高二数学等比数列前n项和2
4.3.2等比数列的前n项和公式课件-高二上学期数学人教A版选择性必修第二册

21 + 22 + 23 + ……
①
+ 262 + 263 + 264 ②
② ①得S 64 2 1(粒) 1844674407 4709551615 (粒)
64
已知一千颗麦粒的质量约为40g,据查,202X—202X年度世界小麦产量约
为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.
2
3
n
解 : ①当 x 0时, S n 1
②当x 1时, S n n 1
1(1 x n 1 ) x n 1 1
③ 当x 1且x 0时, S n
1 x
x 1
总结归纳
等比数列的前n项和公式
设等比数列{an }的首项为a1 , 公比为q, 前n项和为S n :
设等比数列{an }的首项为a1 , 公比为q, 前n项和为S n :
①q 1时, S n na1
②q 1时, S n
n 1
a
a
q
1
a1 (1 q ) n
n
1 q
知a1 , q, n
a1 an q
Sn
1 q
知a1 , q, an
注:当公比不确定时,应当分 = 和 ≠ 两种情况讨论.
以实现上述要求."
国王觉得这个要求不高,就欣然同意了.已知一千颗麦粒
的质量约为40g,据查,202X—202X年度世界小麦产量约为
7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.
情景引入
“请在棋盘的第1个格子里放上1颗麦粒,第2个格子
里放上2颗麦粒,第3个格子里放上4颗麦粒……依此类
等比数列的前n项和公式 (课件)高二数学(人教A版2019选择性必修第二册)

所以(S8-S4)2=S4·(S12-S8),即162=S12-17,
所以S12=273.
【类题通法】等比数列前n项和性质应用的关注点
(1)在解决等比数列前n项和问题时,当条件含有奇数项和与偶数项和的时候,如
果项数为偶数,可考虑利用奇数项和与偶数项和之间的关系求解.
的值.
【解析】(1)设等差数列{an}的公差为d.
由题意可知,a1=1,a2+a4=1+d+1+3d=6,解得,d=1,
所以{an}的通项公式为an=1+(n-1)×1=n.
(2)设等比数列{bn}的公比为q.由(1)中结论,可得a16=16,所以b2·b4=q·q3=16,
所以q2=4,所以{b2n-1}是以1为首项,以q2=4为公比的等比数列,通项公式为
a1(1-q5)
a1(1-q10)
所以
=10,
=50,
1-q
1-q
两式相除可得1+q5=5,
a1
10
所以q =4,
=- 3 ,
1-q
5
a1(1-q20)
10
S20=
=- 3 ·(1-256)=850.
1-q
【补偿训练】各项都是正数的等比数列{an},前 n 项和
记为 Sn,若 S10=10,S30=70,求 S40.
②
①②两式的右边有很多相同的项,用①的两边分别减去②的两边,就可以消去这些相
同的项,可得
Sn-qSn=a1-a1qn,
即 (1-q)Sn=a1(1-qn).
因此,当q≠1时,我们就得到了等比数列的前项和公式
a1 (1 q n )
Sn
(q 1).(1)
4.3.2等比数列的前n项和公式教学设计高二下学期数学人教A版选择性

教学设计
课程基本信息
学科
数学
年级高二学期春季课题等比数列的前 项和公式
教科书
书 名:高中数学选择性必修第二册A版
出版社:人民教育出版社
教学目标
1.从不同角度推导等比数列的前 项和公式
2.等比数列前 项和公式的理解与应用
教学内容
教学重点:
1.等比数列前 项和公式的推导
2.等比数列前 项和公式的推导方法的理解和迁移使用
接下来我们来解决我们开始提出的问题
三、公式的理解和应用
时,
提出一个具体问题:若一个数列等比 的前 项和为 ,则 ___
例题1:①若 ,求 ;
③若 ,求 .
⑤若 ,求 .
例题2:求和:
则
当 时, ;当 时, ;
综上:
备注:教学设计应至少含教学目标、教学内容、教学过程等三个部分,如有其它内容,可自行补充增加。
(学生经历了类比后,能够从特殊到一般归纳出一般等比数列的前 项和公式)
生:根据前面两个特殊的例子,我们不难猜到
师:这个公式中有没有需要注意的地方(给学生提醒,目的是要让学生想到公比为1的特殊情形)
生:当公比为1的时候,公式中分母为0,没有意义,此时是一个常数列,每项都和 相同,所以我们应该分段写.
公式应该写成(教师板书)
数学抽象:设第 个格子里的麦粒数为 ,则 ,问题就是求数列 的前64项和
等比数列的前项和课件2022-2023学年上学期高二数学选择性必修第二册

我们发现,如果用公比q乘①的两边,可得
qSn=a1q + a1q2 + a1q3 + … +a1qn-1+ a1qn
②
Sn=a1 + a1q + a1q2 + … +a1qn-1
qSn=
a1q + a1q2 + … +a1qn-1 + a1qn
①
②
①②两式的右边由很多相同的项,用①的两边分别减
去②的两边,就可以消去这些相同的项,可得
次为a2 , a3 , …, an , …, 则a1=25.
例9 如图,正方形ABCD的边长为5cm,
取正方形ABCD各边的中点E、F、G、H, 做
第2个正方形EFGH,然后再取正方形EFGH
各边的中点I、J、K、L, 做第3个正方形IJKL,
以此方法一直继续下去.
(1)求从正方形ABCD开始,连续10个正方形的面积之和;
2
4
1+q +q = ,
由②÷①,
解得m=7.
方法2:由等比数列前n项和的性质知, S2, S4−S2, S6−S4
也成等比数列, 即有(6−4)2 =4×(S6−6), 解得S6=7.
例9 如图,正方形ABCD的边长为5cm,
取正方形ABCD各边的中点E、F、G、H, 做
第2个正方形EFGH,然后再取正方形EFGH
S4=4a1, S2=2a1, 即S4=2S2, 与已知矛盾, 故q≠1 .
设S6=m, 则由已知得
a1 (1- q 2 )
a1 (1- q 4 )
a1 (1- q 6 )
S2 =
= 4 (1) ,S4 =
等比数列前n项和-高二数学

在已知量和未知量之间搭起桥梁,使我们不拘泥于课本,
又能使问题得到解决.
知识梳理
等比数列的前n项和公式
新教材《选择性必修二》
已知量
首项、公比与项数
首项、公比与末项
公式一
求和公式
a111--qqnq≠1, Sn=__n_a_1_q_=__1________
❖由 Sn .an ,q , a1 , n 知三 而可 求二 .
上述等比数列求前n项和的方法,我们称为“错位相减法”.
新知学习
新教材《选择性必修二》
问题1 若等比数列{an}的首项是a1,公比是q,如何求该等比数列的前n项的和? 提示 思路一:因为Sn= a1 + a2 + a3 +…+ an-1 + an,
所以Sn= a1 +a1q +a1q2 +a1q3+ …+a1qn-1,
n项的和? 思路一:因为
Sn= a1 + a2 + a3 +…+ an-1 + an,
所以 qSn =
a2 + a3 +…+ an-1 + an + an+1 ,
两式相减可得
Sn-qSn=a1- an+1 , 即(1-q)Sn=a1(1-qn), (1)当q=1时,Sn=na1.
