PWM实现精准LED调光
pwm控制led亮度原理图,单片机PWM控制LED亮度

换为数字信号。利用PWM信号控制白光LED的亮度时,白光LED的平均
电流/LED(ave)可按下式计算。
图1利用周围照度控制LED亮度的驱动电路
图2利用PWM信号控制LED亮度的驱动电路
pwm控制led亮度原理图,单片机PWM控制LED
亮度
如图1所示的驱动电路是采用反馈电压进行LED亮度控ቤተ መጻሕፍቲ ባይዱ的,而如
图2所示的电路是采用PWM信号控制白光LED的亮度的。在如图2所示电
路中,IC的EN端子是可使开关变换器做ON/OFF模式运行的端子,如果
对EN端子施加PWM信号,白光LED会以某种速度做ON/OFF模式运
PWM实现精准LED调光

PW吹现精准LED调光无论LED是经由降压、升压、降压/升压或线性稳压器驱动,连接每一个驱动电路最常见的线程就是须要控制光的输岀。
现今仅有很少数的应用只需要开和关的简单功能,绝大多数都需要从0〜100%去微调亮度。
目前,针对亮度控制方面,主要的两种解决方案为线性调节LED的电流(模拟调光)或在肉眼无法察觉的高频下,让驱动电流从0到目标电流值之间来回切换(数字调光)。
利用脉冲宽度调变(PWM)来设定循环和工作周期可能是实现数字调光的最简单的方法,原因是相同的技术可以用来控制大部分的开关转换器。
无论LED是经由降压、升压、降压/升压或线性稳压器驱动,连接每一个驱动电路最常见的线程就是须要控制光的输出。
现今仅有很少数的应用只需要开和关的简单功能,绝大多数都需要从0〜100%去微调亮度。
目前,针对亮度控制方面,主要的两种解决方案为线性调节LED的电流(模拟调光)或在肉眼无法察觉的高频下,让驱动电流从0到目标电流值之间来回切换(数字调光)。
利用脉冲宽度调变(PWM来设定循环和工作周期可能是实现数字调光的最简单的方法,原因是相同的技术可以用来控制大部分的开关转换一、PW碉光能调配准确色光一般来说,模拟调光比较容易实行,这是因为LED驱动器的输出电流变化与控制电压成比例,而且模拟调光也不会引发额外的电磁兼容性(EMC)/电磁干扰(EMI)潜在频率问题。
然而,大部分设计采用PWI调光的理由都是基于LED的基本特性,即放射光的位移是与平均驱动电流的大小成比例(图1)。
对于单色LED来说,主要光波的波长会发生变化,而在白光LED方面,出现变化的是相对色温(CCT)。
对于人们的肉眼来说,很难察觉出红、绿或蓝光LED 中的奈米波长变化,尤其是当光的强度也同样在改变,但是白光的色温变化则比较容易察觉出来。
大多数的白光LED都包含一片可放射出蓝光频谱光子的晶圆,这些光子在撞击磷光涂层后便会放射出各种可见光范围内的光子。
在较小的电流下,磷光会成为主导并使光线偏向黄色;而在较大电流下,LED 放射出来的蓝光则较多,使得光线偏向蓝色,同时也会产生较高的CCT对于使用超过一个白光LED的应用,在两个相邻LED之间出现的CCT差异会很明显,且视觉令人不悦,此概念可以进一步延伸将多个单色LED光线混和在一起的光源。
用于LED灯亮度调节的PWM实现方式_伏城

电子报/2011年/10月/2日/第025版农村电子用于LED灯亮度调节的PWM实现方式广东伏城LED灯技术的快速发展,使得从以前的商场装饰照明、政府亮化工程、娱乐场所点缀装潢以及广告牌宣传等领域,逐步进入家庭的装饰照明、要求不高的照明场所,以及台灯、条形LED 日光灯等等。
近期,不断的LED新品推出用于照明灯的替换,特别是球形LED灯和条形LED灯的新技术注入,使得LED灯逐渐有替换白炽灯之趋势。
在照明领域中,LED灯的成熟技术主要在于恒流驱动和PWM驱动的实现。
恒流驱动LED 技术在技术方面比较成熟,由于其固定的亮度模式,使得应用非常普遍,其成熟的分立元件电路和专用集成IC也比较多。
而在照明领域,另外一种重要应用,就是照明器件的调光。
对于白炽灯的调光电路,大家都会颇为熟悉地想到可控硅调光电路(见图1所示)。
