大物-大学物理(下)复习
大学物理下册总复习

德布罗意波是指微观粒子(如电子、质子、中子等)所具有的波动性。这个概念是由法国物理学家德 布罗意在1924年提出的。德布罗意认为,所有微观粒子都具有波动性,其波长与粒子的动量成反比。 这个概念为量子力学的发展奠定了基础。
不确定关系与量子力学基本原理
不确定关系
不确定关系是指微观粒子的某些物理量 (如位置和动量、时间和能量等)不能 同时被精确测量的现象。这个概念是由 德国物理学家海森堡在1927年提出的。 不确定关系是量子力学的基本原理之一 ,它揭示了微观世界的本质特征,即微 观粒子的运动状态具有不确定性。
探讨电磁波的基本性质以及在通信、遥感等 领域的应用。
电磁场与电磁波的应用
电磁波的发射与接收 介绍电磁波的产生、发射和接收 过程,包括天线的设计和工作原 理。
电磁场在科技领域的应用 介绍电磁场在医疗、工业、科研 等领域的应用,如核磁共振成像、 电磁冶金、粒子加速器等。
电磁波谱与电磁波的应用 阐述不同频率电磁波的特性以及 在各个领域的应用,如无线电通 信、微波技术、红外线技术等。
磁场对电流的作用
探讨磁场对通电导线的作用力 以及磁场对运动电荷的洛伦兹 力。
电磁感应与电磁波
法拉第电磁感应定律
描述磁场变化时会在导体中产生感应电动势 的规律。
麦克斯韦电磁场理论
将电场和磁场统一起来,揭示了电磁波的存 在和传播规律。
楞次定律
阐述感应电流的方向总是阻碍引起感应电流 的磁通量的变化。
电磁波的性质与应用
表达式
对于可逆过程,有dS=(δQ/T); 对于不可逆过程,有dS>(δQ/T)。
实质
揭示了自然界中进行的涉及热现 象的宏观过程都具有方向性。
气体动理论
01
(完整word版)《大学物理》下册复习资料

《大学物理》(下) 复习资料一、电磁感应与电磁场1. 感应电动势——总规律:法拉第电磁感应定律 dtd m i Φ-=ε , 多匝线圈dt d i ψ-=ε, m N Φ=ψ。
i ε方向即感应电流的方向,在电源内由负极指向正极。
由此可以根据计算结果判断一段导体中哪一端的电势高(正极)。
①对闭合回路,i ε方向由楞次定律判断; ②对一段导体,可以构建一个假想的回路(使添加的导线部分不产生i ε)(1) 动生电动势(B 不随t 变化,回路或导体L运动) 一般式:() d B v b ai ⋅⨯=ε⎰; 直导线:()⋅⨯=εB v i动生电动势的方向:B v ⨯方向,即正电荷所受的洛仑兹力方向。
(注意)一般取B v⨯方向为 d 方向。
如果B v ⊥,但导线方向与B v⨯不在一直线上(如习题十一填空2.2题),则上式写成标量式计算时要考虑洛仑兹力与线元方向的夹角。
(2) 感生电动势(回路或导体L不动,已知t /B ∂∂的值):⎰⋅∂∂-=s i s d t Bε,B与回路平面垂直时S t B i ⋅∂∂=ε 磁场的时变在空间激发涡旋电场i E :⎰⎰⋅∂∂-=⋅L s i s d t B d E(B增大时t B ∂∂[解题要点] 对电磁感应中的电动势问题,尽量采用法拉第定律求解——先求出t 时刻穿过回路的磁通量⎰⋅=ΦSm S d B ,再用dtd m i Φ-=ε求电动势,最后指出电动势的方向。
(不用法拉弟定律:①直导线切割磁力线;②L不动且已知t /B ∂∂的值)[注] ①此方法尤其适用动生、感生兼有的情况;②求m Φ时沿B 相同的方向取dS ,积分时t 作为常量;③长直电流r π2I μ=B r /;④i ε的结果是函数式时,根据“i ε>0即m Φ减小,感应电流的磁场方向与回路中原磁场同向,而i ε与感应电流同向”来表述电动势的方向:i ε>0时,沿回路的顺(或逆)时针方向。
2. 自感电动势dtdI Li -=ε,阻碍电流的变化.单匝:LI m=Φ;多匝线圈LI N =Φ=ψ;自感系数I N I L m Φ=ψ= 互感电动势dt dI M212-=ε,dtdIM 121-=ε。
最新大学物理复习提纲(下册)

大学物理复习提纲(下册)大学物理复习纲要(下册)第九章 静电场一、 基本要求 1、 理解库仑定律2、 掌握电场强度和电势概念3、 理解静电场的高斯定理和环路定理4、 熟练掌握用点电荷场强公式和叠加原理以及高斯定理求带电系统电场强度的方法5、 熟练掌握用点电荷的电势公式和叠加原理以及电势的定义式来求带电系统电势的方法 二、 内容提要 1、 静电场的描述描述静点场有两个物理量。