(2)当 q≠1 时, Sn=a11--aqn+1.
把这些数完,如果一秒钟数一粒,大约需要5 800亿年.
典型例题
新教材《选择性必修二》
((例21))若若1.已aa11 知 212数7,,列qaa9 n12是,214等求3 ,比s8;数q 列0.,课求本s例8;7 (2)由由aq1
(3)若a1
8,q
1 2
,Sn
31,求n. 2
所以
27=33
高二数学复习考点知识精讲与练习4 等比数列的前n项和公式

高二数学复习考点知识精讲与练习专题4 等比数列的前n项和公式【考点梳理】考点一等比数列的前n项和公式考点二等比数列前n项和的性质1.数列{a n}为公比不为-1的等比数列(或公比为-1,且n不是偶数),S n为其前n项和,则S n,S2n-S n,S3n-S2n仍构成等比数列.2.若{a n}是公比为q的等比数列,则S n+m=S n+q n S m(n,m∈N*).3.若{a n}是公比为q的等比数列,S偶,S奇分别是数列的偶数项和与奇数项和,则:①在其前2n项中,S偶S奇=q;②在其前2n+1项中,S奇-S偶=a1-a2+a3-a4+…-a2n+a2n+1=a1+a2n+1q1-(-q)=a1+a2n+21+q(q≠-1).考点三:等比数列前n项和的实际应用1.解应用问题的核心是建立数学模型.2.一般步骤:审题、抓住数量关系、建立数学模型.3.注意问题是求什么(n ,a n ,S n ). 注意:(1)解答数列应用题要注意步骤的规范性:设数列,判断数列,解题完毕要作答. (2)在归纳或求通项公式时,一定要将项数n 计算准确. (3)在数列类型不易分辨时,要注意归纳递推关系.(4)在近似计算时,要注意应用对数方法,且要看清题中对近似程度的要求.【题型归纳】题型一:等比数列前n 项和公式的基本运算1.(2022·江苏南通·高二期末)已知等比数列{}n a 的前6项和为1894,公比为12,则6a =( ) A .738B .34C .38D .242.(2022·河南商丘·高二期中(理))已知正项等比数列{}n a 中,22a =,48a =,数列{}2n n a a ++的前n 项和为n S ,则62SS =( )A .32B .21C .16D .83.(2022·全国·高二课时练习)设正项等比数列{}n a 的前n 项和为n S ,若23S =,3412a a +=,则公比q 等于( ).A .1B .2C .3D .4题型二:等比数列的判断和性质的应用4.(2022·全国·高二课时练习)设等比数列{}n a 前n 项和为S n ,若S 3=8,S 6=24,则a 10+a 11+a 12=( ) A .32B .64 C .72D .2165.(2022·广西·田东中学高二期末(理))已知数列{}n a 是等比数列,n S 为其前n 项和,若1234a a a ++=,4568a a a ++=,则12S =( ) A .40B .60C .32D .506.(2020·四川·双流中学高二期中(理))设n S 是等比数列{}n a 的前n 项和,若423S S =,则64S S =( ) A .2B .73C .310D .12或题型三:等比数列奇偶项和的性质7.(2020·河南·高二月考(理))已知等比数列{}n a 共有32项,其公比3q =,且奇数项之和比偶数项之和少60,则数列{}n a 的所有项之和是( ) A .30B .60C .90D .1208.(2022·全国·高二课时练习)已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( )A .2B .3C .4D .59.(2022·全国·高二课时练习)已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的公比和项数分别为( ) A .8,2B .2,4C .4,10D .2,8题型四:等比数列中an 与Sn 的关系10.(2022·全国·高二课时练习)记数列{}n a 的前n 项和为n S ,21n n S a =-,则2020S =( )A .202021-B .202121-C .2020122⎛⎫- ⎪⎝⎭D .2021122⎛⎫- ⎪⎝⎭11.(2022·宁夏·六盘山高级中学高二月考(理))已知数列{}n a 的前n 项和112nn S ⎛⎫=- ⎪⎝⎭,那么数列{}n a ( ) A .是等差数列但不是等比数列 B .或者是等差数列,或者是等比数列 C .是等比数列但不是等差数列D .既不可能是等差数列,也不可能是等比数列12.(2020·江苏·高二专题练习)设数列{}n a 的前n 项和为n S ,若11a =,121n n S S +=+,则6S =( )A .63B .127C .128D .256题型五:等比数列的简单应用13.(2022·甘肃·西北师大附中高二期中(理))中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.那么请问此人前两天所走的里程为( ) A .189里B .216里C .288里D .192里14.(2022·全国·高二课时练习)为全力抗战疫情,响应政府“停课不停学”的号召,某市中小学按照教学计划,开展在线课程教学和答疑.某高一学生家长于3月5日在某购物平台采用分期付款的形式购买了一台价值m 元的平板电脑给学生进行网上学习使用,该平台规定:分12个月还清,从下个月5日即4月5日开始偿还,每月5日还款,且每个月还款钱数都相等.若购物平台的月利率为p ,则该家长每月的偿还金额是( )A .12m 元B .()()1212111mp p p ++-元C .()12112m p +元D .()()1313111mp p p ++-元 15.(2022·北京朝阳·高二期末)光圈是一个用来控制光线透过镜头,进入机身内感光面的光量的装置.表达光圈的大小我们可以用光圈的F 值表示,光圈的F 值系列如下:F 1,F 1.4,F 2,F 2.8,F 4,F 5.6,F 8,…,F 64.光圈的F 值越小,表示在同一单位时间内进光量越多,而且上一级的进光量是下一级的2倍,如光圈从F 8调整到F 5.6,进光量是原来的2倍.若光圈从F 4调整到F 1.4,则单位时间内的进光量为原来的( ) A .2倍B .4倍C .8倍D .16倍【双基达标】一、单选题16.(2022·河南·高二期中(文))n S 为等比数列{}n a 的前n 项和,且33a =,26S =,则5a 的值为( )A .34B .3或12C .3或34D .12或3417.(2022·河南商丘·高二期中(理))在正项等比数列{}n a 中,512a =,673a a +=,{}n a 的前n 项和为n S ,前n 项积为n T ,则满足1n n S a T +>的最大正整数n 的值为( ) A .11B .12 C .13D .1418.(2022·江西·九江市第三中学高二期中(理))若{}n a 是等比数列,已知对任意*n N ∈,2121n n a a a ++=-,则2222123n a a a a ++++=( )A .2(21)n -B .121(2)3n -C .41n -D .1(41)3n -19.(2022·全国·高二课时练习)等比数列{a n }中,a 1a 2a 3=1,a 4=4,则a 2+a 4+a 6+…+a 2n =( )A .2n-1B .413n -C .()143--nD .()123n--20.(2022·江西·景德镇一中高二期中(文))已知数列{}n a 满足11a =,若1114()n n nn N a a ++-=∈,则数列{}n a 的通项n a =( ) A .341n -B .431n -C .413n -D .314n -21.(2022·河南洛阳·高二期中(文))已知等比数列{}n a 的前n 项和为21nn S a b =⋅+-,则44a b +的最小值为( ) A .2B..4D .522.(2022·全国·高二课时练习)在等比数列{}n a 中,已知42S =,86S =,17181920a a a a +++=( )A .32B .16C .35D .16223.(2022·全国·高二课时练习)已知n S 是等比数列{}n a 的前n 项和,若存在*m ∈N ,满足29m mS S =,2511m m a m a m +=-,则m 的值为( )A .-2B .2C .-3D .324.(2022·全国·高二课时练习)某人于2020年6月1日去银行存款a 元,存的是一年定期储蓄,2022年6月1日将到期存款的本息一起取出再加a 元之后还存一年定期储蓄,此后每年的6月1日他都按照同样的方法在银行取款和存款.