238.北师大版八年级数学上册第四章 一次函数周周测6(全章)(周周练)
(北师大版)北京市八年级数学上册第四单元《一次函数》检测题(包含答案解析)

一、选择题1.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( )A .12y y >B .12y y <C .12y y =D .无法比较2.两条直线y ax b =+与y bx a =+在同一直角坐标系中的图象位置可能为( ).A .B .C .D .3.一次函数y=2x-1的图象大致是( )A .B .C .D .4.已知正比例函数()0y kx k =≠的函数值随的增大而增大,则一次函数1y x k =+的图象大致是( )A .B .C .D .5.如图,在平面直角坐标系中,函数2y x =和y x =-的图象分别为直线1l ,2l ,过点()1,0作x 轴的垂线交1l 于点1A ,过点1A 作y 轴的垂线交2l 于点2A ,过点2A 作x 轴的垂线交1l 于点3A ,过点3A 作y 轴的垂线交2l 于点4A ,…,依次进行下去,则点2018A 的坐标为( ).A .()100910092,2 B .()100910092,2-C .()100910102,2--D .()100910102,2-6.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 7.如图①,正方形ABCD 中,点P 以恒定的速度从点A 出发,沿AB →BC 的路径运动,到点C 停止.过点P 作PQ ∥BD ,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y ( cm )与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动3秒时,△APQ 的面积为( )A .6cm 2B .4cm 2C .262cmD .42cm 28.小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家.如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A .小明从家到食堂用了8minB .小明家离食堂0.6km ,食堂离图书馆0.2kmC .小明吃早餐用了30min ,读报用了17minD .小明从图书馆回家的平均速度为0.08km/min9.在平面直角坐标系xOy 中,点P 在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q 在x 轴上,若点R 的坐标为R (2,2),则QP+QR 的最小值为( ) A .17B .5+2C .35D .410.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数. 容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为( )A .22B .22.5C .23D .2511.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是( )A .B .C .D .12.如图,在平面直角坐标系中,已知()0,6A 、()3,0B 、()1,4C 过A 、B 两点作直线,连接OC ,下列结论正确的有( )A .直线AB 解析式:36y x =-+ B .点C 在直线AB 上 C .线段BC 长为17D .:1:3AOC BOC S S ∆∆=二、填空题13.已知直线y =13x +2与函数y =()()1111x x x x ⎧+≥-⎪⎨--<-⎪⎩的 图象交于A ,B 两点(点A 在点B 的左边).(1)点A 的坐标是_____;(2)已知O 是坐标原点,现把两个函数图象水平向右平移m 个单位,点A ,B 平移后的对应点分别为A ′,B ′,连结OA ′,OB ′.当m =_____时,|OA '﹣OB '|取最大值. 14.请你直接写出一个图象经过点(0,-2),且y 随x 的增大而减小的一次函数的解析式_____.15.如图,一个函数的图象由射线BA ,线段BC ,射线CD 组成,其中点(1,2)A -,()1,3B ,(2,1)C ,()6,5D .当y 随x 的增大而增大时,则x 的取值范围是_______.16.若直线3y kx =+与坐标轴所围成的三角形的面积为6,则k 的值为______. 17.己知一次函数23y x =-+,当05x ≤≤时,函数y 的最大值是__________. 18.正方形1111A B C O ,2222A B C C ,3333A B C C ,...按如图的方式放置,点1A ,2A ,3A ,..和点1C ,2C ,3C ,...分别在直线1y x =+和x 轴上则点4B 的坐标是__________.19.如图,正方形A 1B 1C 1O,A 2B 2C 2C 1,A 3B 3C 3C 2, ……,按如图的方式放置.点A 1,A 2,A 3,……和点C 1,C 2,C 3……分别在直线y =x +1和x 轴上,则点A 6的坐标是____________.20.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______.三、解答题21.如图1,对于平面内的点A 、P ,如果将线段PA 绕点P 逆时针旋转90°能得到线段PB ,就称点B 是点A 关于点P 的“旋垂点”.