电场强度和电势。
电场强度是矢量点函数,电势是标量点函数。
如果能求出带电系统的电场强度和电势分布的具体情况。
这个静电场即知。
(1) 电场强度 0q E =点电荷的场强公式 r e rq 2041πε=(2) 电势 a 点电势 0.a a V E dl =⎰ (00V =) (3) a 、b 两点的电势差 .bab a b aV V V E dl =-=⎰(4) 电场力做功 00.()ba b aW q E dl q V V ==-⎰(5) 如果无穷远处电势为零,点电荷的电势公式: 04a q V rπε=2、表征静电场特性的定理(1)真空中静电场的高斯定理: 1.nii sqE d s ε==∑⎰高斯定理表明静电场是个有源场,注意电场强度通量只与闭合曲面内的电荷有关,而闭合面上的场强和空间所有电荷有关 (2)静电场的环路定理: .0lE dl =⎰表明静电场是一种保守场,静电力是保守力,在静电场中可以引入电势的概念。
3、电场强度计算(1) 利用点电荷的场强公式和叠加原理求 点电荷 21014ni i i q E r πε==∑ 带电体 2014r dqE e r πε=⎰ (2) 高斯定理求E高斯定理只能求某些对称分布电场的电场强度,用高斯定理求电场强度关键在于做出一个合适的高斯面。
4、电势计算(1)用电势的定义求电势(E 的分布应该比较容易求出).a aV E dl =⎰电势零点(2)利用点电荷的电势公示和电势叠加原理求电势: 014P dqV rπε=⎰第十章 静电场中的导体和电介质 一、基本要求1、 理解静电场中的导体的静电平衡条件,能从平衡条件出发分析导体上电荷分布和电场分布。
大学物理复习提纲(下)

4《大学物理》(下)复习提纲第6章恒定电流的磁场(1) 掌握磁场,磁感应强度,磁力线,磁通量等概念,磁场中的高斯定理,毕奥一沙伐 一拉普拉斯定律。
(2) 掌握安培环路定律,应用安培环路定律计算磁场(3)掌握安培定律,会用安培定律计算磁场力。
会判断磁力矩的方向。
会判断霍尔效应 电势的方向。
1.边长为2a 的等边三角形线圈,通有电流 I ,则线圈中心处的磁感强度的大小为 —9戶°门(4丸可 _______________ .I (其中ab 、cd 与正方形共面),C2.边长为I 的正方形线圈,分别用图示两种方式通以电流 在这两种情况下,线圈在其中心产生的磁感强度的大小分别为3.—无限长载流直导线,通有电流 I ,弯成如图形状.设各线段皆在纸面内,一无限长载4流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,则P 点磁感强度B 的大小为•则P 点磁感强度B的大小为5=51-B 2=A O ZW,(B 方向指向纸内)6.如图所示,用均匀细金属丝构成一半径为 R 的圆环C ,电流I 由导线1流入圆环A 点,并由圆环B 点流入导线2•设导线1和导线2与圆环共面,则环心 O 处的磁感强度大小为 ________________ (4n/?i ,。
_________________ ,方向 ___________ 垂直纸面向内 ___________7.真空中电流分布如图,两个半圆共面,且具有公共圆心,试求 O 点处的磁感强度.设半径分别为R 和2R 的两个载流半圆环在 O 点产生的磁感强度的大小分别 为B i 和B 2 .§ 二 “0(47?) B 厂坯! ©R)O 点总磁感强度为4. 一无限长载有电流I 的直导线在一处折成直角, P 点位于导线所在 平面内,距一条折线的延长线和另一条导线的距离都为 a ,如图•求P点的磁感强度B . B 1i(^ ―)方向为4na 2B 2 二 J Q I (1 -、2)”.FAG4na 2B = Bj - B 2 = 2.L 0l /(4~.a) 方向为:5•无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大 小等于 D(A)(B)%1、2 4R(C) 0, (D)伍)&均匀磁场的磁感强度B与半径为r的圆形平面的法线n的夹角为a ,今以圆周为边界,作一个半球面S,S与圆形平面组成封闭面如图.