设银行定期储蓄的年利率r 不变,则到2025年6月1日他将所有的本息全部取出时,取出的钱共有( )A .()41a r +元B .()51a r +元C .()61a r +元D .()()611a r r r⎡⎤+-+⎣⎦元 25.(2022·江苏·高二单元测试)设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列.已知数列{}n n a b +的前n 项和()2*51N n n S n n =+-∈,则d q -=( )A .3-B .1-C .2D .4【高分突破】一:单选题26.(2022·江苏省苏州第十中学校高二月考)已知等比数列{a n }的首项为1,公比为2,则a 12+a 22+⋯+a n 2=( ) A .(2n ﹣1)2B .()1213n -C .4n ﹣1D .()1413n - 27.(2022·全国·高二学业考试)已知一个项数为偶数的等比数列{}n a ,所有项之和为所有偶数项之和的4倍,前3项之积为64,则1a =( ) A .1B .4 C .12D .3628.(2022·全国·高二单元测试)设n S 为数列{}n a 的前n 项和,()112322n n n a a n ---=⋅≥,且1232a a =.记n T 为数列1nn a S ⎧⎫⎨⎬+⎩⎭的前n 项和,若对任意*n ∈N ,n T m <,则m 的最小值为( ) A .3B .13C .2D .1229.(2022·全国·高二单元测试)在正项数列{}n a 中,首项12a =,且()()22*12,,2n n a a n n -∈≥N 是直线80x y -=上的点,则数列{}n a 的前n 项和n S =( ) A .()122n--B .122n +-C .12n +D .122n-30.(2022·江苏·苏州市苏州高新区第一中学高二月考)公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面1000米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟领先他10米,当阿基里斯跑完下一个10米时,乌龟先他1米.所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为0.001米时,乌龟爬行的总距离为( )A .61019000-米B .410190-米C .510990-米D .5101900-米31.(2022·全国·高二课时练习)等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( ) A .29B .31C .33D .3632.(2022·全国·高二课时练习)若正项等比数列{}n a 满足13116a a =,4322a a a +=,则()1121111n n nS a a a +=-++-=( )A .()2123n ⎡⎤+-⎣⎦B .()2123n -C .()2123n +D .()2123n⎡⎤--⎣⎦33.(2022·广西·崇左高中高二月考)已知{}n a 是公比不为1的等比数列,n S 为其前n 项和,满足2021201920192020a a a a -=-,则下列等式成立的是( )A .2202020212019S S S =B .2020202120192S S S +=C .2201920212020S S S =D .2019202120202S S S +=34.(2022·全国·高二课时练习)如图,画一个边长为2的正三角形,再将这个正三角形各边的中点相连得到第二个正三角形,依此类推,一共画了5个正三角形.那么这五个正三角形的面积之和等于( )A . 3. 213. 853D . 3413二、多选题35.(2022·江苏苏州·高二期中)已知等比数列{}n a 的各项均为正数,其前n 项和为n S ,若5432a a a +=,且存在两项m a ,n a ,使得14m n a a a =,则( ) A .12n n a a +=B .12n n S a a =-C .5mn =D .6m n +=36.(2022·全国·高二课时练习)n S 是数列{}n a 的前n 项的和,且满足11a =,12n n a S +=,则下列说法正确的是( ) A .{}n a 是等比数列 B .1123n n a -+=⨯C .{}n a 中能找到三项p a ,q a ,r a 使得p q r a a a =D .1n a ⎧⎫⎨⎬⎩⎭的前n 项的和74n T <37.(2022·江苏·高二单元测试)已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( )A .若2q ,则n n T S =B .若2q >,则n n T S >C .若14q =-,则n n T S >D .若34q =-,则n n T S <38.(2022·全国·高二单元测试)已知等比数列{}n a 的前n 项和为n S ,且214S a =,2a 是11a +与312a 的等差中项,数列{}n b 满足1n n n n a b S S+=⋅,数列{}n b 的前n 项和为n T ,则下列命题正确的是( )A .数列{}n a 的通项公式为13-=n n aB .31n n S =-C .数列{}n b 的通项公式为()()1233131nn nn b +⨯=--D .n T 的取值范围是11,86⎡⎫⎪⎢⎣⎭39.(2022·全国·高二课时练习)记数列{}n a 的前n 项和为n S ,若存在实数H ,使得对任意的*n ∈N ,都有n S H <,则称数列{}n a 为“和有界数列”.下列说法正确的是( ) A .若数列{}n a 是等差数列,且公差0d =,则数列{}n a 是“和有界数列” B .若数列{}n a 是等差数列,且数列{}n a 是“和有界数列”,则公差0d = C .若数列{}n a 是等比数列,且公比q 满足1q <,则数列{}n a 是“和有界数列” D .若数列{}n a 是等比数列,且数列{}n a 是“和有界数列”,则公比q 满足1q <40.(2022·全国·高二单元测试)已知数列{}n a 满足11a =,()*1N 23n n naa n a +=∈+,则下列结论正确的是( )A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列B .{}n a 的通项公式为1123n n a -=- C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=--三、填空题41.(2022·全国·高二课时练习)数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为2的等比数列,那么a n =________.42.(2022·全国·高二课时练习)设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0,则公比q =________.43.(2022·全国·高二课时练习)已知等比数列{a n }的公比为12-,则135246a a a a a a ++++的值是________.44.(2022·江西·景德镇一中高二期中)在数列{}n a 及{}n b中,1n n n a a b +=+1n n n b a b +=+11a =,11b =.设11n n nc a b =+,则数列{}n c 的前2022项和为__________.45.(2022·全国·高二课时练习)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=______.四、解答题46.(2022·河南商丘·高二期中(文))已知正项数列{}n a 满足19a =,()12n n n a a a +=+,设()lg 1n n b a =+.(1)求数列{}n b 的通项公式;(2)设1n n c a =+,数列{}n c 的前n 项积为n S ,若lg n n S b λ<恒成立,求实数λ的取值范围.47.(2022·河南商丘·高二期中(文))设公差不为0的等差数列{}n a 的前n 项和为n S ,已知636S =,且2a 是1a ,5a 的等比中项. (1)求{}n a 的通项公式;(2)设2nn n b a =⨯,求数列{}n b 的前n 项和n T .48.(2022·陕西·延安市宝塔区第四中学高二月考)已知数列{}n a 的前n 项和S n =2n +1+A ,若{}n a 为等比数列.