常用物探方法的工作原理
物探方法简介

物探方法简介一、瞬变电磁法简介1、瞬变电磁法技术原理瞬变电磁法(Transient ElectromagneticsMethod, TEM)是以地壳中岩(矿)石的导电性与导磁性差异为主要物质基础,根据电磁感应原理,利用不接地回线或接地线源向地下发送一次脉冲磁场,在一次脉冲磁场的间隙期间,利用线圈或接地电极观测二次涡流场,并研究该场的空间与时间分布规律, 来寻找地下矿产资源或解决其它地质问题的一支时间域电磁法。
下图即为瞬变电磁法原理的图解。
2、瞬变电磁法应用领域瞬变电磁法施工简便、低阻探测能力强、精度高、探测深度大(地面1000m、井下150m),井下、井上均可施工。
具有许多传统直流电法不可比拟的优点,可应用于:◆地下水探测。
瞬变电磁法可用于找水、咸淡水区分、地下电性分层、圈定地下充水溶洞;◆寻找金属矿床;◆煤层顶底板富水性探测、巷道迎头超前探、圈定煤层采空(塌陷)区;◆陡倾角、断层、岩脉等地质构造探测。
二、高密度电法简介其原理与普通电阻率法相同,不同的是在观测中设置了高密度的观测点,工作装置组合实现了密点距陈列布设电极,是一种阵列勘探方法,现场测量时只需将全部电极(几十至上百根)置于测点上,然后利用程控电极转换开关和微机工程电测仪便可实现数据的快速和自动采集,增加了空间供电和采样的密度,提高了纵、横向分辨能力和工作效率。
在众多直流电阻率方法中,高密度电阻率法以其工作效率高、反映的地电信息量大、工作成本低、测量简便等突出优势,在物探领域中发挥着越来越重要的作用。
主要应用于:◆寻找地下水、管线探测、岩土工程勘察;◆煤矿采空区调查,煤矿井下富水性探测;◆水库大坝的坝体稳定性评价、坝基渗漏勘查、堤坝裂缝检测、建筑地基勘探;◆涵洞和溶洞位置勘查、岩溶塌陷和地裂缝探测三、矿井直流电法简介主要应用于井下,其原理与地面直流电法相似,不同之处为:矿井直流电法属全空间电法勘探、采用本安防爆设备,它以岩石的电性差异为基础,在全空间条件下建立电场,使用全空间电场理论,处理和解释有关矿井水文地质问题。
工程施工物探检测

工程施工物探检测一、工程施工物探检测的原理工程施工物探检测是通过利用地球物理学的原理,采用各种物探方法对地下情况进行探测。
物探方法主要包括电法、磁法、雷达、地震等多种方式。
这些方法都是基于地下不同介质对电磁波、声波、磁场等的散射、反射特性而展开的。
1. 电法:电法是一种基于地下电阻率差异来探测地下结构和地质情况的方法。
通过在地面上布设电极,利用电流在地下传播的方式,测定地下不同介质的电阻率,从而识别出地下构造。
2. 磁法:磁法是一种利用地下岩石的磁性差异来进行探测的方法。
通过在地面上布设磁场探头,测定地下不同介质的磁性响应,可以了解地下情况。
3. 雷达:雷达是一种利用电磁波在地下传播的速度和反射特性来进行探测的方法。
通过在地面上布设雷达,发送电磁波,测定地下介质的电磁波传播速度和反射情况,可以揭示地下情况。
4. 地震:地震是一种利用地下介质对地震波传播速度和反射特性进行探测的方法。
通过在地面上布设地震仪器,发送地震波,测定地下介质对地震波的反射和传播情况,可以了解地下结构。
以上介绍了几种常见的物探方法,这些方法在工程施工物探检测中起着至关重要的作用。
通过这些方法,可以对地下情况进行全面、准确地分析,为工程施工提供重要的参考信息。
二、工程施工物探检测的方法工程施工物探检测的方法主要包括前期调查、仪器选择、数据采集、数据解释和报告编制等环节。
下面将分别进行介绍。
1. 前期调查:在进行工程施工物探检测之前,需要对工程区域进行前期调查,了解地质、地形、水文、气象等情况,为后续的检测工作提供必要的信息。
