高三数学等比数列2

合集下载

高考数学二级结论快速解题:专题11 与等比数列相关的结论(解析版)

高考数学二级结论快速解题:专题11 与等比数列相关的结论(解析版)

专题11与等比数列相关的结论一、结论已知等比数列{}n a ,公比为q ,前n 项和为n S .(1)n mn m a a q(,m n N ).(2)若m n p q ,则m n p q a a a a (,,,m n p q N );反之,不一定成立.(3)123m a a a a ,122m m m a a a ,21223m m m a a a , 成等比数列(m N ).(4)公比1q 时,n S ,2n n S S ,32n n S S ,43n n S S 成等比数列(n N ).(5)若等比数列的项数为2n (n N ),公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S q S 偶奇.(6){}n a ,{}n b 是等比数列,则{}n a ,1{}n a ,{}n n a b ,{}n na b 也是等比数列(0 ,n N ).(7)通项公式111n nn a a a qq q.从函数的角度来看,它可以看作是一个常数与一个关于n 的指数函数的积,其图象是指数函数图象上一群孤立的点.(8)只有同号的两个数才能有等比中项;两个同号的数的等比中项有两个,它们互为相反数.(9)三个数成等比数列,通常设为x q ,x ,xq ;四个数成等比数列,通常设为3x q ,xq,xq ,3xq .二、典型例题1.(2022·安徽·合肥市第十一中学高二期末)设等比数列 n a 的前n 项和为n S ,若63:1:2S S ,则93:S S ()A .1:2B .2:3C .3:4D .1:3【答案】C 【解析】解:因为数列 n a 为等比数列,则3S ,63S S ,96S S 成等比数列,设3S m ,则62m S ,则632mS S ,故633S S S 966312S S S S ,所以964m S S ,得到934S m ,所以9334S S .故选:C.【反思】公比1q 时,n S ,2n n S S ,32n n S S ,43n n S S 成等比数列(n N ),此结论可快速解题,解题时注意等比数列的正负性问题.2.(2022·全国·高三专题练习)已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为()A .2B .4C .8D .16【答案】C 【解析】设这个等比数列 n a 共有 2k k N项,公比为q ,则奇数项之和为132185k S a a a 奇,偶数项之和为 2421321170n n S a a a q a a a qS 奇偶,170285S q S偶奇,等比数列 n a 的所有项之和为212212211708525512kkk a S,则22256k,解得4k ,因此,这个等比数列的项数为8.故选:C.【反思】利用结论若等比数列的项数为2n (n N ),公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S q S 偶奇,可直接根据结论求出q ,进而求出其它量.三、针对训练举一反三一、单选题1.(2022·广东潮阳·高二期末)等比数列 n a 的各项均为正数,且383 a a ,则3132310log log log a a a ()A .5B .10C .4D .32log 5【答案】A 【解析】【详解】由题有293847561103a a a a a a a a a a ,则531323103293847561103log log log log ()lo 3g a a a a a a a a a a a a a =5.故选:A2.(2021·江苏·高二专题练习)在等差数列 n a 中,若100a ,则有等式121219n n a a a a a a (19n 且N n )成立,类比上述性质,在等比数列 n b 中,若111b ,则有()A .121219n n b b b b b b L L (19n 且N n )B .121221n n b b b b b b L L (21n <且N n)C .121921n n b b b b b b (19n 且N n )D .121122n n b b b b b b (21n <且N n )【答案】B 【详解】在等差数列 n a 中,若 ,,,N s t p q s t p q则s t p q a a a a ,若0m a ,则1222210n n m n m n a a a a ,所以121221n m n a a a a a a 成立,当10m 时,121219n n a a a a a a (19n 且N n )成立,在等比数列 n b 中,若 ,,,N s t p q s t p q则s t p q b b b b ,若1m b ,则1222211n n m n m n b b b b ,所以121221n m n b b b b b b 成立,当11m 时,12n b b b L =1221n b b b L (21n <且N n )成立,故选:B.3.(2022·全国·高三专题练习)已知等比数列 n a 的前n 项和为n S ,若43S ,89S ,则16S 的值为()A .12B .30C .45D .81【答案】C 【详解】显然公比不为-1,∵ n a 是等比数列,则4841281612,,,S S S S S S S 也成等比数列,483,9S S ∵,846S S ,12812S S ,则1221S ,161224S S ,则1645S .故选:C.4.