声速测量
实验报告——声速的测量

声速测量------------------------------------------------------------------------------------------一、【实验名称】声速的测量二、【实验目的】1.了解超声波产生和接收的原理,加深对相位概念的理解。
2.学会测量空气中的声速。
3.了解声波在空气中的传播速度与气体状态参量之间的关系。
4.学会用逐差法处理实验数据。
三、【实验仪器】示波器、信号发生器和声速仪四、【实验原理】由波动理论可知,波速与波长、频率有如下关系:v=λf,只要知道频率和波长就可以求出波速。
本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。
剩下的就是测量声速的波长,这就是本实验的主要任务。
下面介绍两种常用的实验室测量空气中声波波长的方法。
1.相位比较法实验接线如上图所示。
波是振动状态的传播,也可以说是相位的传播。
在声波传播方向上,所有质点的振动相位逐一落后,各点的振动相位又随时间变化。
声波波源和接收点存在着相位差,而这相位差则可以通过比较接收换能器输出的电信号与发射换能器输入的正弦交变电压信号的相位关系中得出,并可利用示波器的李萨如图形来观察。
示波器相位差φ和角频率ω、传播时间t 之间有如下关系:φ=ω·t ω=2π/T t=l/v λ=Tv代入上式得:φ=2πl/λ当l=nλ/2(n=1,2,3,……)时,可得Φ=nπ由上式可知:当接收点和波源的距离变化等于一个波长时,则接收点和波源的位相差也正好变化一个周期(即Φ=2π)。
实验时,通过改变发射器与接收器之间的距离,观察到相位的变化。
当相位差改变π时,相应距离l的改变量即为半个波长。
2.驻波法如上图所示,实验时将信号发生器输出的正弦电压信号接到发射超声换能器上,超声发射换能器通过电声转换,将电压信号变为超声波,以超声波形式发射出去。
接收换能器通过声电转换,将声波信号变为电压信号后,送入示波器观察。
测量声速的方法及原理

测量声速的两种比较常用的方法及其原理:
直接法:直接法是通过测量声波在空气中传播的时间和距离来计算声速。
在实验中,通常使用一个特制的装置,通过发射声波和接收声波的方式测量声波在空气中的传播时间和距离。
具体的操作流程如下:
(1)发射声波,然后开始计时。
(2)当声波到达接收器时,停止计时。
(3)记录声波的传播距离和时间。
(4)根据公式v=d/t 计算声速,其中v 为声速,d 为声波传播距离,t 为声波传播时间。
共振法:共振法是利用管道或者容器的谐振特性来测量声速。
在实验中,使用一个特制的装置,通过调整管道或容器的长度和调整共振频率来测量声速。
具体的操作流程如下:
(1)在一个固定的频率下,调整管道或容器的长度,使得共振现象出现。
(2)测量共振频率,记录管道或容器的长度。
(3)根据公式v=fλ计算声速,其中v 为声速,f 为共振频率,λ为共振波长。
这两种方法测量声速的原理都是基于声波在介质中传播的速度和特性来实现的。
声波在空气中传播的速度取决于空气温度、压力和湿度等因素,因此在实验中,需要考虑这些因素的影响并进行校正,以确保测量结果的准确性。
测量声速可以采用哪几种方法

测量声速可以采用哪几种方法
测量声速可以采用以下几种方法:
1. 直接测量法:通过在已知距离上进行声波传播的时间测量来计算声速。
这可以通过发送一个声波脉冲,并使用计时器来测量声波传播的时间来实现。
2. 声波干涉法:利用声波传播时产生的干涉现象来测量声速。
这可以通过发送两个或多个声波脉冲,观察干涉图案并测量干涉条纹的移动速度来实现。