2. 仪器选择:根据工程需求和地质情况,选择合适的物探仪器进行检测。
不同的物探方法需要不同的仪器设备,选择合适的仪器对检测结果的准确性和可靠性至关重要。
3. 数据采集:在实际检测中,需要对地下情况进行数据采集。
通过布设不同的探测仪器,测量地下介质的电阻率、磁性、声波传播速度等参数,获取相关数据。
4. 数据解释:通过对采集到的数据进行综合分析和解释,识别地下结构和地质情况。
物 探 法

物探法
图1-2 地震波反射法的预报原理
物探法
通过计算机软件得到各种围岩构造界 面与隧道轴线相交所呈现的角度及掌子面 的距离,并可初步测定岩石的弹性模量、 密度、泊松比等参数以供参考,进一步分 析隧道前方围岩的性质、节理裂隙密集带 分布、软弱岩层及含水状况等。
物探法
弹性波反射法适用于划分地层界限,查 找地质构造,探测不良地质的厚度和范围。 其要求被探测对象与相邻介质应存在较明显 的波阻抗差异并具有足以被探测的规模;断 层或岩性界面的倾角应大于35°,构造走向与 隧道轴线的夹角应大于45°。
(2)探测目的体具有足以被探测的规模。 (3)不能探测极高电导屏蔽层下的目的体。
物探法
2)探测距离
地质雷达在完整灰岩地段预报 距离宜在30 m以内,在岩溶发育地 段的有效探测长度则应根据雷达波 形判定。连续预报时前后两次重叠 长度应在5 m以上。
物探法
3)地质雷达探测仪表的技术指标
(1)系统增益高。 (2)信噪比大。 (3)采样间隔应根据使用频率和采样定理及仪 器设置选定。 (4)具有可选的信号叠加、实时滤波、点测与连 续测量、手动与自动位置标记等功能。
(10)地质雷达探测质量检查的记录与原探测记录应具有良 好的重复性,波形一致,没有明显的位移。
物探法
5)地质雷达探测的资料与解释
(1)参与解释的雷达剖面应清晰。 (2)解释前宜做编辑、滤波、增益等处理。当情况 较复杂时,还宜进行道分析、FK滤波、正常时差校正、褶 积、速度分析、消除背景干扰等处理。 (3)结合地质情况、电性特征、探测体的性质和几何 特征综合分析。必要时应考虑影响介电常数的各种因素, 制作雷达探测的正演和反演模型。
物探法
6)探测报告
地质雷达法预报应编制探测报告,内容 包括探测工作概况、采集及解释参数、地质 解译结果、测线布置图(表)、探测时间剖 面图等,其中时间剖面图中应标出地层的反 射波位置或探测对象的反射波组。
常用物探方法的工作原理

常用物探方法的工作原理1、瞬变电磁法:时间域电磁法(Time domain Electromagnetic Methods)或称瞬变电磁法(Transient Electromagnetic Methods),简写为TEM。
它是利用不接地回线或接地线源向地下发送一次脉冲磁场,在一次脉冲磁场的间歇期间,利用线圈或接地电极观测二次涡流场的方法。
其数学物理基础都是基于导电介质在阶跃变化的激励磁场激发下引起的涡流场的问题。
其工作原理为:通过地面布设的线圈,向地下发射一个脉冲磁场(一次场),在一次场磁力线的作用下,地下介质将产生涡流场。
当脉冲磁场消失后,涡流并没有同步消失,它有一个缓慢的衰减过程,在地表观测涡流衰减过程所产生的二次磁场,即可了解地下介质的电性分布。
该二次场衰减过程是一条负指数衰减曲线,如图1所示。
图1 二次场衰减曲线图一般来说,对于导电性差的地质体,二次场初始值较大,但衰减速度较快;反之,导电性良好的地质体,二次场初始值小,但衰减速度慢(图2)。
瞬变电磁场这一特性构成了TEM区分不同地质体的基本原理。
二次场的衰减曲线早期主要反映浅层信息,晚期主要反映深部信息。
因此,观测和研究大地瞬变电磁场随时间的变化规律,可以探测大地电位的垂向变化。