(1)求实数A 及{}n a 的通项公式;(2)设b n =log 2a n ,求数列{a n b n }的前n 项和T n .49.(2022·河南洛阳·高二期中(理))已知正项数列{}n a 的前n 项和为n S ,且11a =,211n n n S S a +++=,数列{}n b 满足12b =,2112na n nb b ++⋅=. (1)求证{}n a 为等差数列;(2)求证:12122n na a ab bb ++⋅⋅⋅+<.50.(2022·甘肃省民乐县第一中学高二期中(文))已知数列{}n a 的前n 项和为n S ,111,1(*)n n a a S n N +==+∈,数列{}n b 满足11b =,12n n n b a b +=+.(1)求数列{}n a 、{}n b 的通项公式;(2)若数列{}n c 满足1nn n n ac b b +=,求证:1212n c c c +++<.【答案详解】1.B解:根据题意,等比数列{}n a 的前6项和为1894,公比为12,则有616(1)18914a q S q -==-,解可得124a =,则56134a a q ==; 故选:B . 2.B 【详解】设正项等比数列{}n a 的公比为q,则2q ==, 所以,()()()()()()()66111263486421234112412635121221151212a a a a a a a a SS a a a a a --++++++++⨯--====+++--. 故选:B. 3.B解:由题意,正项等比数列{}n a 中, 因为23S =,3412a a +=,所以()121221234331212a a a a q a a a a +=+=⎧⎧⇒⎨⎨+=+=⎩⎩,解得24q =. 因为0q >,所以2q .故选:B 4.B【详解】由于S 3、S 6-S 3、S 9-S 6,S 12-S 9成等比数列,S 3=8,S 6-S 3=16,故其比为2, 所以S 9-S 6=32,a 10+a 11+a 12=S 12-S 9=64. 故选:B . 5.B 【详解】由等比数列的性质可知,数列36396129,,,S S S S S S S ---是等比数列,即数列4,8,96129,S S S S --是等比数列,因此9661291216,12,32,32161260S S S S S S -==-==++=.故选:B. 6.B 【详解】设24,3S k S k ==,由数列{}n a 为等比数列(易知数列{}n a 的公比1q ≠-),得24264,,S S S S S --为等比数列又242,2S k S S k =-=644S S k ∴-= 67,S k ∴=647733S k S k ∴== 故选:B . 7.D 【详解】设等比数列{}n a 的奇数项之和为1S ,偶数项之和为2,S则311531a a S a a =++++,()2463213531123a a a a q a a a a S S ++++=++++==又1260S S +=,则11603S S +=,解得1230,90S S ==, 故数列{}n a 的所有项之和是3090120+=. 故选:D 8.B 【详解】设等比数列{}n a 的公比为q , 则132112285k k a a a a a a q q +++++++==,即()2285184k q a a ++=-=,因为24242k a a a +++=,所以2q,则()21123221112854212712k k k a a a a a ++⨯-+++++=+==-,即211282k +=,解得3k =, 故选:B. 9.D解:设等比数列项数为2n 项,所有奇数项之和为S 奇,所有偶数项之和为S 偶, 根据题意得:S 奇=85,S 偶=170, ∴q S S ==偶奇2,又a 1=1,∴S 奇()21211na q q -==-85,整理得:1﹣4n =﹣3×85,即4n =256,解得:n =4,则这个等比数列的项数为8.故选D . 10.A 【详解】依题意21n n S a =-,当n=1时,a 1=2a 1-1,解得a 1=1; 当2n ≥时,由21n n S a =-得1121n n S a --=-,两式相减,得1122n n n n S S a a ---=-,即12n n a a -=,所以12nn a a -=()2n ≥, 所以数列{}n a 是首项为1,公比为2的等比数列, 所以12n na ,202020202020122112S -==--. 故选:A . 11.C解:数列{}n a 的前n 项和112nn S ⎛⎫=- ⎪⎝⎭,∴当2n 时,1111112212nn nn n n a S S -- ⎡⎤=-=--=-⎢⎥⎢⎭⎛⎫⎛⎫⎛⎫- ⎪⎪⎪⎝⎝⎭⎝⎣⎭⎥⎦,当1n =时,1111122a S ==-=-,上式也成立.∴12nn a ⎛⎫=- ⎪⎝⎭可得112n n a a -=,∴数列{}n a 是首项为12-,公比为12的等比数列,但不是等差数列. 故选:C .12.A在121n n S S +=+中,令1n =,得23S =,所以22a =. 由121n n S S +=+得2121n n S S ++=+,两式相减得212n n a a ++=,即212n n a a ++=,又11a =,212a a =,所以数列{}n a 是以1为首项,2为公比的等比数列,所以66126312S -==-. 故选:A . 13.C 【详解】由题意,记每天走的路程为{}n a 是公比为12的等比数列,又由6161[1()]2378112-==-a S ,解得1192a =, 所以11192()2-=⨯n n a ,则21192()962a =⨯= 故前两天所走的路程为:192+96=288 故选:C 14.B 【详解】设每月的偿还金额都是a 元, 则()()()()122111111m p a a p a p a p +=+++++++,即()()()121211111a p m p p ⎡⎤-+⎣⎦+=-+,解得()()1212111mp p a p +=+-.故选:B 15.C 【详解】由题可得单位时间内的进光量形成公比为12的等比数列{}n a ,则F 4对应单位时间内的进光量为5a ,F 1.4对应单位时间内的进光量为2a ,从F 4调整到F 1.4,则单位时间内的进光量为原来的258a a =倍.故选:C. 16.C 【详解】设公比为q ,则211136a q a a q ⎧=⎨+=⎩解得12q =-或1q =,故25334a a q ==或53a =.故选:C. 17.B 【详解】设正项等比数列{}n a 的公比为q ,则()25267556a q q a a q qa a ++==+=,即260q q +-=,0q >,则2q,514132a a q ∴==, 所以,()11221321232n n nS --==-,()()211112122121122232nn n n n n n n n T a a a a --+++-⎛⎫=⋅⋅⋅=⋅=⋅= ⎪⎝⎭,因为1n n S a T +>,即211221123232n nn--+>,即2115222n n n -->,即213100n n -+<,n <,因为1112<,则25122<<, 因此,满足条件的正整数n 的最大值为12. 故选:B. 18.D 【详解】因为对任意*n N ∈,2121n n a a a ++=-①,当1n =时,11a =, 当2n ≥时,211121n n a a a --++=-②,①-②得11222n n n n a ---==,满足11a =,则()221124n n n a --==,即{}2n a 是首项为1,公比为4的等比数列,所以()22221231141(41)143n n n a a a a ⨯-++++==--. 故选:D. 19.B 【详解】由a 1a 2a 3=1得321,a =∴a 2=1,又a 4=4,故q 2=4,所以a 2+a 4+a 6+…+a 2n =1414n--=413n -. 故选:B20.A 【详解】根据题意,由1114n n n aa +-=, 得12121321111111444n nn a a a a a a --⎛⎫⎛⎫⎛⎫-+-++-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简得()114141144143n n n a a -⨯---==-,因11a =,所以1413n n a -=,即341n n a =-.