管道局部阻力计算

合集下载

管道系统中局部阻力计算

管道系统中局部阻力计算

垂直三通
850
- 01082 - 4118 019968
第2期
·设计与研究·
7
表 3 中的 Km 值与表 2 中的一样 , 因为此法是 Hooper 。
图 1 90°弯头损失系数
图 2 45°弯头损失系数
由图 1 和图 2 可以看出 ,3 - K 关系式极好地拟合 90°和 45°长短弯头的损失系数 。
4 方法比较
下面举一实例对上述 4 种方法进行对比计算。 例 :一个装有 5m 高水敞开的贮槽 ,贮槽排水管道 系统包括 10 个 90°弯头 ,10 个三通 ,8 个闸阀和 30m 管 。分别计算管子 (直径由 25 到 300mm) 的流量 。 贮槽顶部及排放口都在大气压下 ,用入口损失系 数是 115 来计算由槽到管输送的动能变化 。方程 (4) 用于计算 ef ,方程 (9) 是方程 (3) 的变形 ,用于计算流 量: Q =〔πD2/ (2 ×2015) 〕( - gΔ Z/ ∑Kf i + 115) 015 (9)
2 管道系统的物流
广义的稳定流动的流体柏努力方程用于分析管道 系统的物流 ,它可以用流动的物流上任意两点来表示 (这里Δ 表示参数的变量) :
Δ P/ρ+ gΔΖ +Δ( aV 2) / 2 + ef + w = 0 (3) 方程中的每一项代表单位质量流体的能量分量 , 方程的等价形式可以写成压力分量等于方程乘以 ρ, 或写成压头分量等于方程除以 g 。 式中 ρ———密度 ,1kg/ cm3 ; Δ P ———流体压差 ,kg/ cm2 ;
图 3 三通损失系数
图 4 阀门损失系数
由图 3 和图 4 可以看出 ,3 - K 关系式极好地拟合

管道流动阻力计算

管道流动阻力计算

流动阻力的计算流体在管道中流动,其流动阻力包括有:(1)( 1)直管阻力:流体流经直管段时,由于战胜流体的粘滞性及与管内壁间的磨擦所产生的阻力。

它存在于沿流动方向的整个长度上,故也称沿程直管流动阻力。

记为 h fz。

(2)( 2)局部阻力:流体流经异形管或管件(如阀门、弯头、三通等)时,由于流动发生突然变化引起涡流所产生的能量损失。

它仅存在流体流动的某一局部范围办。

记为 h fJ。

因此,柏努利方程中h f项应为:h f h fz h fJ说明:流动阻力可用不相同的方法表示,h f——1kg质量流体流动时所损失的机械能,单位为J/kg;h fm;—— 1N 重量流体流动时所损失的机械能,单位为gh f——1m3体积流体流动时所损失的机械能,单位为Pa 或N / m2。

1. 1. 直管段阻力(h fz)的计算流体流经直管段时,流动阻力可依下述公式计算:h fzl u2d [J/kg]2或h fz l u2g [m]d 2gl u2[pa]h fz2d式中,——磨擦阻力系数;l——直管的长度( m); d——直管内直径(m);——流体密度 (kg / m3 ) ;u——流体在直管段内的流速(m/s)2.局部阻力 (h fJ)的计算局部阻力的计算可采用阻力系数法或当量长度法进行。

1)1)阻力系数法:将液体战胜局部阻力所产生的能量损失折合为表示其动能 若干倍的方法。

其计算表达式可写出为:le u 2 ( a )h fJ[J/kg]d2或h fJ le u 2 (b)gd [m]2g[pa]le u 2 (ch fJ[pa] d 2其中, 称为局部阻力系数,平时由实验测定。

下面列举几种常用的局部阻力 系数的求法。

* 突然扩大与突然减小管路由于直径改变而突然扩大或减小,所产生的能量损失按(b )或 (c)式计算。

式中的流速 u 均以小管的流速为准, 局部阻力系数可依照小管与大管的截面积之比从管件与阀门当量长度共线图 曲线上查得。

局部阻力系数

局部阻力系数

局部阻力系数是流体流经设备及管道附件所产生的局部阻力与相应动压的比值,其值为无量纲数。

局部阻力系数(coefficient of local resistance)
与流体方向和速度变化有关的系数
具体指:
功能:用于计算流体受局部阻力作用时的能量损失。

公式为:动压力=局部阻力系数*ρ* V * V * 1 /2。

局部阻力系数是由流经设备和管道附件的流体引起的局部阻力与相应的动压力之比,其值无因次。

在直管中流动的液体的压力损失是由液体流动的摩擦引起的,该过程称为沿途的压力损失。

它主要取决于液体的长度,内径,速度和粘度。

压力损失随液体的流型而变化。

在液压传动中,圆形管道中的液体层流是最常见的。

因此,在设计液压系统时,通常希望管道中的液体流保持层流状态。

扩展数据
当分流比恒定时,电阻系数1和2随着管径比的增加而减小。

管径比越大,电阻系数1和2的下降范围越小。

当管径比大于0.8时,对它们的影响不再明显。

分流比越小,管径比的影响越小。

当管径比为0.38时,倾斜支管的流速相对较高,并且三通接头中的水流速分布非常不均匀。

管径比越大,直支管,斜支管和主管的直径越均匀,速度分布越均匀,主管上部的低速回流面积越小。

管道阻力的基本计算方法

管道阻力的基本计算方法

管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3)d ——风管内径,m ;ν——运动黏度,m 2/s 。