(2020·四川·双流中学高二期中(理))设n S 是等比数列 n a 的前n 项和,若423S S ,则64S S ()A .2B .73C .310D .12或【答案】B 【详解】设24,3S k S k ,由数列 n a 为等比数列(易知数列 n a 的公比1q ),得24264,,S S S S S 为等比数列又242,2S k S S k644S S k67,S k 647733S k S k故选:B .5.(2021·全国·高二课时练习)已知等比数列 n a 中,11a ,132185k a a a ,24242k a a a ,则k ()A .2B .3C .4D .5【答案】B 【详解】设等比数列 n a 的公比为q ,则132112285k k a a a a a a q q ,即 2285184k q a a ,因为24242k a a a ,所以2q =,则 21123221112854212712k k k a a a a a ,即211282k ,解得3k ,故选:B.6.(2021·江西·奉新县第一中学高一阶段练习)等比数列的首项为1,项数是偶数,所有得奇数项之和为85,所有的偶数项之和为170,则这个等比数列的项数为()A .4B .6C .8D .10【答案】C设等比数列项数为2n 项,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则85,170S S 奇偶,所以=2S q S偶奇,结合等比数列求和公式有:22122112==185112nn a q S q奇,解得n =4,即这个等比数列的项数为8.本题选择C 选项.7.(2022·上海·高考真题)已知{}n a 为等比数列,{}n a 的前n 项和为n S ,前n 项积为n T ,则下列选项中正确的是()A .若20222021S S ,则数列{}n a 单调递增B .若20222021T T ,则数列{}n a 单调递增C .若数列{}n S 单调递增,则20222021a aD .若数列{}n T 单调递增,则20222021a a 【答案】D 【详解】A :由20222021S S ,得20220a ,即202110a q,则1a 、q 取值同号,若100a q ,,则{}n a 不是递增数列,故A 错误;B :由20222021T T ,得20221a ,即202111a q,则1a 、q 取值同号,若100a q ,,则数列{}n a 不是递增数列,故B 错误;C :若等比数列11a ,公比12q ,则11(122(1)1212nn nS ,所以数列{}n S 为递增数列,但20222021a a ,故C 错误;D :由数列{}n T 为递增数列,得1n n T T ,所以1n a ,即1q ,所以20222021a a ,故D 正确.故选:D8.(2021·全国·高二课时练习)已知n S 是等比数列 n a 的前n 项和,若存在*m N ,满足22519,1m m m m S a m S a m ,则数列 n a 的公比为()A .2B .2C .3D .3【答案】B 【详解】设数列 n a 的公比为q ,若1q ,则22mmS S ,与题中条件矛盾,故212122111115111.19,8.8,111mm mmm m m m mm m a q S a a q m qq q q q S a a q m a q q∵∵33,8,2m q q .故选:B 二、填空题9.(2021·全国·高三专题练习)设正项等比数列 n a 的前n 项和为n S ,132,14a S ,若n nnb a,则数列 n b 中最大的项为_____.【答案】12【详解】根据题意,设正项等比数列 n a 的公比为q ,其中0q ,因为132,14a S ,可得2322214S q q ,解得2q =或3q ,因为0q ,所以2q =,所以112n n n a a q ,则2n n n n n b a,故122121,222b b ,当2n 时,则由11112(1)112(1)212n n n n nb n n b n n ,则有1234b b b b ,所以数列 n b 中最大的项为12.故答案为:12.10.(2020·江西省都昌县第二中学高二阶段练习)已知等比数列 n a 的首项为1a ,公比为q ,其前n 项和为n S ,下列命题中正确的是______.(写出全部正确命题的序号)(1)若等比数列 n a 单调递增,则10a ,且1q ;(2)数列:23243,,n n n n n n S S S S S S ,……,也是等比数列;(3) *11,2n n S qS a n N n ;【答案】(3)【详解】解:对于(1),若等比数列 n a 单调递增,则 11110n n n a a a q q ,所以101a q 或1001a q,故(1)错误;对于(2),若1q ,n 为偶数,则20,0n n S S ,即20n n S S ,因为等比数列中的项不可能为0,故此时23243,,n n n n n n S S S S S S ,……,不是等比数列,故(2)错误;对于(3),当*,2n N n 时,123n nS a a a a1111n a q a a a 11n qS a ,故(3)正确.故答案为:(3).三、解答题11.(2020·上海·高三专题练习)解答下列各题:(S 奇表示奇数项和,S 偶表示偶数项和)(1) n a 是等比数列,11a ,项数n 为偶数.S 奇=85,S 偶=170,求n ;(2) n a 是等差数列,共n 项,n 为奇数,77n S ,S 偶33 ,118 n a a ,求通项公式.【答案】(1)8;(2)323 n a n .【详解】(1) 2S q S偶奇,所以128517012nn S ,解得8n ;(2)S 奇=n S S 偶=44,12n a =S 奇-S 偶=44-33=11,即122 n a a ,由118 n a a ,可得120,2,7 n a a n ,∴220371d.所以通项公式为203(1)323n a n n ..。