图2 瞬变电场随时间衰减规律与地质体导电性的关系仪器野外工作方法及原理见图3。
主机通过发射线圈向地下发射烟圈状磁脉冲,当磁脉冲遇到不均匀导电介质时形成涡流场,仪器断电后,涡流场衰减过程中形成的二次场以烟圈状辐射,接收线圈接收到返回地面的二次场信号并将其传输给主机进行处理、显示。
图3 仪器工作原理图瞬变电磁法的特点表现为可以采用同点组合进行观测,使与探测目的物耦合最紧,取得的异常响应强,形态简单,分层能力强;在高阻围岩区不会产生地形起伏影响的假异常,在低电阻率围岩区,由于是多道观测,早期道的地形影响也较易分辨;线圈点位、方位或接发距要求相对不严格,测地工作简单,工作效率高;有穿透低电阻率覆盖层的能力,探测深度大;剖面工作与测深工作同时完成,提供了更多有用信息。
测绘技术中的物探测量方法介绍

测绘技术中的物探测量方法介绍测绘技术是现代社会发展和规划的重要组成部分。
它通过各种方法和技术手段来获取地理信息和测量数据,为社会发展和资源管理提供有力支持。
而在测绘技术中,物探测量方法是一种重要的手段,通过对地下物质性质和分布的测量,为工程勘察、资源勘探、地质调查等提供可靠依据。
本文将介绍几种常见的物探测量方法。
第一种方法是电法探测。
电法探测是基于地下物质导电性的差异来进行测量和分析的。
该方法通过在地下埋设电极,在其中施加一定电流,并测量地下电位差来判定地下物质的导电性质。
这种方法适用于寻找地下水、矿藏等。
通过在不同位置布置电极,可以得到整个区域的电阻率分布图,从而揭示地下物质的性质和分布情况。
第二种方法是地磁法探测。
地磁法采用地球磁场与地下物质的相互作用来进行测量。
地磁法探测仪器利用地球磁场的强度和方向的变化,通过测量地面上的磁场参数来判断地下物质的性质和分布。
这种方法适用于寻找矿藏、断层等地下构造的探测。
地磁法具有较高的分辨率和灵敏度,因此在地质勘探和环境监测中有广泛应用。
第三种方法是地震法探测。
地震法是一种利用地震波在地下的传播和反射特性进行测量的方法。
通过在地面上设置地震源,并记录地震波在地下的传播情况,可以推断地下岩石的密度、速度和构造等信息。
地震法适用于不同类型的地质勘探,如石油勘探、地下水勘探和地震灾害预测等。
这种方法被称为地球物理勘探的主要手段之一,其成像能力和解析度很高,能提供较为准确的地下信息。
第四种方法是重力法探测。
重力法是通过测量地球重力场的变化来推断地下物体的质量分布和形状。
利用高精度的重力仪器,测量地表上的重力值,并进行数据处理,可以得到地下物体的密度和分布情况。
重力法适用于大范围的地下构造和均质地层的勘探,常用于天然气、石油等资源勘探和地下水寻找。
以上所介绍的四种方法只是测绘技术中的一小部分,且每种方法都有各自的局限性和适用条件。
在实际应用中,通常需要结合多种方法进行综合分析,以提高勘探的效果和准确性。
常见物探方法应用及优缺点

电阻率测深法点),通过逐次加大供电电极,AB极距的大小,测量同—点的、不同AB极距的视电阻率ρS 值,研究这个测深点下不同深度的地质断面情况。
电测深法多采用对称四极排列,称为对称四极测深法。
在AB极距离短时,电流分布浅,ρS曲线主要反映浅层情况;AB极距大时,电流分布深,ρS曲线主要反映深部地层的影响。
ρS曲线是绘在以AB/2和ρS为坐标的双对数坐标纸上。
当地下岩层界面平缓不超过20度时,应用电测深量板进行定量解释,推断各层的厚度、深度较为可靠。
二、应用领域:电测深法在水文地质、工程地质和煤田地质工作中应用较多。
除对称四极测深法外,还可以应用三极测深、偶极测深和环形测深等方法。
高密度电阻率法的控制,实现电阻率法中各种不同装置、不同极距的自动组合,从而一次布极可测得多种装置、多种极距情况下多种视电阻率参数的方法。