故选:A. 21.C 【详解】当1n =时,1121a S a b ==+-,当2n ≥时,11121221n n n n n n a S S a b a a b ---==⋅+--⋅⋅--+=从而22a a =,34a a = 因为{}n a 是等比数列所以公比322a q a ==,且212a a a ==,即21ab a +-=,即1a b += 所以444a b ≥==+,当且仅当44a b =,即12a b ==时,等号成立所以44a b +的最小值为4 故选:C 22.A 【详解】解:由等比数列前n 项和的性质知,当数列依次每k 项和不为0时,则依次每k 项和仍成等比数列,所以4S ,84S S -,128S S -,1612S S -,2016S S -成等比数列,且公比为4q .又441232S a a a a =+++=,484567844S S a a a a S q -=+++==,所以42q =,所以16201617181920432S S a a a a S q -=+++==.故选:A 23.D 【详解】设等比数列{}n a 的公比为q . 当1q =时,21122m m S ma S ma ==与29m m S S =矛盾,不合乎题意;当1q ≠时,()()2122111119111m m m m m m m a q S q q q S qa q q---===+=---,则8mq =, 又2511m mma m q a m +==-,即5181m m +=-,解得3m =. 故选:D. 24.D设此人2020年6月1日存入银行的钱为1a 元,2022年6月1日存入银行的钱为2a 元,以此类推,则2025年6月1日存入银行的钱为6a 元,那么此人2025年6月1日从银行取出的钱有()6a a -元.由题意,得1a a =,()21a a r a =++,()()2311a a r a r a =++++,……,()()()()()5432611111a a r a r a r a r a r a =++++++++++,所以()()()256111a a a r r r ⎡⎤-=++++++⎣⎦()()()()()561111111r r a r r r a r ⎡⎤+-+⎣⎦⎡⎤=+-++⋅⎣-=⎦. 故选:D . 25.A 【详解】设数列{}n a 和{}n b 的前n 项和分别为,n n A B ,则()()1211111,222111n n n n b q n n db d d q A a n a n n B q q q --⎛⎫=+=-+==-⎪---⎝⎭(1q ≠), 若1q =,则1n B nb =,则2211()5122n n n n dd S A n B a n n nb =+==+++--,显然没有出现5n ,所以1q ≠,所以21121221511n n b n b q d d a n n q q ⎛⎫-++-+= ⎪--⎝-⎭, 由两边的对应项相等可得110,1,5,1221bd d a q q -====--,解得111,2,5,4a d q b ====, 所以3d q -=-. 故选:A 26.D 【详解】由等比数列的定义,11122n n n a --=⋅=故222124n n n n b a --===由于112144,104n n n n b b b ---===≠ 故{}n b 是以1为首项,4为公比的等比数列a 12+a 22+⋯+a n 2=1(14)41143nn ⋅--=-故选:D 27.C 【详解】由题意可得所有项之和S S +奇偶是所有偶数项之和S 偶的4倍,所以,4S S S +=奇偶偶,故13S S =奇偶设等比数列{}n a 的公比为q ,设该等比数列共有()2k k N *∈项,则()242132113k k S a a a q a a a qS S -=+++=+++==奇奇偶,所以,13q =,因为3212364a a a a ==,可得24a =,因此,2112aa q ==.故选:C. 28.B解:由()112322n n n a a n ---=⋅≥,得()111322424n n n n a a n --=⋅+≥,∴()111112242n n n n a a n --⎛⎫-=-≥ ⎪⎝⎭. 又由()112322n n n a a n ---=⋅≥,得2126a a -=,又1232a a =,∴13a =.所以111122a -=, ∴数列12n n a ⎧⎫-⎨⎬⎩⎭是以12为首项,14为公比的等比数列,则12111112242n n n n a --⎛⎫⎛⎫-=⋅= ⎪ ⎪⎝⎭⎝⎭,∴()12122122n n n nn a --=+=+,∴()()231111212112122222221221212nn nn n n n S --⎛⎫- ⎪-⎛⎫⎝⎭=++⋅⋅⋅+++++⋅⋅⋅+=+=⋅- ⎪-⎝⎭-,∴111112222232n n n n n n na S --==+++⋅-⋅.∴+12111111111122113222332312n n n n T ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=++⋅⋅⋅+=⨯=-< ⎪ ⎪⎝⎭⎝⎭-. ∵对任意*n ∈N ,n T m <,∴m 的最小值为13. 故选:B. 29.B 【详解】在正项数列{}n a 中,12a =,且()2212,n n a a -是直线80x y -=上的点,可得22128n n a a -=,所以12n n a a -=,可得数列{}n a 是首项为2,公比为2的等比数列, 则{}n a 的前n 项和()12122212n n n S +-==--.故选:B 30.A由题意,乌龟每次爬行的距离构成等比数列{}n a , 其中11100,10a q ==,且30.00110n a -==, 所以乌龟爬行的总距离为3611110010(1)101101119000110nn n a a qa q S q q---⨯---====---. 故选:A. 31.B 【详解】由题意,231136112522a q a a q a q ⎧=⎪⎨+=⎪⎩,则3161214a q a q ⎧=⎪⎨=⎪⎩,可得q 3=18, ∴q =12,a 1=16,∴S 5=551116[1()](1)231112a q q--==-. 故选:B 32.D 【详解】由题意,2132116a a a ==,得214a =.令{}n a 的公比为0q >,由4322a a a +=,得2210q q +-=,得12q =,∴112a =,∴12n na =,令()111n n n b a +=-,则()2nn b =--,∴()()()12212212123nn n n S b b b ⎡⎤--⎣⎦⎡⎤=++⋅⋅⋅+==--⎣⎦--, 故选:D. 33.B 【详解】设等比数列{}n a 的公比为q (q ≠1),又2021201920192020a a a a -=-,即201920129290120a a q a q -=+,而20190a ≠,则220q q +-=,解得2q =-,则201911201923a a S +⋅=,2019112020223a a S -⋅=,2019112021423a a S +⋅=,10a ≠,20192019201922111111202020212019(22)(42)(2)99a a a a a a S S S -⋅⋅+⋅+⋅=≠=,A 不正确;20192020202120192019201911111122422223323a a a a S a S a S -⋅+⋅+⋅=+==+,B 正确;20192019201922111111201920212020(2)(42)(22)99a a a a a a S S S +⋅⋅+⋅-⋅=≠=,C 不正确;2019201920191111201920212020112422523323a a a a a a S S S +⋅+⋅+⋅=+=+≠,D 不正确.故选:B 34.D 【详解】根据三角形中位线的性质可知:这五个正三角形的边长形成等比数列{}n a :前5项分别为:2,1,12,14,18, 所以这五个正三角形的面积之和为22222222461111112121248222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=++++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦51414114⎛⎫⨯- ⎪⎝⎭==-,故选:D . 