高三数学等比数列2

高三数学等比数列2
2、a1 .a n a 2 .a n1 a 3 .a n 2 ...
3.如果 a n bn 是项数相同的等比数列,那 么 a n bn 也是等比数列.
结论:如果 a b 是项数相同的等 比数列,那么 a n bn 也是等比数列.
n n
bn 的公比为 证明:设数列a n 的公比为p, q,那么数列 a n bn 的第n项与第n+1项分 n 1 n n 别为 a1p n 1 b1q n 1 与 a1p b1q ,即 a1b1 (pq) n 与 a1b1 (pq) .
因为 它是一个与n无关的常数,所以是一个以pq 为公比的等比数列.
a n 1 b n 1 a1b1 (pq) n pq, n 1 a n bn a1b1 (pq)
特别地,如果是a 等比数列ቤተ መጻሕፍቲ ባይዱc是不等 于0的常数,那么数列 c a 也是等比数列.
n
n
探究
对于例4中的等比数列 a n 与 bn ,数
1.定义法:
an1 q(是与n无关的数或式子 , 且q 0 ) an
2.中项法:
an1 an1 an ( 0)
2
三个数a,b,c成等比数列
2 ac b
五、等比数列的性质
1、若m, n, p, q N , 且m n p q,
则a m a n a p a q
an , 若a1 a2 a3 7, 4.已知等比数列
a1 a2 a3 8, 求an.
a1 1, q 2或a1 4, q
1 2
课后作业
P60 习题 2.4 A 组 第 3、 7、 8题
选做: P59 探究 选做: P75 第1,2,4题

高三数学 等比数列2 (3)

高三数学 等比数列2 (3)


a1

log3
a2
L
log3 a10
例2、等比数列{an}的各项均为正数,项数是偶 数,它的所有项的和等于偶数项和的4倍,且第 二项与第四项的积是第3项与第4项和的9倍,问 数列{lgan}的前多少项和最大?(lg2=0.3,lg3=0.4)
【练习】 在等比数列{an},a1+a2+a3+a4+a5=8
Sn
a1
1 qn
1 q
(q 1) (q 1)
G ab
对称 性
若m n p q
则 am an ap aq 若 m n p q
则 aman apaq
分段
和原 理
Sm 、S2m Sm
成等差数列
、 S3m S2m
Sm 、 S2m Sm 、S3m S2m
等比数列
定义 an1 an d n 1, 2,3…
an1 q n 1, 2, 3 …
an
通项
公式 an a1 n 1 d an am n md an a1qn1
an amqnm
求和 公式
nn 1
Sn na1 2 d
n a1 an
2
中项 公式
A
1 2
(a
b)
na1
,
an
gbn
,
an bn
是等比数列。
(5)如果an 0,则loga an是等差数列。
数列loga an成等差数列,则an成等比数列。
例1.(1)(2005江苏3)在各项都为正数的等比数列{an} 中,首项a1=3,前三项和为21,则a3+a4+a5=( )
(A)33 (B)72 (C)84 (D)189

高三数学 等差数列、等比数列 (2)

高三数学 等差数列、等比数列 (2)

这样就可以运用解法1和解法2的方法了(下解略).
解法3:由 an+1=4an+3
an+2=4an+1+3

①得
②-①得:an+2-an+1=4(an+1-an).则数列{an+1-an}是 首项为a2 -a1 =(4 a1+3)-a1= 3 a1+3=9,公比 为4的等比数列.
所以, an-an-1=9×4n-2 所以,an=(an-an-1)+ (an-1-an-2)+ …+(a2-a1)+a1 =9×4n-2+ 9×4n-3 +…+ 9×40+2
例4.已知数列an, a1
1 2
, an
3an1
3n1, 求an.
解:两边同除以3n得:
an 3n
an1 3n1
1 3
,即
:
an 3n
an1 3n1
1. 3
an 3n
是以
a1 3
1 为首项,
6
公差为
1 的等差数列 . 3
an 1 (n 1)( 1) 1 1 n.即
3n 6
3 23
an
1 3n 2
n 3n1.
例5.已知数列an, a1 3, an 4an1 5 3n , 求an.
解法1:两边同除以3n得:
an 3n
4 3
an1 3n1
5.
令 an 3n
An ,则得An
4 3
An1 5.(以下用例3的方法解)
又令An
k
4 3
( An1
k ),则An
4 3
An1
an
4an1