对取得的多种参数经相应程序的处理和自动反演成像,可快速、准确地给出所测地电断面的地质解释图件,从而提高了电阻率方法的效果和工作效率。
高密度电法实际上是集中了电剖面法和电测深法。
其原理与普通电阻率法相同.所不同的是在观测中设置了高密度的观测点。
是一种阵列勘探方法。
二、应用领域:在条件适当时,此方法对工程物探以及探测煤矿的老硐,探测古墓墓穴等有较好的效果。
三、优缺点:与常规电阻率法相比.高密度电法具有以下优点:1.电极布置一次性完成.不仅减少了因电极设置引起的故障和干扰,并且提高了效率:2.能够选用多种电极排列方式进行测量,可以获得丰富的有关地电断面的信息;3.野外数据采集实现了自动化或半自动化,提高了数据采集速度,避免了手工误操作。
随着地球物理反演方法的发展,高密度电法资料的电阻率成像技术也从一维和二维发展到三维,极大地提高了地电资料的解释精度。
激发极化法一、基本原理:是根据岩石、矿石的激发极化效应来寻找金属和解决水文地质、工程地质等问题的一组电法勘探方法。
它又分为直流激发极化法(时间域法)和交流激发极化法(频率域法(SIP))。
物探仪器的原理

物探仪器的原理物探仪器,即物探测绘仪器(Geophysical Exploration Instrument),是用于地球物理探测的仪器设备。
物探仪器运用物理现象与原理,通过测量地下的物理参数,如电阻率、自然电位、磁场、重力、地震等,来获取地下的信息和结构,用于地质工程勘察、矿产资源勘探、地质灾害预警等领域。
物探仪器主要包括电法仪器、磁法仪器、重力仪器、地震仪器等多种类型。
下面将针对各种仪器的原理进行详细介绍。
1. 电法仪器:电法仪器是根据地下地质体的电阻率分布特征进行测量的。
其原理基于物质的导电和隔绝性质,通过电极将电流引入地下,测量地下不同深度处的电位差,从而计算出地下结构的电阻率分布。
电法仪器主要包括直流电法仪、交流电法仪和自然电位仪等。
2. 磁法仪器:磁法仪器是利用地下磁场的变化来测量地下结构的一种方法。
地球的磁场主要由地磁场和磁化体产生的磁场组成,当地下存在有磁化性质的物质时,其磁场会发生变化。
磁法仪器通过测量地面上的磁场强度和磁场的方向,可以推断出地下的磁性物质的分布和性质。
3. 重力仪器:重力仪器是利用地球引力场的变化来测量地下密度分布的仪器。
地下不同物质具有不同的密度,不同密度的物质会对地球引力场产生不同的扰动。
重力仪器通过测量地面上的重力场强度的变化,可以推断出地下不同深度处的物质密度的分布情况。
4. 地震仪器:地震仪器是利用地震波在地下不同介质中的传播特性来测量地下结构的一种方法。
地震仪器通过放置地震源,产生震波,然后测量震波在地下的传播速度和方向,从而推断出地下的介质性质和结构。
在具体应用中,物探仪器常常会结合使用,通过多种测量数据的综合分析,以提高探测的准确性和可靠性。
此外,随着科学技术的不断发展,物探仪器的原理和技术也在不断创新和改进,以满足不同领域地下结构探测的需求。
物探mtem法

物探mtem法
物探MTEM法是一种多道瞬变电磁法(Multi-channel Transient Electromagnetic Method)的简称,是一种地球物理探测方法。
它通过向地下发送脉冲磁场并测量其响应,来探测地下的电性分布。
MTEM法可以用于寻找金属矿床、油气藏、地下水以及其他地质目标。
MTEM法的原理是基于电磁感应原理,通过向地下发送一个脉冲磁场,然后测量该磁场在地下的衰减过程以及产生的感应电动势。
由于不同的地下物质具有不同的电导率和磁导率,因此它们对电磁场的衰减程度和感应电动势的大小也会有所不同。
通过对这些数据进行分析和处理,可以推断出地下的电性分布,进一步确定地质构造、矿产资源和地下水资源的位置和分布。