从图1的波形上看出,调光是调整的正弦波幅度。
而在LED调光中,也是可以采取这种调光方式的,但不能做到对LED 的精细调整。
如果要对LED灯进行精细调光,则PWM调光是较为理想的一种。
实际上,LED的调光大致可分为PWM调光(含Buck、Boost、Buck-Boost)、线性调光以及可控硅调光等方式,但它们的共同思路都是用驱动电路来控制光的输出。
一些应用只是简单地实现“开”和“关”的功能,但是更多地应用需求是要从0~100%调节光的亮度,而且经常要有很高的精度。
要满足这样的需求通常有两个选择:线性调节LED电流,或者使用开关电路以相对于人眼识别力来说,足够高的频率工作来改变光输出的平均值(数字调光)。
使用脉冲宽度调制(PWM)来设置周期和占空度(见图2、3)可能是最简单的实现数字调光的方法,并且Buck调节器拓扑往往能够提供一个最好的性能。
一、认识LED灯中的PWM调光模拟调光通常可以很简单地来实现,通过一个控制电压来成比例地改变LED驱动的输出。
单纯的电阻式模拟调光,不会引入潜在的电磁兼容/电磁干扰(EMC/EMI)频率。
led灯调节亮度原理

led灯调节亮度原理
LED灯的调节亮度原理取决于所采用的调光方式。
以下是几种常见的LED灯调节亮度原理:
1. 脉宽调制(PWM):这是最常见的LED灯调光方式。
通过改变电流或电压的波形,以产生一系列的脉冲信号。
脉冲信号的占空比决定了LED灯的亮度。
占空比越高,LED灯越亮。
占空比越低,LED灯越暗。
2. 电流调节:这种调光方式通过改变电流的大小来控制LED 灯的亮度。
增大电流可以使LED灯变亮,而减小电流则可以使LED灯变暗。
通常通过电流驱动电路中的电流控制芯片来实现电流调节。
3. 额定电压调节:这种调光方式通过改变电压的大小来调节LED灯的亮度。
当电压较高时,LED灯会更亮,而电压较低时,LED灯会变暗。
通常通过恒压驱动电路中的电压控制芯片来实现额定电压调节。
4. 预设场景调光:一些智能LED灯可以通过预设场景来实现调光。
用户可以选择不同的场景模式,比如阅读、休息、聚会等,LED灯会根据不同的场景需求自动调整亮度。
需要注意的是,不同的LED灯产品可能采用不同的调光方式和控制器。
因此,在选择LED灯时,需要根据具体的调光需求和产品规格来选购。
基于PWM的无级调光LED驱动电路设计共3篇

基于PWM的无级调光LED驱动电路设计共3篇基于PWM的无级调光LED驱动电路设计1无级调光LED驱动电路设计PWM调制是现代电子技术中广泛使用的一种技术,它通过调节与维持多种输出点之间的准确关系,使得电子器件能够控制电力用于对外输出。
在LED灯的驱动电路中,PWM调制技术同样得到了广泛的应用。
本文旨在介绍基于PWM技术的无级调光LED驱动电路的设计原理和具体实现方法。
1. PWM技术原理PWM技术是利用开关元件不断地开关,将直流电按照一定的占空比转换成为具有高频脉冲的电压信号,从而精准地控制输出的电力大小。
PWM技术可以实现模拟信号的数字化,进而通过数字控制进行输出。
这种技术的优势包括:(1)工作效率高:PWM驱动电路的输出信号是具有脉冲宽度和周期的高频脉冲信号,其输出的平均值可以由占空比决定,因此电力传输效率高。
(2)输出精度高:PWM技术可以便捷地实现数字控制输出,利用数字序列、计数器等实现精准控制。
(3)抗干扰能力好:PWM技术输出的是高频脉冲信号,因此能够减少对噪声等外部干扰的影响,保证输出效果。
由于PWM技术的优势,其在LED灯的驱动电路中得到了广泛的应用。
下面我们将介绍基于PWM技术的无级调光LED驱动电路的具体设计方法。
2. 无级调光LED驱动电路设计(1)PWM信号的产生与控制PWM信号的产生与控制是无级调光LED驱动电路的核心。
其原理是通过对PWM信号的频率和占空比进行控制,进而实现对LED的亮度进行精准控制。
该电路实现的具体步骤如下:步骤一:产生基础信号在无级调光LED驱动电路中,我们需要产生一种基础的PWM信号,以此作为后续控制的基础信号。