高三数学知识点之数列

高三数学知识点之数列

高三数学知识点之数列数列是数学中常见的概念,也是高三数学中的重点内容之一。

在本文中,我将介绍数列的定义、分类和常见性质,帮助读者更好地理解和应用数列知识。

一、数列的定义数列是由一系列按照一定规律排列的数字组成的序列。

通常用${a_1}$, ${a_2}$, ${a_3}$, ... 表示数列的元素,其中 ${a_1}$ 表示第一个元素,${a_2}$ 表示第二个元素,依此类推。

数列可以有无限个元素,也可以只有有限个元素。

二、数列的分类1.等差数列等差数列是指数列中相邻两项之差都相等的数列。

设数列为${a_1}$, ${a_2}$, ${a_3}$, ...,相邻两项之差为常数 $d$,则有以下关系:${a_2}$ - ${a_1}$ = ${a_3}$ - ${a_2}$ = $d$例如,2, 5, 8, 11, ... 就是一个公差为3的等差数列。

2.等比数列等比数列是指数列中相邻两项之比都相等的数列。

设数列为${a_1}$, ${a_2}$, ${a_3}$, ...,相邻两项之比为常数 $q$,则有以下关系:${a_2}$ / ${a_1}$ = ${a_3}$ / ${a_2}$ = $q$例如,1, 2, 4, 8, ... 就是一个公比为2的等比数列。

3.递推数列递推数列是指数列中的每一项都可以通过前一项计算得到的数列。

设数列为 ${a_1}$, ${a_2}$, ${a_3}$, ...,且满足以下递推关系:${a_{n+1}}$ = $f({a_n})$其中 $f(x)$ 表示一个确定的函数。

递推数列可以是等差数列或等比数列,也可以是其他类型的数列。

三、数列的常见性质1.通项公式对于某些特定的数列,可以通过确定的方法得到数列的通项公式,即通过序号 $n$ 直接计算第 $n$ 项 ${a_n}$ 的公式。

通项公式的推导可以通过观察数列的规律、利用递推关系或解递推方程等方法得到。

2.前 n 项和前 n 项和是指数列前 n 项的和,通常用 $S_n$ 表示。

高三数学等差和等比数列的运用2

高三数学等差和等比数列的运用2
灾害时期,人民生活十分困难,上海儿童福利院的孤儿们缺衣少食,难以生活下去。周总理与蒙古自治区乌兰夫主席商量,决定让部分孤儿转移到内蒙古大草原 生活,作为“国家孩子”由内蒙牧民领养。就这样,大约三千孤儿由上海乘火车来到了内蒙古草原生活。
剧中主要展示了鲁小忠(蒙古名朝鲁)、鲁小鱼(蒙古名通嘎拉嘎)、毕若水(谢若水)、阿藤花(黄小仙)等人从童年到成年后的人生故事和命运。蒙古牧民哈图及保育员乌兰其其格、向阳红公 社苏书记、教师满都拉等,领养了这几个孩子,给他们父爱母爱,抚育他们成人,故事十分感人。

最近在网上观看了电视剧《国家孩子》,我很受感动,觉得这是一部不可多得的好剧。剧中很多人物给我留下了深刻的印象,像保育员乌兰其其格姑娘、马倌哈图大叔、小学教师满都拉校长、公社 书记苏登全、民兵连长徐世铎等,还有来自上海的孤儿鲁小忠、鲁小鱼兄妹以及毕若水、黄小仙等。内蒙古大草原牧民们淳朴、善良、美好的人性感染了我。特别是保育员乌兰其其格姑娘,就像开在草 原上的一朵最美丽、最纯洁、最朴实的花,只有这块纯净的土地才能开出这样的花朵。体育赌场

1960年春天,自然灾害使内地生活十分艰难,内蒙向阳红公社苏书记与保育员乌兰一行,根据中央的指示乘火车来到上海福利院完成收养孤儿的交接手续。鲁小忠、鲁小鱼母亲死得早,可不幸的是 父亲昨天在生产中掉进火炉里被烧死了,使他们成了孤儿,被收进了福利院,正赶上内蒙牧民来领养,但是,小忠却想留在上海,不愿去内蒙,内心十分抵触,小鱼因父亲死了受刺激,导致暂时性失语。 在乌兰阿姨的劝说下,小忠他们还是来到了内蒙古大草原。