MTEM法的优点包括:对地下电性差异敏感、分辨率高、探测速度快、成本低等。
同时,MTEM法也存在一些局限性,例如对于深层探测效果较差、容易受到地形和地表覆盖物的影响等。
在实际应用中,需要根据具体的情况选择合适的物探方法和技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用物探方法的工作原理1、瞬变电磁法:时间域电磁法(Time domain Electromagnetic Methods)或称瞬变电磁法(Transient Electromagnetic Methods),简写为TEM。
它是利用不接地回线或接地线源向地下发送一次脉冲磁场,在一次脉冲磁场的间歇期间,利用线圈或接地电极观测二次涡流场的方法。
其数学物理基础都是基于导电介质在阶跃变化的激励磁场激发下引起的涡流场的问题。
其工作原理为:通过地面布设的线圈,向地下发射一个脉冲磁场(一次场),在一次场磁力线的作用下,地下介质将产生涡流场。
当脉冲磁场消失后,涡流并没有同步消失,它有一个缓慢的衰减过程,在地表观测涡流衰减过程所产生的二次磁场,即可了解地下介质的电性分布。
该二次场衰减过程是一条负指数衰减曲线,如图1所示。
图1 二次场衰减曲线图一般来说,对于导电性差的地质体,二次场初始值较大,但衰减速度较快;反之,导电性良好的地质体,二次场初始值小,但衰减速度慢(图2)。
瞬变电磁场这一特性构成了TEM区分不同地质体的基本原理。
二次场的衰减曲线早期主要反映浅层信息,晚期主要反映深部信息。
因此,观测和研究大地瞬变电磁场随时间的变化规律,可以探测大地电位的垂向变化。
图2 瞬变电场随时间衰减规律与地质体导电性的关系仪器野外工作方法及原理见图3。
主机通过发射线圈向地下发射烟圈状磁脉冲,当磁脉冲遇到不均匀导电介质时形成涡流场,仪器断电后,涡流场衰减过程中形成的二次场以烟圈状辐射,接收线圈接收到返回地面的二次场信号并将其传输给主机进行处理、显示。
图3 仪器工作原理图瞬变电磁法的特点表现为可以采用同点组合进行观测,使与探测目的物耦合最紧,取得的异常响应强,形态简单,分层能力强;在高阻围岩区不会产生地形起伏影响的假异常,在低电阻率围岩区,由于是多道观测,早期道的地形影响也较易分辨;线圈点位、方位或接发距要求相对不严格,测地工作简单,工作效率高;有穿透低电阻率覆盖层的能力,探测深度大;剖面工作与测深工作同时完成,提供了更多有用信息。
瞬变电磁法可用于确定岩溶构造的含水性,了解地下水的活动规律。
常用仪器有MSD-1瞬变电磁仪,GDP —32,V8仪等。
2、 激发极化法:激发极化(induced polarization,缩写IP )是发生在地质介质中因外电流激发而引起介质内部出现电荷分离,产生一个附加的“过电位”(over voltage )的一种物理化学现象。
在电法勘探的实践中,通过某一电极排列向地下供电的瞬时,我们可以观测到测量电极间的电位差1U ∆(称为一次场电位差)随着供电时间的增加逐渐增大。
当供电数分钟后,这个电位差趋于某一稳定的饱和值U ∆(称为极化场或总场的电位差)。
当断开供电电路后,在测量电极之间仍然观测到随时间衰减的电位差2U ∆(称为次生极化电位差或二次场电位差)。
这种在电流场作用下产生二次电位差的现象在物探中称为激发极化现象或激发极化效应,所形成的电场成为二次场或激发极化场。
激发极化效应是地下岩、矿石及其中所含的水溶液在外电流场作用下所发生的复杂的电化学过程的结果。
激发极化法(简称激电法)是根据岩、矿石之间激发极化效应的差异,在人工电场的作用下,观测和研究激发极化电场以达到找矿或解决其他地质问题的一种电法勘探。