产生基础信号的主要步骤包括:通过555定时器或者微处理器产生基础信号;对产生的信号进行整形,使其成为占空比可调的方波。
步骤二:PWM信号的控制针对LED驱动电路的具体要求,我们需要实现对基础信号频率和占空比的控制。
具体的PWM信号控制方法如下:进入控制阶段后,对信号进行持续分频,并利用数字控制占空比输出。
led灯调光的原理

led灯调光的原理LED灯调光的原理LED(Light Emitting Diode)灯是一种半导体器件,通过电子的复合释放能量产生光。
与传统的白炽灯和荧光灯相比,LED灯具有高效节能、寿命长、环保无污染等优点,因此在照明领域得到了广泛的应用。
LED灯具的亮度可以通过调光来实现,在不同场景下提供合适的照明效果。
LED灯的调光原理主要有两种:PWM调光和电流调光。
一、PWM调光原理PWM(Pulse Width Modulation)调光是一种通过改变LED灯的亮度来实现调光效果的方法。
PWM调光的原理是通过不同时间段内高电平和低电平的占空比来控制LED灯的亮度。
具体来说,PWM调光通过快速交替的开关LED灯,使其在人眼无法察觉的频率下闪烁。
当占空比较高时,即高电平时间比较长,LED灯亮度较高;当占空比较低时,即低电平时间比较长,LED灯亮度较低。
通过调节高低电平之间的占空比,可以实现对LED灯亮度的精确调控。
二、电流调光原理电流调光是通过改变LED灯的电流来实现调光效果的方法。
LED灯的亮度与其通过的电流成正比关系,因此通过调节电流大小可以控制LED灯的亮度。
电流调光通常使用的方法是通过改变LED灯的驱动电流来实现。
驱动电流越大,LED灯的亮度越高;驱动电流越小,LED灯的亮度越低。
通过调节驱动电流的大小,可以实现对LED灯亮度的调控。
三、PWM调光和电流调光的比较PWM调光和电流调光在LED灯调光方面各有优势。
1. PWM调光可以实现更精确的亮度调节。
由于LED灯的亮度与PWM调光的占空比成正比关系,因此可以通过微调占空比来实现精确的亮度调节。
2. 电流调光在光效上更高。
LED灯的光效与其通过的电流成正比关系,因此通过调节电流大小可以实现更高的光效。
LED灯调光的原理主要有PWM调光和电流调光两种方法,它们通过改变LED灯的亮度或电流来实现调光效果。
在实际应用中,可以根据不同的需求选择适合的调光方法。
单片机实践-PWM应用2-LED调光

返回
中断程序流程图
11 PWM应用
高电平初始值: unsigned char dutycycle[3]={4,6,9};//占空比分别为40%,60%,90%,周期为
10MS
T3L_high = (65536-定时时间对应的脉冲个数)%256; =(65536-dutycycle[level]*0.001/(12/MAIN_Fosc))%256; =(65536-dutycycle[level]*MAIN_Fosc/12000)%256;
THANK YOU
PWM应用2-LED 调光
11 PWM应用
任务要求:设计一个床头灯,使用PWM实现LED调光。
具体要求: 1、采用1W的LED,光亮度有三个档位; 2、通过按键切换亮度档位; 3、采用Proteus进行仿真,观察效果。
11 PWM应用
t1=9MS 开始
t2=1MS T=10MS
思路:通过高低电平两个不同的定时时 间的切换来实现PWM输出。首先将 LED=1,定时器的定时时间设置为9ms ,时间到后,在中断程序里重新设置定 时时间为(周期-9ms),LED=0,重复以 上步骤。
T3H_high = (65536-dutycycle[level]**0.001/(12/MAIN_Fosc))/256; =(65536-dutycycle[level]*MAIN_Fosc/12000)%256;
