靠性:安全可靠是电力生产的首要任务,保证供电可靠和电能质量是对主接线最基本要求,而且也是电力生产和分配的首要要求。
主接线可靠性的具体要求:(1)断路器检修时,不宜影响对系统的供电。
(2)断路器或母线故障以及母线检修时,尽量减少停运的回路数和停运时间,并要求保证对重要用户的供电。
(3)尽量避免变电所全部停运的可靠性。
2.灵活性:主接线应满足在调度、检修、事故处理及扩建时的灵活性。
3.经济性:主接线在满足可靠性、灵活性要求的前提下做到经济合理。
电气主接线的可靠性、灵活性、经济性是一个综合概念,不能单独强调其中的某一特性,也不能忽略其中的某一种特性。
1.6.2 电压母线接线方案拟定1.220kV电压母线接线方案拟定:220kV输入侧出线共2回,10kV输出侧出线共6回,其中五回分别给五个变压器,一回备用。
10kV负荷功率由220kV母线供应,负荷为12MWA。
其中二级负荷为29.4%,要求母线故障后要迅速恢复供电,母线或母线设备检修时不允许影响对用户的供电,由母线形式的适用围将用双母线不分段接线。
它的优点是检修任意母线时不会中断供电,检修任何回路的母线隔离开关时,只需要对该回路断电。
如图2所示,校外220kV 电压进入变电站,变电站把它变为10kV ,10kV 的电压进入图2显示的变压器1、2、3、4、5。
在通过变压器把电分配到各个区域当中。
外网220kV输入外网220kV 输入QS 313变压器1变压器2变压器3变压器4变压器5备用QS BQF L QS B5主母线10kV 副母线10kV图2 220kV 输入接线图(变压器详情见表1)2.10kV 电压母线接线方案拟定:10kV 输入侧出线共2回,380V 出线侧共13回,其中12回供各区域用电,1回备用,最大输送功率为15MW ,由于它的进出线回路数比较多,且传输功率较大,短路电流较大,因此我们采用双母线分段接线方式,并且在分段断路器处联母线电抗器。
这样做的优点是:第一,供电可靠、检修方便。
第二,当一组母线故障时,可以迅速切换到另一组,及时恢复供电。
第三,调度灵活、便于扩展。
我们以变压器1位置的接线举例,如图3所示,正常时按主母线工作,副母线作为备用的单母线方式运行,则QS B 11和QS B 21合闸,QS B 12和QS B 22处于分闸状态。
10kV 输入10kV 输入1# 出线2# 出线3# 出线12# 出线备用QS B4QF L2QS B5QF L1QS B6QS B7图3 变压器10kV 输入接线图(变压器详情见表1)3.380V 电压出线方案拟定:380V 出线侧共9回,其中1回备用,最大输送功率为1.1MW ,所占负荷不大,故只需采用双电源单母线不分段接线式,如图4所示:1#出线2#出线3#出线8#出线备用3QF 3母线图4 380V 出线的线路图图中的8条出线以西校园区域2、3(见图1)为例,分别接入的各楼如表4、5所示:表4 区域2各楼接线情况表5 区域3各楼接线情况第二章短路电流的设计计算短路电流的目的主要是为了选择断路器等电气设备或对这些设备提出技术要求。
评价确定网络方案,研究限制短路电流措施,为继电保护设计与调试提供依据,分析计算送电线路对通讯网络设施的影响等。
在电力系统设计中,短路电流的计算应按远景规划水平年来考虑,远景规划水平年一般取工程建成后5-10年中的某一年,计算容为系统在最大运行方式时枢纽点的三相短路电流。
2.1 短路电流计算的容1.短路点的选取:各级电压母线、各级线路末端。
2.短路时间的确定:根据电气设备选择和继电保护整定的需要,确定计算短路电流的时间。
3.短路电流的计算:最大运行方式下最大短路电流、最小运行方式下最小短路电流、各级电压中性点不接地系统的单相短路电流。
计算的具体项目及其计算条件,取决于计算短路电流的目的。
2.2三相短路电流周期分量起始值的计算1.短路电流计算的基准值短路电流的计算采用标幺值计算。
取基准容量为10MWA,基准电压为平均额定电压。
2.网络模型计算短路电流对所用的网络模型为简化模型,即:忽略负荷电流,不计各元件的电阻,也不计送电线路的电纳及变压器的导纳。