观测参数为视极化率s η、视电阻率s ρ。
剖面法可用于圈定区域内岩溶构造的大致分布范围、规模、走向、和产状,可结合音频大地电磁法的成果进行对比分析,提高解释成果的可靠性。
电测深装置用于局部精细验证物探异常,确定异常埋深等情况。
双频激电仪及V8仪SIP 法都是属于利用岩(矿)石的激电效应,观测和研究激发极化电场以达到找矿或解决其他地质问题。
在双频激电法中研究岩(矿)石的电性参数主要是幅频率F (IP 振幅随频率的变化率),同时也包括电阻率ρ,其差异是双频激电应用的前提,也是成果解释的物理基础。
双频激电仪在野外主要观测高频电位差H V ∆、低频电位差L V ∆、视幅频率s F 值和视电阻率s ρ。
其中视幅频率s F 值由公式100%L H s HV V F V ∆-∆=⨯∆计算而得,其物理意义:表征激发极化引起的电位差振幅随频率的变化率。
而视电阻率s ρ的物理意义:视电阻率s ρ虽然不是岩石的真电阻率,但却是地下电性不均匀和地形的一种综合反映。
可以利用它的变化规律去发现和了解地下的不均匀性,以达到找矿和解决其他地质问题的目的。
V8仪SIP 法 即功率谱激发极化法,简称谱激电,另外还有一个称呼是复电阻率(CR )。
他是在传统直流电法的一个记录点上观测多个频率的激发极化效应的激电法。
主要应用于矿产领域,和传统激电的区别是采集从256Hz 到128s 之间的宽频带数据,从而即可以得到普通的频率域单频(相位激电)或双频(频散)信息,还可以使用Cole ‐Cole 模型或Dias 模型求解其各数据记录点的“真”激发极化参数。
V8仪SIP 法野外主要提取采集IP 效应谱参数aemo ρ、ma 、a τ、a C 和电磁效应谱参数(用于去耦校正)1 Hz 观测视电阻率a ρ。
他们具有以下物理意义:1、a ρ——1Hz 观测视电阻率:根据四电极测量装置计算的视电阻率,单位欧姆•米,即常规视电阻率。
反映电极排列勘探体积内的平均电阻率。
2、aemo ρ——去掉IP 效应后的极低频(+0 Hz )视电阻率:与1 Hz 观测视电阻率a ρ的物理意义类似。
3、ma ——视充电率:IP 效应强度参数,单位百分比(%),与电极排列勘探体积内的可极化物质的体积含量正相关。
4、a τ——视时间常数:IP 效应特征参数,单位秒。
与电极排列勘探体积内的可极化物质的粒度大小、等由结构信息相关。
5、a C ——视频率相关系数:IP 效应过程参数,无量纲。
与电极排列勘探体积内的可极化物质的IP 效应类型以及极化物质混合分布均匀性相关。
3、 音频大地电磁法:天然电场主要是由电子导体的天然电化学作用和地下水离子导体的过滤或扩散作用,以及大地电流和雷雨放电等因素所形成的电磁场。
音频大地电磁法是通过观测由远程天电引起的天然平面电磁波信号以确定地下的电阻率值的方法,其测量的频率范围为l ~10000赫(兹)。
与大地电磁法相比,由于频率较高,对浅部的分辨率较高,更适于资源勘探。
对于AMT (音频大地电磁测深),其频率范围是10000Hz ~1Hz ,因为其高频部分10000Hz ~1000Hz 所在频段的声波人耳能听到,所以称为“音频”。
探测深度一般为2000m 之内。
AMT 其观测成本较小(采集时间短,一般不做五分量),大部分都采用网格式点测。
即观测点排列成一个规则的测网。
用于进行2km 以上的电阻率立体填图。
AMT 可以提供TE/TM 两个模式的电阻率和阻抗相位用于电阻率反演。
同时还可以提供感应矢量,电性主轴方向,二维判别模量等定性信息以判断构造信息。
音频大地电磁法测量的是音频段中大地电磁场产生的电分量。