3. 声波共振法:利用共振现象来测量声速。
这可以通过在管道内产生声波,并调节频率直到管道共振的状态,然后测量共振频率来实现。
4. 超声波测量法:利用超声波在介质中传播的特性来测量声速。
这可以通过发送超声波脉冲,并测量其在介质中传播的时间来实现。
5. 光学测量法:采用光学技术测量介质中声波传播的速度。
这可以通过使用激光干涉仪或其他光学仪器来实现。
总的来说,不同的测量方法适用于不同的场景和需求。
选用合适的方法可以提高测量的准确性和可靠性。
声速测量的实验原理

声速测量的实验原理声速测量是利用声波在介质中传播的特性来测量声速的一种方法。
在声速测量实验中,常常利用回声法或直接法进行测量。
一、回声法回声法是一种间接测量声速的方法,其核心原理是利用声波在介质中传播的速度和声波在回程过程中与障碍物反射的时间来计算声速。
测量声速的步骤如下:1.实验设备的准备:一台发声装置和一台接收装置,以及一个垂直安装的金属管道。
2.发声和接收:发声装置通过金属管道产生声波,声波传播到障碍物上被反射回来,接收装置接收到反射的声波信号。
3.计算时间:通过测量声波从发声装置到接收装置的时间,即来回时间,以及知道了发声和接收的距离,可以计算出声速。
回声法的优点是测量精度高,可以测量声速的变化,但是需要特殊的实验设备,实验操作复杂。
二、直接法直接法是一种直接测量声速的方法,其核心原理是利用声波在介质中传播的时间和介质的长度来计算声速。
测量声速的步骤如下:1.实验设备的准备:一台发声装置和一台接收装置,以及一个长而细的管道。
2.发声和接收:发声装置通过管道产生声波,声波在管道中传播,接收装置接收到声波信号。
3.计算时间和长度:通过测量声波从发声装置到接收装置的时间,并知道了管道的长度,可以计算出声速。
直接法的优点是实验操作简单,不需要特殊的实验设备,但是测量精度相对较低。
声速测量实验常用的仪器有:定频发声装置、垂直管状装置、泛频接收装置、运动计时仪等。
声速测量的原理是基于声波在介质中传播的速度与介质的物理特性有关。
声速的大小与介质的密度、弹性模量和刚度有关。
在固体介质中,声速与刚度和密度呈正相关关系;在气体介质中,声速与温度呈正相关关系。
因此,声速测量实验中常常需要控制和测量介质的温度。
总之,声速测量是利用声波在介质中传播的特性来测量声速的方法,可以通过回声法或直接法进行测量。
这些方法都基于声波在介质中传播的时间和距离的关系来计算声速。
声速的测量对于物理学、地球科学、工程学等领域的研究具有重要意义。
测量声速用什么方法

测量声速用什么方法
测量声速的常用方法包括:
1. 时间差法:通过测量声波在两个不同位置之间传播的时间差来计算声速。
在实际测量中,可以通过发射一个短声波脉冲,然后在接收到回声信号时计时,从而测得声波在空间中的传播时间。
2. 重叠法:利用两个或多个声源在同一时刻发出声波,并在另一位置同时接收到这些声波,通过测量声波在空间中的传播距离以及时间差,来计算声速。
3. 多普勒效应法:利用多普勒效应,即声源和接收器之间的相对运动引起的频率变化,来测量声速。
通过测量声波频率的变化,可以计算出声速。
4. 共振法:通过声波在介质中的传播速度与介质本身的声速之间的关系,来测量声速。
具体方法包括毕奥-萨伊法、共振腔法等。
5. 插播法:在声速已知的介质中插播一定长度的空气柱,通过测量声波在空气柱中的传播时间和空气柱长度,来计算出声速。
不同的测量方法适用于不同的场景和要求,可以选择合适的方法来进行声速的测量。
声速的测量实验总结

声速的测量实验总结
一、实验简介