则通过S面的磁通量①9 •如图,两根直导线ab和cd沿半径方向被接到一个截面处处相等的铁环上,稳恒电流10. 端流入而从d端流出,则磁感强度B沿图中闭合路径如图,流出纸面的电流为阳曲=2人(B)11.如图,在一圆形电流定理可知(A)(B)(C)(D)21,流进纸面的电流为I,则下述各式中哪一个是正确的?jH-dl = 1(D) i H*dl = -I.I所在的平面内,-B dl =0,且环路上任意一点L:B dl =0,且环路上任意一点L\ B dl -0,且环路上任意一点LB dl - 0,且环路上任意一点L 选取一个同心圆形闭合回路B =常量.12. 有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为分布,但二者电流的流向正相反,则且在横截面上均匀(1) 在r < 0处磁感强度大小为Ri< r< R2处磁感强5D.――Z4L,则由安培环路&川(2宾Rj) , o(2) _______________________________________ 在 r > R 处磁感强度大小为313.两根长直导线通有电流I ,图示有三种环路;在每种情况下, {B dl 等于:在图(a)和(b)中各有一半径相同的圆形回路 L i 、L 2,圆周内有电流l i 、丨2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流13, P i 、P 2为两圆形回路上的对应点,则:(A)B dl =:B dl , B P I=B P 2L i P(lQl#P i ( l i °l ?严O(B)B dl--B dl ,B P I二 B P 2 .L i J"L 2 l3L iL 2(a)(b)(C)B dl =:B dl ,B PI=B P 2 .L iL 2(D);B dl --B dl , ‘ B P i =B P 2 .[C:L iL215.把轻的导线圈用线挂在磁铁N 极附近,磁铁的轴线穿过线圈中心,且与线圈在同一平面内,如图所示•当线圈内通以如图 所示方向的电流时,线圈将(A) 不动.(B) 发生转动,同时靠近磁铁. (C) 发生转动,同时离开磁铁. (D) 不发生转动,只靠近磁铁.______________________ (对环路a).(E) 不发生转动,只离开磁铁. 16.如图,一根载流导线被弯成半径为 R 的1/4圆弧,放在磁感强度为 B 的均匀磁场中,则载流导线ab (电流I 顺时针方向流动)所受磁场的作用力的大小为 方向 __________ 沿y 轴正向 ________17. 如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为 与环面垂直的转轴旋转. 当圆环以角速度 3转动时,圆环受到的磁力矩为其方向 ________ 在图面中向上18.有两个半径相同的环形载流导线 A 、B ,它们可以自由转动和移动,把它们放在相互垂直的位置上,如图所示,将发生以下哪一种运动?(A) A 、B 均发生转动和平动,最后两线圈电流同方向并紧靠在一起. (B) A 不动,B 在磁力作用下发生转动和平动. (C) A 、B 都在运动,但运动的趋势不能确定.(D) A 和B 都在转动,但不平动,最后两线圈磁矩同方向平行.19. 如图,在一固定的无限长载流直导线的旁边放置一个可以自由移动和转动的圆形的刚性 线圈,线圈中通有电流,若线圈与直导线在同一平面,见图 (a),则圆线圈的运动将是平移,靠向直导线;若线圈平面与直导线垂直,见图(b),则圆线圈将受力矩,绕通过直导线的线圈直径转动,同时受力向直导线平移 __________________________________。
大学物理下复习资料

电位移矢量 D0EP
介质中的高斯定理 SDdSq0
极化率
对于均匀介质 Pe0E r 1e
D
0E
真空中
0rE介质中
15
电容器的能量
q2 W
1CU21qU
2C 2
2
静电场的能量密度
we
1E2
2