35.BD 【详解】解:设等比数列{}n a 的公比为q ,且0q >因为5432a a a +=,即4321112a q a q a q +=化简得:221q q +=解得:12q =或1q =-(舍去)对A ,因为12q =,所以112n n a a +=,故A 错误;对B ,1111112211112nn n n n a a a a q a a q S a a q q ---====----,故B 正确; 对C,因为1a,即1a =,化简得:2214m n q+-=,又12q =解得6m n +=,当2m =,4n =时,8mn =,故C 错误; 对D ,由C 知,6m n +=,故D 正确. 故选:BD. 36.BD 【详解】当1n =时,211222a S a ===;当2n ≥时,由12n n a S +=可得12n n a S -=, 两式相减得12n n n a a a +=-,所以13n n a a +=,且2123aa =≠, 则数列{}n a 从第二项开始成以3为公比的等比数列,则222323n n n a a --=⋅=⨯,所以21,1,23,2,n n n a n -=⎧=⎨⨯≥⎩则1123n n a -+=⨯,所以A 选项错误,B 选项正确. 由题意可知,数列{}n a 为单调递增数列,设p q <,若在数列{}n a 中能找到三项p a ,q a ,r a ,使得p q r a a a =, 则r q p >>且p ,q ,*r ∈N ,若1p =,则p r a a =,这与数列{}n a 单调递增矛盾, 若2p ≥,则224323292p q p q p q a a --+-=⨯⨯⨯=⨯,232r r a -=⨯,由p q r a a a =,可得42322p q r +--⨯=,由于432b q +-⨯能被3整除,22r -不能被3整除,故C 选项错误;因为21,1,11,2,23n n n a n -=⎧⎪=⎨≥⎪⨯⎩所以11T =;当2n ≥时,122111111113137231111112232323434413n n n n T ---⎛⎫- ⎪⎛⎫⎝⎭=++++⋅⋅⋅+=+=+-<+= ⎪⨯⨯⨯⎝⎭-,故选项D 正确. 故选:BD 37.AB 【详解】由于{}n a 是等比数列,0n S >,所以110a S =>,0q ≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q->-, 等价于1010n q q ⎧->⎨->⎩或1010n q q ⎧-<⎨-<⎩,对于1010n q q ⎧->⎨->⎩,由于n 可能是奇数,也可能是偶数,所以(1,0)(0,1)q ∈-⋃,对于1010n q q ⎧-<⎨-<⎩可得:1q >.综上所述,q 的取值范围是(1,0)(0,)-+∞;因为2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以2311(2)22n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,因为0n S >,且(1,0)(0,)q ∈-⋃+∞,所以,当12q =-或2q 时,0n n T S -=,即n n T S =,故A选项正确.当112q -<<-或2q >时,0n n T S ->,即n n T S >,故B 选项正确,D 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <,故C 选项错误; 故选:AB. 38.BD 【详解】A :由214S a =可得213a a =,所以等比数列{}n a 的公比3q =,所以113n n a a -=⨯. 由2a 是11a +与312a 的等差中项,可得2131212a a a =++,即()2111123132a a a ⨯=++⨯,解得12a =,所以123n n a -=⨯,所以A 不正确; B :()()1121331113nnnn a q S q-⨯-===---,所以B 正确;C :()()111123111331313131n n n n n n n n n a b S S -+++⨯⎛⎫===- ⎪⋅----⎝⎭,所以C 不正确;D :12n n T b b b =++⋅⋅⋅+1223111111111111113333231313131313131n n n ++⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭⎝⎭所以数列{}n T 是递增数列,得11110326n T T ⎛⎫≤<⨯-= ⎪⎝⎭,所以1186n T ≤<,所以D 正确.故选:BD. 39.BC【详解】若数列{}n a 是公差为d 的等差数列,则211(1)()222n n n d d dS na n a n -=+=+-, 当0d =时,若10a ≠,则1n S a n =⋅,n S 是n 的一次函数,不存在符合题意的H ,A 错误; 数列{}n a 是“和有界数列”,当0d ≠时,n S 是n 的二次函数,不存在符合题意的H ,当0d =,10a =时,存在符合题意的H ,B 正确;若数列{}n a 是公比为(1)≠q q 的等比数列,则1(1)1-=-n n a q S q,因q 满足1q <,则||1n q <,即|1|2nq -<,11|||||1|2||11n n a a S q qq=⋅-<--,则存在符合题意的实数H ,即数列{}n a 是“和有界数列”,C 正确;若等比数列{}n a 是“和有界数列”,当1q =-时,若n 为偶数,则0n S =,若n 为奇数,则1n S a =,即1=n S a ,从而存在符合题意的实数H ,D 错误. 故选:BC 40.AD 【详解】因为123nn n a a a +=+,所以112323n nn n a a a a ++==+, 所以111323n n a a +⎛⎫+=+ ⎪⎝⎭,且11340a +=≠, 所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2为公比的等比数列,即11342n na -+=⨯,所以1231n na +=-,可得1123n n a +=-,故选项A 正确,选项B 不正确;因为1231n na +=-单调递增,所以1123n n a +=-单调递减,即{}n a 为递减数列,故选项C 不正确;1n a ⎧⎫⎨⎬⎩⎭的前n 项和()()()()2312132323232223n n n T n ++=-+-+⋅⋅⋅+-=++⋅⋅⋅+- 22122323412nn n n +-=⨯-=---.故选项D 正确;故选:AD . 41.2n -1(n ∈N *) 【详解】a n -a n -1=a 1q n -1=2n -1,即21232112,2,2n n n a a a a a a ---=⎧⎪-=⎪⎨⎪⎪-=⎩ 各式相加得a n -a 1=2+22+…+2n -1=2n -2, 故a n =a 1+2n -2=2n -1(n ∈N *). 又1n =时,11a =符合a n =2n -1 故答案为:2n -1(n ∈N *). 42.12 【详解】由210S 30-(210+1)S 20+S 10=0, 得210(S 30-S 20)=S 20-S 10.∴302010201012S S S S -=-,∵数列{a n }是等比数列∴10302021222330201011121320S S a a a a q S S a a a a -++++==-++++ 故101012q =,解得:12q =± 因为等比数列{a n }为正项数列,所以0q >,故12q = 故答案为:12 43.2- 【分析】由等比数列的通项公式与性质求解即可 【详解】∵等比数列{a n }的公比为12-,则()1351352461352a a a a aa a a a q a a a ++++==-++++.故答案为:2-44.4042. 【详解】由1n n n a a b +=+1n n n b a b +=+ 两式相加可得:()112n n n n a b a b +++=+,故数列{}n n a b +是以2为首项,2为公比的等比数列, 所以2nn n a b +=;两式相乘可得:()()222112n n n n n n n n a b a b a b a b ++⋅=+-+=⋅,故数列{}n n a b ⋅是以1为首项,2为公比的等比数列, 所以12n n n a b -⋅=, 故112n nn nn n n a b c a b a b ⎛⎫+=+==⎪⋅⎝⎭, 故数列{}n c 的前2022项和为2021202124042S =⨯=, 故答案为:4042 45.32 【详解】当q =1时,显然不符合题意;当q ≠1时,3161(1)714(1)6314a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,∴a 8=14×27=32. 