声速的测量实验是一种物理实验,主要目的是通过测量声波在介质中的传播速度,了解声波的基本特性。
实验中,我们通常使用声波发生器和接收器,通过测量声波从发生器传播到接收器的时间,计算出声波在介质中的传播速度。
二、实验目的
1. 掌握声速的测量方法;
2. 了解声波在介质中的传播速度与介质性质的关系;
3. 培养实验操作能力和数据处理能力。
三、实验原理
声速的测量基于波的传播特性。
在均匀介质中,声波的传播速度与介质本身的性质有关,可以通过已知的声速公式计算:
c = √(K/ρ)
其中,c 是声速,K 是介质的弹性模量,ρ是介质的密度。
四、实验步骤与操作
1. 准备实验器材:声波发生器、接收器、计时器、已知长度的测量管、已知密度的介质(如水、空气等);
2. 将声波发生器和接收器分别置于测量管的起点和终点,确保测量管内无空气;
3. 启动声波发生器,记录声波从起点传播到终点的时间;
4. 根据声速公式,计算出声波在介质中的传播速度;
5. 重复实验,记录多组数据,求平均值以提高测量精度。
五、实验结果分析
1. 根据实验数据,绘制出声速与介质密度的关系图;
2. 分析实验结果,比较理论值与实验值的差异;
3. 总结实验误差来源,提出改进措施。
六、实验结论
通过本实验,我们掌握了声速的测量方法,了解了声波在介质中的传播速度与介质性质的关系。
实验结果表明,声速与介质的密度和弹性模量有关,可以通过这些参数来计算出声速的理论值。
通过比较理论值与实验值,我们可以评估实验的精度和误差来源,为后续的实验提供改进方向。
声速测量实验

声速测量实验标题:声速测量实验:从定律到实验准备、过程和应用的详细解读引言:声速是指声波在介质中传播的速度,是物体震动所产生的机械波的传播速度。
声速测量实验是物理学中的经典实验之一,通过测量声波在不同介质中的传播速度,可以帮助我们深入理解声波的特性,并在实际应用中发挥重要作用。
本文将从物理定律的角度出发,详细解读声速测量实验的准备、过程以及应用。
一、定律解读:1. 声波传播速度(v)与介质的弹性系数(E)和密度(ρ)有关,可用以下公式表示:v = √(E/ρ)其中,E是介质的弹性模量,ρ是介质的密度。
2. 定律解读:从上述公式可以看出,声速的值取决于介质的弹性和密度。
不同介质的声速不同,因此通过测量声速可以区分不同物质,并对介质的特性进行研究。
二、实验准备:1. 实验器材:- 信号发生器:用于产生声波信号,可以调节频率和振幅。
- 扬声器/振膜:将电信号转换为声波信号,使其在介质中传播。
- 接收装置:用于接收声波信号,常用的有麦克风和压电传感器。
- 计时器:用于测量声波传播的时间间隔。
2. 实验介质:- 空气:使用空气作为第一个介质,它是声波传播的常见介质之一。
- 水:采用水作为第二个介质,因为水的密度和弹性系数与空气相比较大。
三、实验过程:1. 实验步骤:(1)确认实验器材齐全,正确安装和连接。
(2)将信号发生器连接到扬声器,设置合适的频率和振幅。
(3)将扬声器放置在离接收装置一定距离的位置,使声波可以传播到接收装置。
(4)开始测量:发出声波信号并同时启动计时器,接收装置接收到声波信号后停止计时。
(5)重复上述步骤多次,取多次实验结果的平均值,以提高测量的准确性。
2. 数据处理:根据测量得到的时间间隔(Δt)和声波传播的距离(d),可以计算声速(v):v = d/Δt四、实验应用和其他专业性角度:1. 材料科学研究:通过测量不同材料中声速的差异,可以判断材料的质量、密度和弹性等特性,有利于材料的选取和研发。
声速的测量实验报告及数据处理

声速的测量实验报告及数据处理嘿伙计们,今天我们要来聊聊声速的测量实验报告及数据处理。