(1)在平面直角坐标系xOy 中,点()3,1S -关于原点O 的“旋垂点”是 ;(2)如图2,90AOB ∠=︒,OC 平分AOB ∠,将直角三角板的直角顶点P 放在OC 上,两直角边分别交OA 、OB 于点M 、N ,试说明:点N 是点M 关于点P 的“旋垂点”;(3)如图3,直线3y kx =+与x 轴交于点P ,与y 轴交于点Q ,点Q 关于点P 的“旋垂点”记为点(),T m n ,若点P 在x 轴上,且03OP <<,点T 的横坐标m 满足21m -<≤-,求k 的取值范围.22.为了积极助力脱贫攻坚工作,如期打赢脱贫攻坚战,某驻村干部带领村民种植草莓,在每年成熟期都会吸引很多人到果园去采摘.现有甲、乙两家果园可供采摘,这两家草莓的品质相同,售价均为每千克30元,是两家果园的采摘方案不同. 甲果园:每人需购买20元的门票一张,采摘的草莓按6折优惠; 乙果园:不需要购买门票,采摘的草莓按售价付款不优惠.设小明和爸爸妈妈三个人采摘的草莓数量为x 千克,在甲、乙果园采摘所需总费用分别为y 甲、y 乙元,其函数图象如图所示.(1)请分别求出y 甲、y 乙与x 之间的函数关系式; (2)请求出图中点A 的坐标并说明点A 表示的实际意义;(3)请根据函数图象,直接写出小明一家选择哪家果园采摘更合算. 23.已知一次函数()1240y mx m m =-+≠.(1)判断点()2,4是否在该一次函数的图象上,并说明理由;(2)若一次函数26y x =-+,当0m >,试比较函数值1y 与2y 的大小;(3)函数1y 随x 的增大而减小,且与y 轴交于点A ,若点A 到坐标原点的距离小于6,点B ,C 的坐标分别为()0,2-,()2,1.求ABC 面积的取值范围.24.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数251xy x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全函数图象:x …… 3-2- 1-0 1 2 3 (251)xy x =+ ……1.5-2.5- 02.51.5……...括号内打“√”,错误的在答题卡上相应的括号内打“×”; ①该函数图象是轴对称图形,它的对称轴是y 轴.②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值2.5;当1x =-时,函数取得最小值 2.5-.③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大. (3)已知函数20.5y x =+的图象如图所示,结合你所画的函数图象,直接写出方程2520.51xx x =++的解(保留一位小数,误差不超过0.2).25.如图,在平面直角坐标系xOy 中,直线3y kx =+与x 轴的负半轴交于点A ,与y 轴交于点B .点C 在第四象限,BC BA ⊥,且BC BA =.(1)点B 的坐标为_________,点C 的横坐标为________;(2)设BC 与x 轴交于点D ,连接AC ,过点C 作CE x ⊥轴于点E .若射线AO 平分BAC ∠,用等式表示线段AD 与CE 的数量关系,并证明.26.已知y 与2x -1成正比例,当x =3时,y =10. (1)求y 与x 之间的函数关系式; (2)当y =-2时,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据一次函数的增减性直接判断即可;或求出1y 、2y 的值,进行比较. 【详解】解:方法一:因为一次函数21y x =-+中的比例系数20-<,所以y 随着x 的增大而减小, ∵-2<1, ∴12y y >;方法二:把x=-2或1分别代入21y x =-+得,15y =、21y =-,∴12y y >; 故选:A . 【点睛】本题考查了一次函数的增减性,解题关键是知道一次函数的增减性由比例系数k 决定,根据k 值可直接判断.2.B解析:B 【分析】由于a 、b 的符号均不确定,故应分四种情况讨论,找出合适的选项. 【详解】解:分四种情况讨论:当a >0,b >0时,直线y ax b =+与y bx a =+的图象均经过一、二、三象限,4个选项均不符合;当a >0,b <0,直线y ax b =+图象经过一、三、四象限,y bx a =+的图象经过第一、二、四象限;选项B 符合此条件;当a <0,b >0,直线y ax b =+图象经过一、二、四象限,y bx a =+的图象经过第一、三、四象限,4个选项均不符合;当a <0,b <0,直线y ax b =+图象经过二、三、四象限,y bx a =+的图象经过第二、三、四象限,4个选项均不符合; 故选:B. 【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y =kx +b 的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.3.B解析:B 【分析】根据一次函数的性质进行判断即可.【详解】 解:∵k=2>0,∴直线y=2x-1经过第一、三象限; ∵b=-1,∴直线y=2x-1与y 轴的交点在x 轴下方, ∴直线y=2x-1经过第一、三、四象限, ∴B 选项符合题意. 故选:B . 【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数的性质是解题的关键.对于b≠0的一次函数,其图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小.4.A解析:A 【分析】先根据正比例函数y=kx (k≠0)的增减性判断k 的符号,然后即可判断一次函数1y x k =+的大致图象. 