它的场源为交变电磁场,在距离场源较远的的地方,大地电磁场可视为垂直于地面入射的平面波(图4),其场的特性服从麦克斯韦方程组:0D qB E B t H J D t ∇•=∇•=∇⨯=-∂∂∇⨯=+∂∂ 式中:q 为自由电荷体密度;t 为时间;j 为电流密度;E 为电场强度;H 为磁场强度;B 为磁感应强度;D 为电位移。
不同形式的交变电磁波,可以分解为谐变电磁波,在导电介质中遵循:()0()0bz i t az bz i t az E E e e H H e e ωω-+-+=•⨯=•⨯式中:211112()b ωεμεωρ⎡⎤=⨯+-⎢⎥⎣⎦,b 为介质对电磁波的衰减系数;ε为介电常数;μ为介质的导磁系数,ρ为电阻率。
当电磁波在介质中传播时,其振幅沿Z 轴方向前进1b 距离时,振幅衰减为地表的1e (约为37%)。
习惯上取距离1b δ=称为电磁波的趋肤深度(或称穿透深度)。
在无磁介质中1503.3b f δρ=≈式中δ为穿透深度;ρ为电阻率;f 为电磁波的频率。
由上可知,电场强度E 随吸收系数b 呈负指数规律衰减,即电磁波的穿透深度随介质的电阻率的增加而增大,随电磁波频率的增大而减小。
在同一观测点,地层的电阻率不变,通过选用不同工作频率的方法,达到探测不同深度的目的。
音频大地电磁法可确定测区内含水构造的分布范围、规模和走向。
4、 可控源音频大地电磁法:可控源音频大地电磁法20世纪80年代兴起的一种测量卡尼亚电阻和相位的电磁测深技术。
基于电磁波传播理论和麦克斯韦方程组,导出电场x E 、磁场y H 与卡尼亚电阻率s ρ的关系式:2215x s y E f H ρ=式中f 代表频率。
根据电磁波的趋肤效应理论,导出趋肤深度公式:H ≈地下水及进行大型工程地质探测等方面,取得了很多成功的实例。
该法最早是由加拿大多伦多大学的D. W.Strangway 教授和他的学生Myaron Goldtein 于1971年提出。
针对大地电磁测深法场源的随机性和信号微弱,以致观测十分困难这一状况,他们提出了一种改变方案——采用可以控制的人工场源。
从而在理论和实践两方面奠定了CSAMT 法的基础。
20世纪80年代以来,方法理论和仪器都得到了很大发展,应用领域也扩展到了地质普查,勘探石油、天然气、地热、金属矿床,水文,环境等方面,从而成为受人重视的一种地球物理方法。
目前在我国已将本方法作为危机矿山深部资源勘探的重要手段,在许多矿山取得了很好的效果。
CSAMT 法主要有如下特点:①工作效率高。
用一个发射偶极子供电,可在它周围的四个很大的扇形区域内测量。
在进行测量时,只需移动接收机,便可进行面积性测深工作,从而得到地下电性的立体分布情况。
②勘探深度范围大。
CSAMT 法有效勘探深度的影响因素包括地电构造、噪声水平、发送机功率、接收机灵敏度、精度和抗干扰能力等。
从理论上来说,其探测深度范围为几十米至2-3公里。
③ 垂向分辨能力好。
CSAMT 法垂向分辨能力与多种因素有关。
如果把可探测对象的厚度与其埋深之比定义为垂直向分辨率,那么,粗略地讲,它大约为20%至10%。
④水平方向分辨率高。
一般的人工场源电法的水平分辨率除受地电条件制约外,还受收距及接收电偶极子大小的影响。
CSAMT 法的水平分辨力与发收距无关,约等于接收电偶极子距离。
⑤地形影响小。
由于卡尼亚电阻率相当于对观测值进行了归一化,同步的地形影响大大减弱;由于是平面波场,测区内地形影响也较小。
⑥高阻电屏蔽作用小。
CSAMT 法使用的是交变电磁场。
因而可以穿过高阻层,特别是高阻薄层。
有些用直流电法无法探测到的高阻薄层下的地质体,用CSAMT 法能很好解决这一问题。
与直流电法相比,以上这些特色均属明显优点,因而CSAMT 法不但可以取得良好地质效果,且应用前景也是广阔的。