咱们得明白声速是什么吧?声速就是声音在空气中传播的速度,换句话说,就是我们听到的声音传到别人耳朵里需要多长时间。
好了,不多说了,让我们开始实验吧!实验目的:测量实验室内不同温度下的声音传播速度。
实验器材:麦克风、计时器、温度计、声速计、温度计。
实验步骤:1. 我们需要准备好实验器材。
把麦克风插上电源,打开开关,然后用计时器记录下从发出声音到接收到回声所需的时间。
用温度计测量实验室内的温度。
2. 接下来,我们要把声速计调整到合适的范围。
一般来说,声速计的量程是0-3499米/秒。
不过,我们这次实验的目的是测量不同温度下的声音传播速度,所以我们要把声速计调整到0-343米/秒这个范围内。
这样一来,我们就可以更准确地测量出声音在空气中传播的速度了。
3. 现在,我们可以开始实验了。
先让麦克风发出一个响亮的声音,然后用计时器记录下从发出声音到接收到回声所需的时间。
用温度计测量实验室内的温度。
重复这个过程几次,取平均值作为结果。
4. 把测得的时间和温度代入公式:声速 = (2 * 时间) / 温度,计算出声音在空气中传播的速度。
注意,这里的时间单位是秒,温度单位是摄氏度。
5. 我们可以把测得的结果整理成表格或图表的形式进行展示和分析。
通过对比不同温度下的声音传播速度,我们可以了解到什么因素会影响声音在空气中的传播速度。
好啦,实验完成啦!下面我们来分析一下实验数据。
根据我们的实验数据,我们发现随着温度的升高,声音在空气中传播的速度确实会变慢。
这是因为温度升高会导致空气分子的运动变得更加剧烈,从而使声音在空气中传播时受到更大的阻力。
所以呢,当我们感觉天气越来越热的时候,就会觉得声音变得“聒噪”了。
通过这次声速的测量实验报告及数据处理,我们不仅学到了如何测量声音在空气中传播的速度,还了解到了温度对声音传播速度的影响。
希望这些知识能帮助大家更好地理解我们周围的世界哦!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
► 声波是一种在弹性媒质中传播的机械波,它
是纵波,其振动方向与传播方向相一致。 ► 频率低于20Hz的声波称为次声波; ► 频率在20Hz-20kHz的声波可以被人听到,称 为可闻声波; ► 频率在20kHz以上的声波称为超声波。
测量声速的意义
声速是描述声波在媒质中传播特性的基本 量,与媒质的特性及状态等因素有关。通过 媒质中声速的测量,可以了解被测媒质的特 性或状态变化。因而,声速测量有非常广泛 的应用,如无损检测、测距和定位、测气体 温度的瞬间变化、测液体的流速、测材料的 弹性模量等。
1.共振干涉法测空气中声速 (1)测定压电陶瓷超声换能器系统的最佳工 作点。 声速测试仪信号源面板上“测试方法” 设置为“连续波”,“传播介质”设置为 “空气”,“发射强度”和“接收增益” 旋 钮顺时针旋在较大位置。缓慢调节“信号频 率”旋钮使接收端 S2 电信号的幅值达到最 大,此时系统处于谐振状态,显示谐振发生 的信号指示灯亮,信号源面板上频率显示窗 口显示谐振频率( kHz )。此状态为压电陶 瓷换能器系统的最佳工作点。
声速的测量方法可分为两大类: 第一类方法是根据关系式 V=S/t ,测出传播 距离S和所需的时间t后即可算出声速; 第二类方法是利用关系式 ,从测量频 率f 和波长 来算出声速v。 本实验采用第二类方法。 由于超声波具有波长短、能定向传播等特点, 所以在超声波段进行声速测量是比较方便的。 本实验就是测量超声波在空气中的传播速度。
2.压电陶瓷超声换能器的工作原理 压电效应
►
►