故答案为:32 46.(1)12n n b -=(2)[)2,+∞ (1)由已知可得()2111++=+n n a a ,所以()()1lg 12lg 1++=+n n a a ,即12n n b b +=, 又()()11lg 1lg 191b a =+=+=,所以{}n b 是首项为1,公比为2的等比数列,所以12n n b -=.(2)由(1)可知()1lg 12n n n a b -=+=,所以12101n n a -=-,12110n n n c a -=+=.所以021112222122212122101011010100n nn n n S c c c --+++⋅⋅⋅+-⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅==⋅=⋅.lg n n S b λ<即1212n n λ--<,即1122n λ->-, 因为1122n --关于n 单调递增,而11222n --<且无限接近于2, 所以实数λ的取值范围是[)2,+∞. 47.(1)21n a n =-(2)()12326n n T n +=-⨯+(1)设{}n a 的公差为d (0d ≠).由题可知()()1211165636,24,a d a d a a d ⨯⎧+=⎪⎨⎪+=+⎩解得11,2,a d =⎧⎨=⎩所以{}n a 的通项公式为()12121n a n n =+-=-. (2)由(1)可知()212nn b n =-⨯,所以()()231123252232212n nn T n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯…①()()23412123252232212n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯…②①-②得()()23122222212n n n T n +-=+⨯++⋅⋅⋅+--⨯()()()211121222212322612n n n n n -++⨯-=+⨯--⨯=-⨯--,所以()12326n n T n +=-⨯+.48.(1)A =-2,2nn a =.(2)()1122n n T n ++=-(1)根据题意,数列{}n a 的前n 项和S n =2n +1+A , 则a 1=S 1=22+A =4+A ,a 2=S 2-S 1=(23+A )-(22+A )=4, a 3=S 3-S 2=(24+A )-(23+A )=8,又由{}n a 为等比数列,则a 1×a 3=(a 2)2,即(4+A )×8=42=16, 解可得A =-2,则a 1=4-2=2,即数列{}n a 是首项为2,公比为2的等比数列, 则2nn a =, (2)设2n n b log a =,则设222nn n b log a log n ===, 则2nn n a b n ⨯=,故231222322nn T n ⨯⨯⨯⋯⋯⨯=++++,①则有()23121222122n n n T n n ⨯+⨯+⋯⋯+⨯⨯+=-+,② ①-②可得:()231122222122n n n n T n n +++++⋯⋯+⨯-=-=--,变形可得:()1122n n T n ++=-,故()1122n n T n ++=-.49. (1)证明:由题意有22111,(2)n n n n n n S S a S S a n ++-+=+=≥,两式相减得2211n n n n a a a a +++=-,即()22110n n n n a a a a ++--+=,所以()()1110n n n n a a a a ++--+=,因为数列{}n a 为正项数列,所以10n n a a ++>, 所以11(2)n n a a n +-=≥,又因为2212S S a +=,即22122a a a +=,解得22a =,且11a =, 所以211a a -=也满足上式,所以*11()n n a a n N +-=∈,所以数列{}n a 为以1为首项1为公差的等差数列; (2)证明:由(1)有()111n a n n =+-⨯=,又2112na n nb b ++⋅=,所以2112n n n b b ++⋅=,()21122n n n b b n --⋅=≥,两式相除有()2112112422n n n n b n b ++--==≥,又12b =,24b =, 所以135721,,,,,n b b b b b -是以12b =为首项,公比为4的等比数列,24682,,,,,n b b b b b 是以24b =为首项,公比为4的等比数列,所以数列{}n b 是以12b =为首项,公比为2的等比数列,所以2nn b =,所以2n n na nb =,令1212n n na a a Tb b b =++⋅⋅⋅+, 则()2111111212222n n nT n n -=⨯+⨯+⋅⋅⋅+-⨯+⨯, ()2311111112122222n n n T n n +=⨯+⨯+⋅⋅⋅+-⨯+⨯, 两式相减可得231111111111111222112222222212nn n n n n n T n n +++⎛⎫- ⎪+⎝⎭=++++-⨯=-⨯=--,所以222n nn T +=-, 因为n N ∈,所以2222n nn T +=-<,从而得证原不等式成立. 50. (1)解:由11n n a S +=+,得11(2)n n a S n -=+≥, 所以11(2)2(2)n n n n n a a a n a a n ++-=≥=≥,即 又由11a =,得22a =,满足12n n a a +=,所以12n n a ,而122n n n n b b a +-==,所以1211222n n n b b ---=++⋯+,所以()1211212221=2121n n n nn b --⨯-=++++=--…;(2) 证明:因为11+12111()2(21)(21)2121n nn n n n c -+==-----, 所以121223111111111111()=(1)22221212121212121n n n n c c c ++++=-+-+--<-------.。
等比数列前n项和的性质及应用(课件)高二数学(人教A版2019选择性必修第二册)

________.
【思路分析】 (1)运用等比数列的性质 am·an=ak·al=a2t(m,n,k,l,t∈N*) 求
解.
(2)由 S2,S4-S2,S6-S4 成等比数列求解.
【解析】
(1)方法一:由等比中项的性质知 a1a2a3=a32=5,a7a8a9=a38=10,
a4a5a6=a35=( a2a8)3=5 2,故选 A.
的等比数列,则
1 − 1250 + 2 − 1250 + 3 − 1250 + ⋯ + 10 − 1250
−50 × 1 − 1.0810
=
≈ −724.8
1 − 1.08
所以
10 = 1 + 2 + 3 + ⋯ + 10
≈ 1250 × 10 − 724.3 = 11 775.7 ≈ 11 776 .
1
1
1
1
1
1
∴Tn+
-
+…+ n
- +
=
2 -1 22-1 22-1 23-1
2 -1 2n 1-1
1
1
1
-
=1- n+1 .
21-1 2n+1-1
2 -1
二、等比数列前n项和的性质
1 数列{ }是等比数列 ⇔ = − ( ≠ 0)
2 若等比数列{ }的前n项和为 ,则
(1)求从正方形ABCD开始,连续10个正方形
的面积之和;
(2)如果这个作图过程可以一直继续下去,那
么所有这些正方形的面积之和将趋近于多少?
分析:
可以利用数列表示各正方形的面积,根据条件可知,这
是一个等比数列.
等比数列的前n项和公式(第2课时)(教学课件)高二数学(人教A版2019选择性必修第二册)

列,{ }是公比为的等比数列,我们可以用错位相减法求{ }的前项和.
错位相减法求和的注意点:
宋老师数学精品工作室
1.在写“ ”与“ ”的表达式时应特别注意将两式“错项对齐”以便下一步准
确写出“ − ”的表达式.
2.在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于
n
420
1.05
n
n 420.
4
4
1 1.05
2
当n 5时,S5 63.5.
∴从今年起5年内,通过填埋方式处理的垃圾总量约为63.5万吨.
例12 某牧场今年初牛的存栏数为1200,预计以后
每年存栏数的增长率为8%,且在每年年底卖出
100头牛,设牧场从今年起每年年初的计划存栏数
2
∴所有这些正方形的面积之和将趋近于50.