人人教A版数学高三等比数列精选试卷练习(含答案)2

人人教A版数学高三等比数列精选试卷练习(含答案)2

人人教A 版数学高三等比数列精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.在等比数列{}n a 中,332a =,392S =,则1a =( ) A .32或6 B .3 C .32或3 D .6 2.若数列{a n }满足:a 1=1,2a n +1=2a n +1(n ∈N*),则a 1与a 5的等比中项为( )A .±2B .2C .D 3.等比数列{}n a 中,39a =,51a =,则6a 的值为( )A .13B .13- C .13± D .194.公比不为1的等比数列{}n a 的前n 项和为n S ,若1a ,3a ,2a 成等差数列,2mS ,3S ,4S 成等比数列,则m =( )A .78B .85 C .1 D .955.正项等比数列{}n a 中,153759216a a a a a a ++=,且5a 与9a 的等差中项为4,则{}n a 的公比是 ( )A .1B .2C .2D 6.已知一个等比数列项数是偶数,其偶数项之和是奇数项之和的3倍,则这个数列的公比为( )A .2B .3C .4D .6 7.已知等比数列{}n a ,若1231a a a ⋅⋅=,7894a a a ⋅⋅=,则129a a a ⋅=L ( ) A .4 B .6 C .8 D .8± 8.在等比数列{}n a 中,24681,4a a a a +=+=,则2a =( )A .2B .4C .12D .13 9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A .2B .1C .12D .1810.已知()f x 是定义在R 上不恒为0的函数,且对任意,a b ∈R ,有()()()f a b a f b b f a ⋅=⋅+⋅成立,()22f =,令()2n n a f =,()22n n n f b =则有( )A .{}n a 为等差数列B .{}n a 为等比数列C .{}n b 为等差数列D .{}n b 为等比数列 11.在等比数列{}n a 中,227a =,13q =-,则5a =( ) A .3- B .3 C .1- D .112.已知正项数列{}n a ,若点()4log n na ,在函数()3f x x =-的图像上,则()2357log a a a =( )A .12B .13C .14D .16 13.已知等比数列{}n a 中,141,8a a =-=,该数列的公比为A .2B .-2C .2±D .314.在正项等比数列{}n a 中,4a ,46a 为方程210090x x -+=的两根,则102540a a a ⋅⋅=( )A .9B .27C .64D .8115.已知数列{}n a 是等比数列,若2678492ma a a a a ⋅=-⋅,且公比2)q ∈,则实数m 的取值范围是()A .(2,6)B .(2,5)C .(3,6)D .(3,5) 16.已知等比数列{}n a ,若1472a a +=,232a a ⋅=-,则公比q =( ) A .-2 B .12- C .-2或12- D .-8或18- 17.在等比数列{}n a 中,34a =,516a =,则9a 等于( )A .256B .-256C .128D .-128 18.在正项等比数列{n a }中,274a a =,则212228log log log a a a +++…= A .2 B .4 C .6 D .819.已知数列{}n a 的前n 项和1n n S a =-(0a ≠),那么{}n a ( )A .一定是等差数列B .一定是等比数列C .或者是等差数列,或者是等比数列D .既不可能是等差数列,也不可能是等比数列20.等比数列{a n }中,a 4=2,a 7=5,则数列{lg a n }的前10项和等于( ) A .2B .lg 50C .5D .10二、解答题21.在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.记三种方案第n 天的回报分别为n a ,n b ,n c .(1)根据数列的定义判断数列{}n a ,{}n b ,{}n c 的类型,并据此写出三个数列的通项公式;(2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由. 22.设数列{}n a 的前n 项和为n S ,若对于任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和为*2()n n S n =∈N ,证明:{}n a 是“H 数列”.(2)设{}n a 是等差数列,其首项11a =,公差0d <,若{}n a 是“H 数列”,求d 的值.23.已知数列{}n a 中,13a =,132n n n a a ++=⋅,*n N ∈.(1)证明:数列{}2n n a -是等比数列,并求数列{}na 的通项公式; (2)在数列{}n a 中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;(3)若1r s <<且r ,s ∈*N ,求证:使得1a ,r a ,s a 成等差数列的点列(),r s 在某一直线上.24. 由a n 与S n 的关系求通项公式(1)已知数列{}n a 的前n 项和为n S ,且23722n S n n =-()*n N ∈,求数列{}n a 的通项公式;(2)已知正项数列{}n a 的前n 项和n S 满足2(1)4n n a S +=(*n N ∈).求数列{}n a 的通项公式;(3)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,求S n(4)已知正项数列{}n a 中,11a =,22a =,前n 项和为n S ,且满足211111142n n n n n n n S S S S S S S +--++-+=-(*2,n n N ≥∈).求数列{}n a 的通项公式; (5)设数列{a n }的前n 项积为T n ,且T n +2a n =2(n ∈N *).数列1n T ⎧⎫⎨⎬⎩⎭是等差数列;求数列{}n a 的通项公式; 25.已知数列{}n a 为等比数列,且0n a >,数列{}n b 满足2log n n b a =,若14b =,23b =. (1)求数列{}n a 的通项公式;(2)设数列{}n b m +前n 项和为n S ,若当且仅当5n =时,n S 取得最大值,求实数m 的取值范围.26.