低电平初始值: T3L_low = (65536-(CYCLE-dutycycle[level])*MAIN_Fosc/12000)%256; T3H_low =(65536-(CYCLE-dutycycle[level])*MAIN_Fosc/12000)/256;
单片机PWM调光原理与实现方法

单片机PWM调光原理与实现方法近年来,随着LED灯具的广泛应用,调光技术也变得越来越重要。
单片机作为调光控制的核心部件之一,使用PWM(脉宽调制)技术可以实现灯光的亮度调节。
本文将介绍单片机PWM调光原理及实现方法。
一、PWM调光原理PWM是一种基于时间的调光方法,通过改变信号的高低电平持续时间的比例来调节灯光的亮度。
该方法适用于LED等光源,因为LED的发光亮度与通电时间成正比。
PWM调光原理如下:1. 设定周期:在PWM调光中,首先需要设定一个时间的基本周期。
周期越大,灯光的亮度变化也就越平滑。
典型的PWM周期一般为几十微秒。
2. 设定占空比:占空比是表示高电平时间占总周期时间的比例,通常以百分比表示。
占空比越高,灯光亮度越大;占空比越低,灯光亮度越小。
3. 生成PWM信号:根据设定的周期和占空比,单片机通过不断计数生成PWM信号。
当计数值小于占空比时,输出高电平;当计数值大于占空比时,输出低电平。
通过改变计数阈值,可以实现不同占空比的PWM信号。
4. 连接LED灯:通过PWM输出口将生成的PWM信号连接到LED灯。
当PWM信号为高电平时,LED点亮;为低电平时,LED熄灭。
通过不断重复生成PWM信号,可实现灯光的调光效果。
二、实现方法在单片机上实现PWM调光功能有多种方法,下面将介绍两种常见的实现方法。
1. 软件实现PWM调光软件实现PWM调光是通过单片机的定时器和计数器来实现的。
具体步骤如下:1) 设置定时器:选择适合的定时器工作模式,并设置定时周期。
定时周期即为PWM的周期。
2) 设置计数器:设置计数器的初值。
3) 发出PWM信号:当计数器值小于占空比时,输出高电平;否则输出低电平。
4) 重复步骤3,不断更新计数器的值,从而生成PWM信号。
2. 硬件实现PWM调光硬件实现PWM调光是通过使用专用的PWM模块和电路来实现的。
具体步骤如下:1) 配置PWM模块:根据单片机的特点,选择适合的PWM模块,并进行配置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国照明网技术论文·LED照明
机械视觉辨识和工业检验等应用通常都需要较高的PWM调光频率,主因为高速摄影机和传感器的反应速度比人类眼睛快很多。在这类应用中,对于LED光源进行高速开和关的目的不是要降低平均的光输出量,而是要将光输出与传感器或摄影机的捕捉时间进行同步化。中国照明网技术论文·LED照明
三、利用开关稳压器来调光中国照明网技术论文·LED照明
具备较快速回转率的降压稳压器,比其他所有的开关拓扑结构在两个地方表现更为优异,首先降压稳压器是唯一可在控制开关启动时,将功率输送到输出端的开关转换器,此特点使得电压模式或电流模式PWM(这里不要与PWM调光混淆)的降压稳压器之控制回路,比起升压稳压器或其他降压/升压拓扑更为快速。此外,在控制开关启动期间的功率传输能够轻易改为磁滞控制,使其速度甚至比最佳的电压模式或电流模式控制的回路更快。其次,降压稳压器的电感器在整个开关周期内都是连接在输出端,此可确保输出电流的连续性,也意谓毋须使用输出电容器。少了输出电容器后,降压稳压器便可成为真正的高阻抗电流源,能够迅速转换输出电压。邱克型(Cuk)和Zeta转换器虽可提供连续性输出电感器,但由于它们的控制回路较慢,效率也较低,因此并非最佳选择。中国照明网技术论文·LED照明
从一个没有输出电容器的快速降压稳压器着手,出现在输出电流开启和关闭的延迟,是来自集成电路本身的传导延迟和输出电感器的物理特性。若要达到真正高速的PWM调光,两个延迟都须被略过(By Pass)。要实现这个目标,最佳方法就是采用一个与LED并联的电源开关(图3)。当LED关闭时,驱动电流便会分流通过开关,作用就如同一个典型的N型金属氧化半导体场效晶体管(N-MOSFET),这时集成电路会继续运行,而电感器电流也会持续流动。该方法的最大缺点在于LED关闭时,即使期间的输出电压下降到与电流感测电压相同,仍会浪费功率。中国照明网技术论文·LED照明