【详解】解:∵正比例函数y=kx (k≠0)的函数值y 随x 的增大而增大, ∴k >0,∴一次函数1y x k =+的图象经过一、三、二象限. 故选A . 【点睛】此题主要考查一次函数的图像和性质,熟练掌握一次函数的图象和性质是解题关键.5.B解析:B 【分析】根据一次函数图象上点的坐标特征可得出点A 1、A 2、A 3、A 4、A 5、A 6、A 7、A 8等的坐标,根据坐标的变化找出变化规律“A 4n+1(22n ,22n+1),A 4n+2(-22n+1,22n+1),A 4n+3(-22n+1,-22n+2),A 4n+4(22n+2,-22n+2)(n 为自然数)”,依此规律结合2018=504×4+2即可找出点A 2018的坐标. 【详解】解:当x=1时,y=2, ∴点A 1的坐标为(1,2); 当y=-x=2时,x=-2, ∴点A 2的坐标为(-2,2);同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).∵2018=504×4+2,∴点A2018的坐标为(-2504×2+1,2504×2+1),即(-21009,21009).故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.6.B解析:B【分析】根据横坐标分别求出A,B,C的坐标,利用坐标的几何性质求面积即可.【详解】解:当x=-1时y=-2×(-1)+m=2+m,故A点坐标(-1,2+m);当x=0时,y=-2×0+m=m,故一次函数与y轴交点为(0,m);当x=1时,y=-2×1+m=-2+m,故B点坐标(1,-2+m);当x=2时,y=-2×2+m=-4+m,故C点坐标(2,-4+m),则阴影部分面积之和为1112m m22⨯⨯+-+×1×[m-(-2+m)]+12×1×[(-2+m)-(-4+m)]=1+1+1=3,故选B.【点睛】本题考查了一次函数的图像和性质,中等难度,利用坐标表示底和高是解题关键.7.A解析:A【分析】先由图象得出BD的长及点P从点A运动到点B的时间,再由正方形的性质得出其边长,然后由速度恒定及图象可得当点P运动3秒时所处的位置,根据AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,列式计算即可.【详解】解:由图象可知:①当PQ运动到BD时,PQ的值最大,即y最大,故;②点P从点A到点B运动了2秒;∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠DAB=90°.∴AB2+AD2=BD2,即2AB2=(42)2,解得AB=4.∴AB=AD=BC=CD=4cm.∵点P的速度恒定,∴当点P运动3秒时,点P在BC的中点处,如图所示:∵P'Q'∥BD,∴∠CQ'P'=∠CDB=∠CBD=∠CP'Q'.∴CQ'=CP'=12BC=12CD.∴AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,即:4×4-12×4×2-12×2×2-12×4×2=6(cm2).故选:A.【点睛】本题考查了动点问题的函数图象,读懂图象中的信息并对照几何图形来分析是解题的关键.8.C解析:C【分析】根据题意,分析图象,结合简单计算,可以得到答案.【详解】解:根据图象可知:A. 小明从家到食堂用了8min,故A选项说法正确;B. 小明家离食堂0.6km,食堂离图书馆0.8-0.6=0.2(km),故B选项说法正确;C. 小明吃早餐用了25-8=17(min),读报用了58-28=30(min),故C选项错误;D. 小明从图书馆回家的平均速度为0.8÷(68-58=)0.08(km/min),故D选项正确.故选C.【点睛】本题考核知识点:函数的图形. 重点:分析函数图象,得到相关信息,并进行简单运算. 9.A解析:A【解析】试题分析:本题需先根据题意画出图形,再确定出使QP+QR最小时点Q所在的位置,然后求出QP+QR 的值即可.试题当点P 在直线y=-x+3和x=1的交点上时,作P 关于x 轴的对称点P′,连接P′R ,交x 轴于点Q ,此时PQ+QR 最小,连接PR ,∵PR=1,PP′=4∴221417+=∴PQ+QR 17故选A .考点:一次函数综合题.10.B解析:B【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b ,将x=4时,y=20;x=12时,y=30代入求得k 、b 值,可得函数解析式,再将x=6代入求得对应的y 值即可.【详解】设当4≤x≤12时函数的解析式为y=kx+b(k≠0),由图象,将x=4时,y=20;x=12时,y=30代入,得:2043012k b k b =+⎧⎨=+⎩,解得:5415k b ⎧=⎪⎨⎪=⎩, ∴5154y x =+, 当x=6时,56157.51522.54y =⨯+=+=, 故选:B .【点睛】 本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.11.B解析:B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长,故选B .【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键. 12.B解析:B【分析】根据待定系数法,求得直线AB 解析式,即可判断A ,把()1,4C 代入直线AB 解析式,即可判断B ,利用两点间的距离公式,即可求解BC 的长,进而判断C ,求出AC :BC=1:2,进而判断D .