已知公比为q 的等比数列{}()*n a n N∈中,22a =,前三项的和为7.(1)求数列{}n a 的通项公式;(2)若01q <<,设数列{}n b 满足12n n b a a a =⋅L L ,n *∈N ,求使01n b <<的n 的最小值.27.在等比数列{}n a 中,公比(0,1)q ∈,且满足42a =,232637225a a a a a ++=. (1)求数列{}n a 的通项公式;(2)设2log n n b a =,数列{}n b 的前n 项和为n S ,当312123n S S S S n +++⋯+取最大值时,求n 的值.28.已知数列{},{}n n a b 满足{}1,2n n n n a a b b +-=+为等比数列,且12a =,24a =,310a =.(1)试判断列{}n b 是否为等比数列,并说明理由;(2)求n a .29.等比数列{}n a 中,已知142,16a a ==.(1)求数列{}n a 的通项公式n a ;(2)若35,a a 分别是等差数列{}n b 的第4项和第16项,求数列{}n b 的通项公式及前n 项和n S .30.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +==(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T . 31.已知数列{}{},n n a b 满足:1112,,2n n n n a a n b a n b ++=+-==.(1)证明数列{}n b 是等比数列,并求数列{}n b 的通项;(2)求数列{}n a 的前n 项和n S .32.已知数列{}n a 满足11a =,且11123n n a a +=+,*n N ∈. (1)求证:23n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)求数列{}n a 的通项公式.33.已知等差数列{}n a 满足1210a a +=,432a a -=.(1)求{}n a 的通项公式;(2)设等比数列{}n b 满足2337,b a b a ==.若6k b a =,求k 的值.34.已知等差数列{}n a 的前n 项和为n S ,各项为正的等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式;(2)若321T =,求3S三、填空题35.设数列{}n a 的前n 项和为n S ,若24S =,121n n a S +=+,*n N ∈,则{}n a 的通项公式为________.36.数列{}n a 满足()211122,3,1n n n n n a a a a n a -+--+==+L ,21a =,33a =,则7a =________.37.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =________. 38.已知实数()abc a b c <<,,三个数成等比数列,它们的和是21,积是64,那么这个数列的公比q =_____.39.已知等比数列{}n a 及等差数列{}n b ,其中10b =,公差0d ≠.将这两个数列的对应项相加,得一新数列1,1,2,L ,则等比数列{}n a 的前10项之和为________. 40.已知数列{}n a 是公差不为0的等差数列,11a =,且125,,a a a 成等比数列,那么数列{}n a 的前10项和10S 等于________.41.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵行成等比数列,所有公比相等,则a b c ++值为42.已知等比数列{}n a 的前n 项和为n S ,且372S =,6632S =,则7a =__________. 43.已知等比数列{}n a 的首项为1a ,前n 项和为n S ,若数列{}12n S a -为等比数列,则32a a =____.44.已知等比数列{}n a 中,若451a a =,8916a a =,则67a a =_____.45.已知数列{}n a 是公差不为0的等差数列,11a =,且249112a a a --+,,成等比数列,则{}n a 的前9项和9S =_______.46.公比为2的等比数列{}n a 的各项都是正数,且31116a a ⋅=,则6a 的值为___________ 47.数列{}n a 是等比数列,21a =-,64a =-,则4a 的值是________. 48.在等比数列{}n a 中,11a =,公比2q =,若64n a =,则n 的值为 . 49.已知1,a ,b ,c ,4成等比数列,则b =______.50.各项都不为零的等差数列{}n a (*N n ∈)满足22810230a a a -+=,数列{}n b 是等比数列,且88a b =,则4911b b b =________.参考答案1.A2.C3.C4.D5.D6.B7.D 8.D9.C10.C11.C12.A13.B14.B15.C16.C17.A18.D19.C20.C21.(1){}n a 为常数列;{}n b 为等差数列;{}n c 是等比数列;40n a =,1100.42n n n b n c -==⨯,(2)应该选择方案二,详见解析22.(1)见解析在(2)1d =-23.(1)详见解析;(2),,成等差数列;(3)详见解析.24.(1) 35n a n =-;(2) 21n a n =-;(3) 132n n S -⎛⎫= ⎪⎝⎭; (4) 1,12,2n n a n =⎧=⎨≥⎩(5) 12n n a n +=+ 25.(1)52n n a -=;(2)()0,126.(1)12n n a -=或32n n a -=;(2)6.27.(1)52n n a -=(2)n 的值为8或928.(1)数列{}n b 不是等比数列.见解析(2)+122n n a n =-29.(1)n n a 2=;(2)2622n n -30.(Ⅰ)12n n a -=(Ⅱ)112221n n ++-- 31.(1)见证明;(2)n S 21222n n n ++=-- 32.(1)见解析;(2)1211332n n a -⎛⎫=+⋅ ⎪⎝⎭33.(1)22n a n =+;(2)63 34.(1)12n n b -=, (2)36s =- 35.13-=n n a 36.6337.1238.439.102340.10041.27242.32. 43.12 44.445.11746.247.2-48.749.250.8。