静电场的能量
WVwedVV12E2dV
1 DEdV
V2
16
第十一章 恒定磁场
11-1 恒定电流 11-2 磁场 磁感应强度 11-3 毕奥萨伐尔定律 11-4 磁场的高斯定理和安培环路定理 11-5 带电粒子在电场和磁场中的运动 11-6 磁场对载流导线和载流线圈的作用 *11-7 电磁场的相对论变换
电磁铁,继电器 、电机、以及 各种高频电磁 元件的磁芯
磁棒
记忆元件
35
第十三章 变化的电磁场
13-1 电磁感应定律 Laws of Induction 13-2 动生电动势和感生电动势 Motional Emf and Induced Emf 13-3 自感和互感Self-Induction and Mutual Induction 13-4 磁场的能量Energy in a Magnetic Field 13-5 麦克斯韦电磁场理论 Maxwell’s Theory of Electromagnetism 13-6 电磁波波动方程 13-7 电磁波的能量和动量 13-8 电磁波的辐射
U U 1 U 2 U n
q q 1 q 2 q n b
C C 1 C 2 C n
电容器的串联
q 1 q 2 q n q
q q qq q q
U U 1U 2 U n a
大学物理下复习课件.ppt

2
明、暗条纹的位置
k d'
x
d
d ' (2k 1)
d
2
明纹 暗纹
k 0,1,2,
白光照射时,出现彩色条纹
条纹间距 x d ' (k 1)
d
二 薄膜干涉
➢ 反射光的光程差 Δr 2d ➢ 透射光的光程差 Δt 2d
n22
n12
sin 2
i
2
n22 n12 sin 2 i
k 加 强
(3)干涉现象的定量讨论
波源振动 y1 A1 cos(t 1)
y2 A2 cos(t 2 )
点P 的两个分振动
y1P
A1 cos(t
1
2π
r1 )
y2P
A2
cos(t
2
2π
r2
)
s1 s2
A A12 A22 2 A1 A2 cos
2
1
2π
r2
r1
定值
r1 *P r2
讨论
Δ 2nd
2
n1
n1
k, k 1,2, 明纹
Δ (2k 1) , k 0,1, 暗纹
w dW A2 2 sin 2 (t x)
dV
u
平均能量密度:能量密度在一个周期内的
平均值
w 1 T wdt 1 2 A2
T0
2
平均能流:
P wuS
能流密度 ( 波的强度 )I:
I P wu S
I 1 A2 2u
2
三 波的干涉
(了解惠更斯原理和波的衍射)
1 波的叠加原理 波传播的独立性:两列波在某区域相遇后 再分开,传播情况与未相遇时相同,互不干扰. 波的叠加性:在相遇区,任一质点的振动 为二波单独在该点引起的振动的合成.
最新大学物理内容复习(下

大学物理内容复习(下)大学物理(下)复习一、 稳恒磁场 基本槪念,基本定律:磁感应强度:m P M B max=,磁矩: n S I P m⋅∆⋅=0 磁通量:⎰⎰⋅=ΦS m S d B高斯定理:0=⋅⎰⎰S S d B环流定理:∑⎰=⋅I l d B 0μ―――稳恒磁场无源有旋磁感应强度的计算:1.电流产生的磁场(毕—萨定律):⎰⨯⋅=−−−→−⨯⋅=L r r l Id B r r l Id B d 303044πμπμ磁场叠加原理2。
运动电荷产生的磁场:304rr v q dN B d B nSdldN q ⨯⋅=−−→−==πμ 几种典型载流导线的磁场:有限长直导线:()120sin sin 4ββπμ-=aIB 无限长直导线:r I B πμ20=圆形电流轴线上:()2322202Rx IRB +=μ圆形电流圆心处:R IB o 20μ=无限长直螺线管内部:nI I LNB 00μμ==螺绕环内部: nI I LNB 00μμ== 无限长载流直圆柱体: 柱内:202R IrB πμ= 柱外:r I B πμ20=轴线上:0=B磁场对载流导线及运动电荷的作用:安培力:⎰⨯=⨯=LB l Id f B l Id f d磁力矩:B P M m⨯=洛仑兹力:B v q f ⨯=磁力的功:∆Φ=Φ==⎰⎰I Id dA A例题:一、一载流导线弯成如图所示形状,电流由无限远处流来,又流向无限远处。