在声速测量中,采用压电陶瓷超声换能器作为声波的发射 器和接收器。 声速测量仪中换能器 S1 作为声波的发射器是利用了压电材 料的逆压电效应。压电陶瓷环片在交流电压作用下,发生 纵向机械振动,在空气中激发超声波。换能器 S2 作为声波 的接收器是利用了压电材料的压电效应。空气的振动使压 电陶瓷环片发生机械形变,从而产生电场,把声信号转变 成了电信号。
2.相位比较法测空气中声速
[注意事项]
► 1.测量时,旋转鼓轮应向同一方向旋转,
以避免空程误差。
► 2.两超声逐差法计算Li,并求其平均值及不确定度;
► 计算波长的平均值及不确定度;
► 计算波速的平均值及不确定度;
► 计算声速的理论值;声波的传播速度公式
► 将实验值与理论值进行比较,计算出百分误差。
[实验内容]
(2)移动S2,使接收端S2电信号的幅值达 到最大,此时 S2 为共振驻波状态的波节位 置,声压最大。由数显表头读数记录S2所在 位置x1。 ( 3 )依次移动 S2 ,观察示波器,每当示值 达到最大时,记录S2所在位置x2、x3、…x16 (相邻位置之间的距离为 )。 (4)记录实验室干、湿温度t ℃、t ‘ ℃以及 大气压强p。
► S1与S2之间变化一个波长
相位差 变化 ,示波器上所观察到的李萨如图 随之变化一个周期。 李萨如图随相位差的变化
,
[实验仪器]
声速测量仪
► “ 信号频率”用于调节输
信号发生器
出信号的频率; ► “发射强度”用于调节输 出信号电功率; ► “接受增益”用于调节内 部的接受增益。 ► “测试方法”设置在“连 续波”方式时,面板左上 方 显 示 窗 显 示 频 率 (kHz)。 ► 当测量系统处于共振状态 时,面板左下角“信号指 示灯”应亮 ,并且在测 量过程中应一直保持亮。
► 当输出的正弦交流电信号频率与压电陶瓷超声换能
器的固有频率相同时,发射换能器S1处于谐振状态, 此时,发射的超声波能量最大;当外力的频率等于 谐振频率时,压电换能器S2产生谐振,此时得到的 电信号最强。 ► 定义声压 P 为有声波传播时媒质中的压强与无声波 传播时媒质中静压强之差。波腹处声压为零,波节 处声压最大。声压和位移的相位差为 。 ► 因为接收器S2 的表面振动位移可以忽略,所以对位 移来说是波节,对声压来说是波腹。本实验测量的 是声压,所以当形成驻波时,接收器的输出会出现 明显增大。从示波器上观察到的电压信号幅值也是 极大值。
3.声速的测定
(1)共振干涉法
►图中 S1 和 S2 为压电晶体换能器, S1 作为声波源,它被
低频信号发生器输出的交流电信号激励后,由于逆压电效 应发生受迫振动,并向空气中定向发出一近似的平面声波 ;S2 为超声波接收器,声波传至它的接收面上时,再被反 射.当S1和S2的表面互相平行时,声波就在两个平面间来 回反射,当两个平面间距L为半波长的整倍数时发生共振, 产生共振驻波现象,波幅达到极大.
[ 实验目的]
► 了解超声波产生和接收原理,学习测量空
气中声速的方法 ► 用共振干涉法和相位比较法测量空气中的 超声声速 ► 学习用逐差法进行数据处理
[基本原理]
1.空气中的声速
► 声速
► 若固定频率为
f=f0(谐振频率),通过波长 测量, 即可求的声速 v。 ► 本实验采用压电陶瓷超声换能器来实现声波和交流 电压间的转换。
接受器表面声压随距离的变化
►图中各极大值之间的距离均为 ,由于散射和其 他损耗,各极大值幅值随距离增大而逐渐减小. 我们只要测出各极大值对应的接收器 S2的位置, 就可测出波长.由信号源读出超声波的频率值后 ,即可由公式求得声速.
(2)相位比较法
► 从S1发出的正弦波与S2收到的正弦波之间的
相位差为