高中数学等比数列公式是什么

高中数学等比数列公式是什么

高中数学等比数列公式是什么高中数学等比数列公式1、等比数列的通项公式是:An=A1__q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N__,则有:ap·aq=am·an,等比中项:aq·ap=2arar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap__aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.高中数学解题方法与技巧1、不等式、方程或函数的题型,先直接思考后建立三者的联系。

首先考虑定义域,其次使用“三合一定理”。

2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。

如函数过的定点、二次函数的对称轴等。

3、在求零点的函数中出现超越式,优先选择数形结合的思想方法。

4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。

5、选择与填空中出现不等式的题,应优先选特殊值法。

6、在利用距离的几何意义求最值得问题中,应首先考虑两点之间线段最短,常用次结论来求距离和的最小值;三角形的两边之差小于第三边,常用此结论来求距离差的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

支付宝网上如何买彩票
[单选,A2型题,A1/A2型题]判断HLA-D位点编码的抗原间是否相容的方法是()A.迟发型皮肤超敏反应B.PHA激发的淋巴细胞C.混合淋巴细胞反应D.HLA血清学定型试验E.以上均不是 [单选]关于胎儿窘迫,下列描述正确的是().A.宫缩时胎心音110次/分B.羊水呈浅黄色C.胎动于右侧卧位时增多D.多次出现晚期减速E.胎儿头皮血pH为7.25 [单选]电源频率增加一倍,变压器绕组感应电动势也()。A、增加一倍B、不变C、减少一倍D、略有增加 [单选]根据《中华人民共和国消防法》的规定,被责令停止施工、停止使用、停止停业的,应当在后向公安机关消防机构报告,经公安机关消防机构合格,方可恢复施工、使用、生产、经营。()A、整改,审批B、整改,检查C、改正,审批D、改正,检查 [问答题,简答题]什么叫屏蔽效应、钻穿效应? [单选]《灵枢.百病始生》所言的“虚邪”是指()。A.正气虚弱B.致病性不强的邪气C.四时不正之气D.泛指一切致病因素E.情志失调 [问答题]八宝珍珠散功效与作用 [单选,A2型题,A1/A2型题]胸外除颤时,电极板应置于()A.胸骨右缘第3肋间和心尖区B.胸骨左缘第2肋间和心尖区C.胸骨右缘第2肋间和心尖区D.心尖区和右侧肩胛区E.胸骨左缘第3肋间和心尖区 [填空题]使命是指一个组织的总的功能,说明组织存在的理由或价值,回答“()"的问题。 [填空题]网站是互联网(Internet)各种业务活动的() [多选]建设项目决策阶段环境影响评价管理的主要内容有()等。A.环境影响评价的确立和委托B.环境影响评价文件的编制C.环境影响评价文件的评估D.环境影响评价项目的分析E.环境影响评价文件的审批 [单选,A2型题,A1/A2型题]关于细菌的生长,下列说法错误的是()。A.对数生长期细菌的形态、染色性、生理活性都较为典型B.抗菌药多作用于细菌的对数生长期C.对数生长期细菌生长迅速,芽胞亦多在此期形成D.稳定期细菌的增殖数与死亡数基本相等,故活菌数保持相对不变E.衰退期可见细 [单选]确定胎龄及估计胎儿发育最简便可靠的方法是().A.测宫高、腹围B超C.羊水测定胎儿成熟度D.羊水泡沫功能监测E.胎儿胎盘功能监测 [单选]以下关于程序流程图、N-S盒图和决策表的叙述中,错误的是()。A.N-S盒图可以避免随意的控制转移B.N-S盒图可以同时表示程序逻辑和数据结构C.程序流程图中的控制流可以任意转向D.决策表适宜表示多重条件组合下的行为 [单选]合作社可以从制度上弥补()和政府调控作用的不足。