则圆的圆心o 点的磁感应强度大小为多少?方向如何?图1图2(1) RIRIπμμ44320+⋅; (2)RIRIπμμ44320-⋅(3)RIRIRIπμμπμ443240-⋅+- (4)RIRIRIπμμπμ443240+⋅+-(5) RIRIRIπμμπμ443240-⋅+(6) 2120⋅RIμ(7) RIRIRIπμμπμ421240+⋅+- (8)RIRIRIπμμπμ421240-⋅+-(9) RIRIπμμ440- (10)RIRIπμμ440+图9图8二、氢原子中的电子(电量为e ),在一半径为R 的圆轨道上以速率v 做匀速率圆周运动,则圆心处的磁感应强度大小为 多少?圆心处磁场能量密度为多少?等效圆电流的磁矩?=mR ev I π2=, 20022Rev R I B πμμ==, 422200282R v e B w m πμμ== n R Rev n Is m 22ππ== 三、两个电子e 1和e 2同时射入某均匀磁场后,分别作螺旋运动。
大学物理(下)知识点、重点及难点

光 的 干 涉 和 衍 射知识点:1. 获得相干光的基本原理:把一个光源的一点发出的光束分为两束。
具体方法有分波阵面法和分振幅法。
2. 杨氏双峰干涉:是分波阵面法,其干涉条纹是等间距的直条纹。
条纹中心位置:明纹:,...,2,1,02=±=k aD kx λ暗纹:,...,2,1,022)12(=+±=k a D k x λ条纹间距:λaD x 2=∆ 3. 光程差δ 4. 位相差 δλπφ2=∆有半波损失时,相当于光程增或减2λ,相位发生π的突变。
5. 薄膜干涉(1)等厚干涉:光线垂直入射,薄膜等厚处为同一条纹。
劈尖干涉:干涉条纹是等间距直条纹. 对空气劈尖:明纹:,...2,122==+k k ne λλ暗纹:,...,2,1,02)12(22=+=+k k ne λλ牛顿环干涉:干涉条纹是以接触点为中心的同心圆环.明环半径:,...2,1)21-(==k nR k r λ明暗环半径:,...,2,1,0==k nkRr λ暗(2)等倾干涉:薄膜厚度均匀,采用面广元,以相同倾角入射的光,其干涉情况一样,干涉条纹是环状条纹。
明环:,...2,12sin 222122==+-k k i n n e λλ暗环:,...,2,1,02)12(2sin 222122=+=+-k k i n n e λλ6. 迈克尔逊干涉仪7. 单缝夫朗和费衍射用半波带法处理衍射问题,可以避免复杂的计算.单色光垂直入射时,衍射暗纹中心位置: ,...2,122sin =±=k k a λφ亮纹中心位置: ,...,2,1,2)12(sin =+±=k k a λφ8. 光栅衍射9. 光学仪器分辨率 重点:1. 掌握用半波带法分析夫朗和费衍射单缝衍射条纹的产生及其亮暗纹位置的计算.2. 理解光栅衍射形成明纹的条件,掌握用光栅方程计算谱线位置。
3. 理解光程及光程差的概念.,并掌握其计算方法;理解什么情况下反射光有半波损失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题册P157: 2010—2011学年第一学期 《大学物理A2》试卷A
第八章:恒定电流的磁场
r
1.磁场的性质:B ,高斯定理→
2.磁场的计算:(1)毕萨定律
→无源场
r dB
0
4π
r Idl
r
3
rv
r
B
r dB
0
L
4π
I
d
r l
rr
L r3
应用:a.直导线:
B
0 I
4πa
sin
2
sin
(3)迈克尔逊干涉仪:光路
3.单缝的夫琅和费衍射 条纹特点、半波带分析法、明暗纹条件等
4.光栅衍射:
条纹特点、光栅方程、 (a b)sin k
光栅缺级、斜入射问题
倾斜入射的光栅方程: (a b)(sin sin) k
5.偏振: 偏振光的性质、线偏振光、马吕斯定律、反射和折射光
的偏振 、布鲁斯特定律
6.一维无限深势阱
归一化波函数、由波函数计算粒子分布
注意:主极大就是明纹
vv
v B
时
圆周运动
R mv0
qB
T 2πR 2π m
v0
qB
应用:霍耳效应
U
V2
V1
RH
BI d
RH
1 nq
5.