在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。

图5—2是计算圆形钢板风管的线解图。

它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。

经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。

只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。

解 利用线解图5—2,在纵坐标上找到风量L =2400m 3/h ,从这点向右做垂线,与流速υ=16m /s 的斜线相交于一点,在通过该点表示风管直径的斜线上读得d =230mm 。

再过该点做垂直于横坐标的垂线,在与表示单位摩擦阻力的横坐标交点上直接读得Rm =13.5Pa /m 。

该段风管摩擦阻力为:R =R m l =13.5×10Pa =135Pa无论是按照《全国通用通风管道计算表》,还是按图5—2计算风管时,如被输送空气的温度不等于20℃,而且相差较大时,则应对R 。

值进行修正,修正公式如下:t m m K R R =' (5—9)式中 'm R ——在不同温度下,实际的单位长度摩擦阻力,Pa ;Rm ——按20℃的计算表或线解图查得的单位摩擦阻力,Pa ;Kt ——摩擦阻力温度修正系数,如图5—3所示。

第三节管道阻力计算

第三节管道阻力计算

第三节管道阻力计算管道阻力计算是管道工程设计中的一个重要环节,通过计算管道的阻力,可以确定管道系统的运行压力、流量和泵站功率等参数,从而合理设计管道系统,提高系统的运行效率。

管道阻力是指液体在管道中流动时受到的阻碍,其大小与管道的内径、长度、流量和流体性质等因素有关。

管道阻力计算的基本原理是根据管道的一维稳态流动理论,利用流体力学公式和实验数据,建立管道阻力计算公式。

一般来说,管道阻力可以分为摩阻、局部阻力和特殊情况阻力三种情况。

首先,摩阻是指由于流体黏性阻碍流体在管道中流动所产生的摩擦阻力。

管道摩阻损失的大小与管道的内径、长度、流速和流体性质等因素有关,一般可以通过Darcy-Weisbach公式或Colebrook公式进行计算。

其中Darcy-Weisbach公式为:ΔP=f×(L/D)×(ρV^2/2)其中ΔP为管道的压降,f为摩擦系数,L为管道长度,D为管道内径,ρ为流体密度,V为流速。

其次,局部阻力是指由于管道内部存在突变、弯曲、分支、阀门等特殊构件而产生的附加阻力。

局部阻力的计算通常通过失压系数或阻力系数进行,这些系数一般由实验数据确定。

常见的局部阻力计算公式有:ΔP=K×(ρV^2/2)其中ΔP为管道的压降,K为失压系数或阻力系数,ρ为流体密度,V为流速。

最后,特殊情况阻力是指由于特殊情况,如管道内部存在流动障碍物、气液两相流、可压缩流体等而产生的阻力。

这些阻力一般需要通过实验或专门的计算方法进行确定。

在实际的管道工程设计中,一般将管道阻力计算分为整体计算和局部计算两个步骤。

整体计算主要是根据管道的K-value或曼宁系数,计算管道的摩阻损失。

局部计算则是按照实际的管道布局和特殊构件,计算各个局部阻力的大小,并将其加入到整体计算中。

另外,为了提高计算的准确性,还需考虑管道的流型、流动状态和流体性质的影响。

总之,管道阻力计算是管道工程设计中的重要环节,通过合理计算管道阻力,可以为管道系统的设计和运行提供科学依据。

管道阻力的基本计算方法

管道阻力的基本计算方法

管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。

一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3)式中 Rm ——单位长度摩擦阻力,Pa /m ; υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3; λ——摩擦阻力系数;Rs ——风管的水力半径,m 。

对圆形风管:4DR s =(5—4)式中 D ——风管直径,m 。

对矩形风管)(2b a abR s +=(5—5)式中 a ,b ——矩形风管的边长,m 。

因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6)摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。

计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K (5—7)式中 K ——风管内壁粗糙度,mm ; Re ——雷诺数。

υvd=Re (5—8)式中 υ——风管内空气流速,m /s ; d ——风管内径,m ;ν——运动黏度,m 2/s 。

在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。

图5—2是计算圆形钢板风管的线解图。

它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。

经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。

只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。

图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。

(完整版)管道内的局部阻力及损失计算

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。

此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。

这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。

因此一般的管路系统中,既有沿程损失,又有局部损失。

4.4.1 局部损失的产生的原因及计算一、产生局部损失的原因产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。

这里结合几种常见的管道来说明。

()()图4.9 局部损失的原因对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。

进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。

在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。

另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。

局部损失就发生在旋涡开始到消失的一段距离上。

图4.9()给出了弯曲管道的流动。

由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。

在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。

综上所述,碰撞和旋涡是产生局部损失的主要原因。

当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。

(完整版)管道内的局部阻力及损失计算

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。

此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。

这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。

因此一般的管路系统中,既有沿程损失,又有局部损失。

4.4.1 局部损失的产生的原因及计算一、产生局部损失的原因产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。

这里结合几种常见的管道来说明。

()()图4.9 局部损失的原因对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。

进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。

在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。

另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。

局部损失就发生在旋涡开始到消失的一段距离上。

图4.9()给出了弯曲管道的流动。

由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。

在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。

综上所述,碰撞和旋涡是产生局部损失的主要原因。

当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档