A.市场缺陷B.生产力发展C.基础设施建设D.农产品质量管理 [单选]嘌呤环中的N7来于()A、天冬氨酸B、谷氨酰胺C、甲酸盐D、甘氨酸 [多选]建筑节能分部工程的质量验收,应在检验批、分项工程全部合格的基础上,进行()。A.建筑围护结构的外墙承载实体检验B.夏热冬冷地区的外窗气密性现场检测C.系统节能性能检测D.节能工艺检验E.系统联合试运转与调试 [判断题]可转换证券实贡上嵌入了普通股票的看跌期权,正是从这个意义上说,我们将其列为期权类衍生产品。()A.正确B.错误 [单选,A1型题]胸腺嘧啶与尿嘧啶结构的差别是胸腺嘧啶尿嘧啶()A.C2上有NH2C2上有OB.C5上有甲基C5上无甲基C4上有NH2C4上有OD.C5上有羟甲基C5上无羟甲基E.C1上有羟基C1上无羟基 [单选]结缔组织病中最易累及肾损害的是()。A.系统性红斑狼疮B.皮肌炎C.类风湿关节炎D.强直性脊柱炎E.干燥综合征 [单选]行政合理性原则产生的主要原因在于()。A.行政违法行为的存在B.行政自由裁量权的存在C.公务员政治、业务素质的差异D.行政管理事项的复杂性、易变性 [单选]下列描述宏观经济管理关系有误的是()。A.它是一种行政指导关系B.以市场经济体制为基础C.是宏观领域的经济关系D.可以综合运用各种手段 [单选,A2型题,A1/A2型题]渗透压测定的原理是根据()。A.比重高低B.黏度大小C.冰点下降D.沸点上升E.溶解度上升 [单选]防治朊毒体疾病的最好办法是()A.抗生素治疗B.抗病毒治疗C.输血D.预防E.基因疗法 [单选,A1型题]首次产前检查,下列哪个时间最合适()A.妊娠6周B.妊娠12周C.妊娠l4周D.妊娠20周E.确诊早孕时 [问答题,简答题]什么是初馏点? [单选]男,15岁,渐进性鼻塞1年余,MRI扫描如图所示,最可能的诊断是()A.鼻咽部纤维血管瘤B.鼻咽部脓肿C.脊索瘤D.鼻咽部囊肿E.鼻咽癌 [单选]采用母线电流相位比较式母线差动保护的厂站中,正常运行时母联断路器()运行。A.不必投入B.可以投入,也可以不投入C.必须投入D.以上皆不对 [单选]家庭健康护理的主要工作内容不包括()A.家庭各成员的健康B.家庭成员间的相互作用关系C.家庭整体的健康与社区之间的关系D.家庭成员的工作性质E.家庭成员个人的健康观念 [单选,A2型题,A1/A2型题]有关肝动脉插管化疗的患者护理叙述不正确的是()A.严格无菌操作B.若出现发热,应使用抗菌药物C.注药后用肝素液冲洗导管D.定期局部换药E.剧烈腹痛时应警惕其他部位动脉栓塞及胆囊坏死等并发症 [单选]“钢船时期”的代表作“龙威”号被编入北洋舰队后,改名为“()”号,成为北洋八大远之一。A、威远B、平远C、定远D、镇远 [单选]取得()评价资质的评价机构,可以在资质证书规定的评价范围之内,承担省级以下环境保护行政主管部门负责审批的环境影响报告书或环境影响报告Байду номын сангаас的编制工作。A.甲级B.乙级C.丙级D.暂定级 [填空题]以直线的一端的磁子午线为基准方向,顺时针转至该直线的角度称为(),可使用罗盘仪测量。 [单选]当飞机绕重心有一个低头的角加速度时,位于飞机重心之前的主起落架的过载()。A.小于飞机重心处的过载B.大于飞机重心处的过载C.与飞机重心处的过载无关D.等于飞机重心处的过载 [单选,A2型题,A1/A2型题]最常用、最有效的热力灭菌法是()A.煮沸法B.巴氏消毒法C.流通蒸汽灭菌法D.高压蒸汽灭菌法E.间歇灭菌法 [问答题,简答题]请写出《国家电网公司电费抄核收工作规范》中抄表段划分的原则。 [单选]铁路组织装车前,货运人员应认真检查()是否干净,是否被毒物污染。A、车内B、车体C、车辆D、货位 [单选]属于压力容器结构的是()。A、进口阀B、出口阀C、连接件D、铭牌 [问答题,简答题]口罩使用注意事项 [单选]氧气输送管道、储罐、以及附件选材全部执行(),以减少氧气腐蚀,保证安全。A、国际标准B、国家标准C、行业标准D、公司标准
相关文档
最新文档