一、PWM调光能调配准确色光中国照明网技术论文·LED照明
一般来说,模拟调光比较容易实行,这是因为LED驱动器的输出电流变化与控制电压成比例,而且模拟调光也不会引发额外的电磁兼容性(EMC)/电磁干扰(EMI)潜在频率问题。然而,大部分设计采用PWM调光的理由都是基于LED的基本特性,即放射光的位移是与平均驱动电流的大小成比例(图1)。对于单色LED来说,主要光波的波长会发生变化,而在白光LED方面,出现变化的是相对色温(CCT)。对于人们的肉眼来说,很难察觉出红、绿或蓝光LED中的奈米波长变化,尤其是当光的强度也同样在改变,但是白光的色温变化则比较容易察觉出来。大多数的白光LED都包含一片可放射出蓝光频谱光子的晶圆,这些光子在撞击磷光涂层后便会放射出各种可见光范围内的光子。在较小的电流下,磷光会成为主导并使光线偏向黄色;而在较大电流下,LED放射出来的蓝光则较多,使得光线偏向蓝色,同时也会产生较高的CCT。对于使用超过一个白光LED的应用,在两个相邻LED之间出现的CCT差异会很明显,且视觉令人不悦,此概念可以进一步延伸将多个单色LED光线混和在一起的光源。一旦超过一个光源,任何出现在它们之间的CCT差异都会令人感到刺眼。中国照明网技术论文·LED照明
五、利用升压和降压/升压 实现快速的PWM调光中国照明网技术论文·LED照明
无论是升压稳压器或任何类型的降压/升压拓扑都不太适合用在PWM调光。在开始设计的时候,会发觉两者在连续导通模式(CCM)下都会展现一个右半平面零点(Right-half Plane Zero)限制,这将无法达到频率稳压器所需的高控制回路带宽要求。此外,右半平面零点的时域效应还会使系统难以磁滞方式去控制升压或降压/升压电路;另一个使情况变得更为复杂的因素是升压稳压器不能容忍输出电压下降到输入电压以下,这种情况会导致在输入端产生短路,使得并列FET调光无法实行。另外,在各类的降压/升压拓扑技术中,并列FET调光仍然窒碍难行或极难使用,主因在于它需要输出电容器(SEPIC、降压/升压和返驰式),又或在输出短路时会出现无法控制的输入电感器电流(Cuk和Zeta)。中国照明网技术论文·LED照明
虽然LED电流可在瞬间关闭,但须仔细考虑系统的响应,这种开放电路其实可看成一个快速的极端卸除瞬时,它还会中断回馈回路并导致稳压器的输出电压无止境上升。因此,须要在输出和/或误差放大器加入箝位电路,以预防超载电压所造成的损害,但由于这些箝位电路难以用外部电路的方式实现,也就是说串行式FET调光必须配合专用升压与降压/升压LED驱动器集成电路才可使用。中国照明网技术论文·LED照明
中国照明网技术论文·LED照中国照明网技术论文·LED照明
图3 分路FET电路和其波形中效应晶体管(FET)来进行调光会导致输出电压出现急遽的移位,这使得集成电路的控制回路必须作出响应,以尝试维持输出电流的稳定。正如同逻辑接脚调光般,控制回路愈快表示响应愈好,而采用磁滞控制的降压稳压器则可提供最佳的回应。中国照明网技术论文·LED照明
要有效控制LED光源,必须在开始时的设计过程就加倍小心,光源愈是精密,须要采用PWM调光的机会就愈大,而系统设计人员也必须谨慎考虑有关LED驱动器的拓扑结构问题。降压稳压器对PWM调光有很多优点,设计人员必须慎重考虑输入电压和LED的排列位置。假如调光频率要求更高,回转率便要更快,如此可更轻易在设计过程的初期改用降压稳压器来实行。
假如真的需要一个快速的PWM调光,最佳的解决方案是采用两级系统,并以降压稳压器作为第二级LED驱动级。不过,若尺寸空间和成本都不容许,退而求其次的最佳选择便是图4中的串行开关。中国照明网技术论文·LED照明