例11 去年某地产生的生活垃圾为20万吨,其中14万吨垃圾以填埋方式
处理,6万吨垃圾以环保方式处理,预计每年生活垃圾的总量递增5%,同时,
通过环保方式处理的垃圾量每年增加1.5万吨. 为了确定处理生活垃圾的预算,
请写出从今年起n年内通过填埋方式处理的垃圾总量的计算公式,并计算从今
室
Sn (a1 b1 ) (a2 b2 ) (an bn ) (a1 a2 an ) (b1 b2 bn )
3 2 27
20 1.05 (1 1.05n ) n(7.5 1.5n 6)
1
1
1
1
1
{
}
= [
−
]
( + 1)( + 2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三昇体育在线平台
[单选]女,21岁,2周前感冒,持续发热37.8~38.5℃,10天前出现情绪不稳定,打人毁物,胡言乱语,自语自笑。曾抽搐一次,大小便失禁。入院体检:T38℃,P100次/分,BP140/90mmHg,下肢肌张力增高,可疑病理征,CSF:潘氏阳性。EEG:弥漫性e波以额颞为主,伴阵发尖波。最不应当忽 [单选]下述基因与肺癌关系密切,除去()A.p16B.p53C.GmycD.K-rasE.HLA [单选,A2型题,A1/A2型题]原发性甲状腺功能减退症最早出现异常的是()A.血TSHB.血总T3C.血游离T3D.血总T4E.血游离T4 [单选]留取脑脊液进行细胞学分析时,一般取()A.第一管B.第二管C.第三管D.第一管、第三管混合E.哪管都行 [名词解释]解决问题的灵活性 [单选]榆叶梅的花期是哪个季节()A.春B.夏C.秋D.冬 [填空题]当温度升高时,溶质在气相中的分子扩散系数(),在液相中的分子扩散系数()。 [单选,A2型题,A1/A2型题]轨道半径最小的壳层是()A.K层B.L层C.M层D.N层E.O层 [单选,A2型题,A1/A2型题]下列哪项叙述是错误的()A.皇甫谧著《针灸甲乙经》B.杨继洲著《针灸大成》C.徐凤著《针灸大全》D.高武著《十四经发挥》E.李时珍著《奇经八脉考》 [单选]适用于皮肤松弛部位腧穴的进针方法是()。A.单手进针法B.舒张进针法C.提捏进针法D.夹持进针法E.指切进针法 [多选]施工现场在电缆线路通过时应用套钢管进行保护的部位()。A.电缆过墙部位B.电缆过道部位C.通过消防箱时D.通过现场配电箱时E.电缆过临建设施时 [单选]从事音像制品零售业务的个体工商户违反本条例的规定,被处以吊销许可证行政处罚的,自许可证被吊销之日起()年内不得从事音像制品零售业务。A.10B.5C.3D.2 [单选,A2型题,A1/A2型题]细菌性食物中毒主要临床表现包括()。A.体温升高至40℃B.神经麻痹C.急性胃肠炎D.全身青紫E.头晕、头痛 [单选]在利率和计息期相同的条件下,以下公式中,正确的是()。A.普通年金终值系数×普通年金现值系数=1B.普通年金终值系数×偿债基金系数=1C.普通年金终值系数×投资回收系数=1D.普通年金终值系数×预付年金现值系数=1 [单选]下列哪项不是产时保健的内容()。A.防滞产B.防出血C.防胎膜早破D.防感染E.防新生儿窒息 [单选]在关系代数表达式的查询优化中,不正确的叙述是()A.尽可能早地执行连接B.尽可能早地执行选择C.尽可能早地执行投影D.把笛卡儿积和随后的选择合并成连接运算 [单选]下列不属于收费系统功能的是()。A.采集收费交易数据B.交通事件的排除C.处理数据、统计、査询、打印功能D.通行券的管理 [问答题]一个尺寸为33.5×48.5的货盘可承载的最大重量为多少?(地板承载限制76磅/平方英尺货盘重量44磅系留装置27磅) [单选]()办案适用于重大、复杂的案件或是跨部门管辖交叉的案件。A、母子式B、联合式C、纵向联合式D、横向联合式 [单选,A2型题,A1/A2型题]术后发生深静脉血栓,其处理措施不正确的是()A.患肢抬高B.禁忌经患肢静脉输液C.勤按摩D.溶栓治疗E.抗凝治疗 [单选,B型题]减压病的病因是()。A.高气压B.低气压C.高气温D.高气湿E.高气流 [单选,A1型题]二尖瓣狭窄时的最主要的临床表现是()。A.二尖瓣面容B.心脏呈梨形C.二尖瓣区收缩期杂音D.心尖区隆隆样舒张中晚期杂音E.肺动脉区第二心音增强 [单选]下面哪一项乳腺病变或结构不伴有后方回声增强()。A.囊肿B.脂肪小叶C.扩张的导管D.纤维腺瘤E.脓肿 [单选,B1型题]溃疡性结肠炎引起的腹泻属于()A.分泌性腹泻B.渗透性腹泻C.渗出性腹泻D.吸收不良性腹泻E.肠蠕动增强性腹泻 [判断题]带检视窗的储液干燥器能发现制冷系统制冷剂量和系统工作是否正常。()A.正确B.错误 [判断题]出口玩具必须逐批实施检验,检验不合格的,不准出口。()A.正确B.错误 [单选,A1型题]固定的习惯性的对环境反应的方式被称为()A.信念B.思维C.想象D.意识E.图式 [单选]在接触传染病后,对未接受主动免疫的易感儿,可给予丙种球蛋白肌注进行被动免疫,一般用于()A.预防结核B.预防麻疹C.预防乙型脑炎D.预防腮腺炎E.预防乙型肝炎 [填空题]从国内大部分液氨泄露事故案例看,()是导致人员伤亡的主要原因,其次是()和()。从事故发生的频次看,()破裂占大多数,其次是()、()泄漏。 [单选]注册建造师有权()。A.超出聘用单位业务范围从事执业活动B.在两个或两个以上单位受聘或执业C.允许信得过的人以自己的名义从事执业活动D.对本人执业活动进行解释和辩解 [单选]下列药物中需要用甑蒸搭气法处理后储存的是()。A.生地B.复盆子C.白术D.桑螵蛸E.白芍 [填空题]真空断路器是对密封在()中的触头进行开断、关合的设备,利用电弧在真空中的扩散作用,电弧在()周期内被熄灭。 [单选,A2型题,A1/A2型题]下列哪项不是郁证的临床特点()A.失眠多梦B.情绪不宁C.烦急易怒D.胁肋胀痛E.四肢厥冷 [多选]涌水段施工采用辅助坑道排水时应符合的要求有()。A.坑道应和正洞平行或接近平行B.坑道应和正洞斜交C.坑道底标高应低于正洞底标高D.坑道应超前正洞10〜20mE.坑道应超前正洞5m左右 [单选,A1型题]下列各项,属于火淫证临床表现的是()。A.皮肤干燥B.干咳少痰C.口渴喜饮D.大便干燥E.小便短黄 [单选,A型题]有关“气性坏疽”的叙述,哪一项是错误的()A.伤口及时处理、扩创B.严密隔离病人C.早期用多价抗毒素血清治疗D.用大剂量青霉素杀死病原菌E.可接种类毒素预防 [单选]既平肝息风,又清肝明目、凉血解毒的药物是()A.天麻B.羚羊角C.蒺藜D.钩藤E.罗布麻叶 [单选]国家税金、耕地占用税和营业税属于()负担。A.隐性B.显性C.间接D.直接 [单选]下列儿科用药中,属于慢惊及久病、气虚者忌服的是()A.小儿咽扁颗粒B.牛黄抱龙丸C.小儿热速清口服液D.琥珀抱龙丸E.小儿肺热咳喘口服液 [单选,A2型题,A1/A2型题]哪项不属于医师在执业活动中应遵循的规范()。A.遵守法律、法规,遵守技术操作规范B.参加专业培训,接收继续医学教育C.关心、爱护、尊重患者,保护患者的隐私D.努力钻研业务,更新知识,提高专业技术水平