磁场对载流导线的作用
r rr
r
r
rr
(1)安培力 dF Idl B
F L dF L Idl B
解题步骤:分析并取电流元、分析受力并在坐标系中
分解、积分
(2)闭合回路
L
Ei
d
l
B t
d
S
S
4.自感、互感
L
L
dI dt
L
d ΦN dI
ΦN I
12
dΦ
12
dt
M
d I2 dt
5.磁场的能量
Wm
1 2
L
I
2 0
M Φ21 Φ12 I1 I2
能量密度
wm
Wm V
1 2
B2
1 H 2
2
1 2
BH
6.麦克斯韦方程组
位移电流IdFra bibliotekSdD dt
d D
dt
jd
dD dt
i
dΦ dt
i
N
dΦ dt
d NΦ dt
q
t2 t1
Iidt
1 R
Φ2 Φ1
dΦ
1 R
Φ1
Φ2
注:两种判断方向的方法
2.动生电动势:
di
r Ek
r dl
(vr
rr B)dl
i
(vr
r B)
r dl
L
计算方法:选取长度元—分析—积分 rr rr
Ñ 3.感生电动势: 电动势 L EK d l L EK d l
v
v
F 0, M 0
闭合线圈的磁矩: pvm NISevn
6. 磁力的功 A IΦ
r M
pr m
r B
7. 磁介质:顺磁、抗磁、铁磁质的性质与区别
8. 磁场强度
r
rr
B 0rH H
rr
Ñ H dl I
9. 铁磁质的特点、磁滞回线及铁磁质的分类
第九章:电磁感应 1.法拉第电磁感应定律:
楞次定律:“阻碍”
1
b.圆环圆心处
(2)安培环路定理
LB dl 0 I
B 0I
2R
意义:与电场的区别;I正负的规定。
应用:a. 直线型电流
b. 圆柱、圆筒型电流内外的磁场(重点)
c. 长直螺线管(螺绕环)
rr
3. 4.
磁带通电量粒的子计在算磁场Φ中的受S B力 d及S 运(动直电流Fr等非qvr均匀Br 磁场)
(1)实验装置 (2)条纹特点 (3)光程差公式 (4)明暗纹条件 (5)解释条纹
2.薄膜干涉 (1)等倾干涉(厚度均匀薄膜) 条纹特点(内疏外密,内环级次高)
2e n22 n12 sin2 i ' ,明暗纹条件
增透膜和高反膜 (2)等厚干涉:
A.劈尖:条纹特点、光程差、明暗纹条件、条纹间距等 B.牛顿环:条纹特点、光程差、明暗纹条件等
第十章:机械振动和电磁振荡
1. 基本性质、简谐波表达式 x Acos(t 0 )
常见问题:从已知条件求解表达式中的各个量,特别是 初相位的取值问题。 常用方法:表达式、旋转矢量法
2.电磁振荡:与机械振动的联系和对比 3.振动的合成: 重点:两同方向同频率谐振动的合成
A A12 A22 2A1A2 cos(20 10 )
第十一章:机械波和电磁波
1.波动表达式的求解
y
Acos(t
m2πx
0 )
注意(1)在波动图像和振动图象判断振动方向的方法
(2)波速方向在方程中的体现
(3)波动表达式和振动表达式的联系
(4)求波动表达式的方法:(已知x=0处振动应用相位差
法得到波动表达式,或直接写出波动表达式再由已知条件
确定待定系数)
2.波的能量: EK, EP同相位,集中出现在平衡位置附近 3.电磁波的基本性质
4.波的干涉(相干条件) 驻波:两传播方向相反的相干简谐波的合成 波动方程:波节和波腹的位置,能量在波腹和波节间转化
第十二章: 光学
1.双缝干涉
(1)相干光
(2)条纹特点
(3)光程差公式和明暗纹条件
(4)一条光路有介质的情况
第十八章:量子力学基础
1.光电效应:实验规律、理论解释、光电效应方程
1 2
mVm
2
hv
A0
,光的波粒二象性
2.氢原子光谱:玻尔理论、能量和轨道量子化、基态能量
3.徳布罗意波:波长计算
4.不确定度关系
h
x px ≥ 2
h y py≥ 2
h z pz ≥ 2
h Et ≥ 2
5.波函数和薛定谔方程:波函数的意义、波函数的性质