中国照明网技术论文·LED照中国照明网技术论文·LED照明
图4 采用串行调光开关的升压稳压器中国照明网技术论文·LED照明
无论LED是经由降压、升压、降压/升压或线性稳压器驱动,连接每一个驱动电路最常见的线程就是须要控制光的输出。现今仅有很少数的应用只需要开和关的简单功能,绝大多数都需要从0~100%去微调亮度。目前,针对亮度控制方面,主要的两种解决方案为线性调节LED的电流(模拟调光)或在肉眼无法察觉的高频下,让驱动电流从0到目标电流值之间来回切换(数字调光)。利用脉冲宽度调变(PWM)来设定循环和工作周期可能是实现数字调光的最简单的方法,原因是相同的技术可以用来控制大部分的开关转换器。中国照明网技术论文·LED照明
中国照明网技术论文·LED照中国照明网技术论文·LED照明
图1 采用PWM调光的LED驱动器及波形中国照明网技术论文·LED照明
LED制造商会在其产品的电流特性表中指定驱动电流的大小,其只会在这些特定电流条件下对产品的主波长或CCT提供保证。PWM调光的优点在于完全毋须考虑光的强弱,也能确保LED放射出设计人员所需的颜色。这种精确的控制对于红绿蓝(RGB)应用尤其重要,因为这些应用是将不同颜色的光线混和以产生白光。
二、调光频率与对比度成反比中国照明网技术论文·LED照明
对于PWM调光讯号而言,每个LED都有限定的响应时间,图2表示三种不同的延迟,延迟愈大者表示能达到的对比度就愈低(对光强度控制的一种测量方法)。中国照明网技术论文·LED照明
中国照明网技术论文·LED照中国照明网技术论文·LED照明
图2 调光延迟中国照明网技术论文·LED照明
加速调光频率 PWM实现精准LED调光
无论LED是经由降压、升压、降压/升压或线性稳压器驱动,连接每一个驱动电路最常见的线程就是须要控制光的输出。现今仅有很少数的应用只需要开和关的简单功能,绝大多数都需要从0~100%去微调亮度。目前,针对亮度控制方面,主要的两种解决方案为线性调节LED的电流(模拟调光)或在肉眼无法察觉的高频下,让驱动电流从0到目标电流值之间来回切换(数字调光)。利用脉冲宽度调变(PWM)来设定循环和工作周期可能是实现数字调光的最简单的方法,原因是相同的技术可以用来控制大部分的开关转换器。
为了达到每秒开关数百次或甚至数千次,以开关稳压器为基础的LED驱动器,须经过特别的设计考虑。针对标准电源供应而设计的稳压器一般都会设计一根「启动」或关闭接脚,以便供逻辑PWM讯号使用,但连带的延迟tD则颇长,这是由于硅芯片的设计强调在响应时间内维持低停机电流。然而,专用来驱动LED的开关稳压器则恰好相反,它可在「启动」接脚逻辑低时,保持内部控制电路的活动,以将tD减至最低,而当LED被关关时,则会面临较大工作电流的困扰。中国照明网技术论文·LED照明
四、PWM比“启动”接脚更怏中国照明网技术论文·LED照明
即使是一个没有输出电容器的纯磁滞降压稳压器,都不足以应付某些PWM调光系统的要求,这些应用需要较高的PWM调光频率、高对比度度,也就是要求更快速的回转率和更短暂的延迟时间。与机械视觉辨识和工业检验系统搭配应用时,举例某些要求高性能的系统,包括液晶(LCD)面板和单枪投影机的背光照明系统,在某些情况下,PWM调光频率必须被调高到可听频带以外的25kHz或更高的频带,随着整体的调光周期已缩短至几微秒内,包括传导延迟在内,LED电流的上升和下降时间总和必须缩短至奈秒内。中国照明网技术论文·LED照明
在使用PWM来达成光控制优化时,要把转上(Slew-up)和转下(Slew-down)延迟维持在最低,这不单为了获得最佳的对比度,而且还可减少LED花在由0到目标所需的时间。(在此条件下,并不保证主波长或CCT与目标值相同)在这里的标准开关稳压器将设有一个软启动,通常也搭配一个软关闭,而专用的LED驱动器会在其控制之内执行所有工作以减少这些回转率(Slew Rate)。要降低tSU和tSD,须要同时从硅芯片的设计和开关稳压器所采用的拓扑着手。中国照明网技术论文·LED照明