【详解】设直线AB 解析式:y=kx+b ,把()0,6A 、()3,0B 代入得603b k b =⎧⎨=+⎩,解得:62b k =⎧⎨=-⎩, ∴直线AB 解析式:26y x =-+,故A 错误;∵当x=1,y=-2×1+6=4,∴()1,4C 在直线AB 上,故B 正确;∵BC==,故C 错误;∵=,∴AC= AB-BC∴AC :BC=1:2,∴:1:2AOC BOC S S ∆∆=,故D 错误.故选B .【点睛】本题主要考查一次函数的待定系数法,两点间的距离公式,直线上点的坐标特征,熟练掌握一次函数的图像和性质,是解题的关键.二、填空题13.();6【分析】(1)分别求解如下两个方程组再根据已知条件即可得答案;(2)当OA′B′三点共线时|OA ﹣OB|取最大值即直线平移后过原点即可平移的距离为m 平移后的直线为把原点坐标代入计算即可【详解解析:(95-44,); 6.【分析】 (1)分别求解如下两个方程组1231y x y x ⎧=+⎪⎨⎪=--⎩,1231y x y x ⎧=+⎪⎨⎪=+⎩,再根据已知条件即可得答案;(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值.即直线123=+y x 平移后过原点即可,平移的距离为m ,平移后的直线为()123y x m =-+把原点坐标代入计算即可. 【详解】 (1)联立1231y x y x ⎧=+⎪⎨⎪=--⎩,解得9=-454x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(95-44,), 联立1231y x y x ⎧=+⎪⎨⎪=+⎩,解得3=252x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(3522,), 又点A 在点B 的左边,所以A (95-44,), 故答案为:(95-44,);(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值. 即直线123=+y x 平移后过原点即可,平移的距离为m , 平移后的直线为()123y x m =-+, 则()10023m =-+, 解得6m =,当m =6时,|OA '﹣OB '|取最大值.故答案为:6.【点睛】本题考查一次函数与分段函数综合问题,会识别分段函数与一次函数的交点在哪一分支上,会利用平移解决最大距离问题是解题关.14.y=-x-2(答案不唯一)【分析】由图象经过点(0-2)则b=-2又y 随x 的增大而减小只要k <0即可【详解】解:设函数y=kx+b (k≠0kb 为常数)∵图象经过点(0-2)∴b=-2又∵y 随x 的增大解析:y=-x-2(答案不唯一).【分析】由图象经过点(0,-2),则b=-2,又y 随x 的增大而减小,只要k <0即可.【详解】解:设函数y=kx+b (k≠0,k ,b 为常数),∵图象经过点(0,-2),∴b=-2,又∵y 随x 的增大而减小,∴k <0,可取k=-1.这样满足条件的函数可以为:y=-x-2.故答案为:y=-x-2.【点睛】本题考查了一次函数y=kx+b (k≠0,k ,b 为常数)的性质.它的图象为一条直线,当k >0,图象经过第一,三象限,y 随x 的增大而增大;当k <0,图象经过第二,四象限,y 随x 的增大而减小;当b >0,图象与y 轴的交点在x 轴的上方;当b=0,图象过坐标原点;当b <0,图象与y 轴的交点在x 轴的下方.15.或【分析】根据函数图象和题目中的条件可以写出各段中函数图象的变化情况从而可以解答本题【详解】由函数图象可得当时y 随x 的增大而增大当时y 随x 的增大而减小当时y 随x 的增大而增大∴当随的增大而增大时则的取 解析:1x ≤或2x ≥【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【详解】由函数图象可得,当1x ≤时,y 随x 的增大而增大,当12x <<时,y 随x 的增大而减小,当2x ≥时,y 随x 的增大而增大,∴当y 随x 的增大而增大时,则x 的取值范围是:1x ≤或2x ≥.故答案为:1x ≤或2x ≥.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答. 16.±【分析】由直线的性质可知当x=0时可知函数与y 轴的交点为(03)设图象与x 轴的交点到原点的距离为a 根据三角形的面积为6求出a 的值从而求出k 的值【详解】当x=0时可知函数与y 轴的交点为(03)设图象解析:±34【分析】 由直线的性质可知,当x=0时,可知函数与y 轴的交点为(0,3),设图象与x 轴的交点到原点的距离为a ,根据三角形的面积为6,求出a 的值,从而求出k 的值.【详解】当x=0时,可知函数与y 轴的交点为(0,3),设图象与x 轴的交点到原点的距离为a , 则12×3a=6, 解得:a=4,则函数与x 轴的交点为(4,0)或(-4,0),把(4,0)代入y=kx+3得,4k+3=0,k=-34, 把(-4,0)代入y=kx+3得,-4k+3=0,k=34, 故答案为±34. 【点睛】 本题考查了一次函数图象上点的坐标特征,直线与坐标轴的交点问题,解答时要注意进行分类讨论.17.3【分析】根据知道一次函数是单调递减函数即y 随x 的增大而减小代入计算即可得到答案【详解】解:∵∴一次函数是单调递减函数即y 随x 的增大而减小∴当时在时y 取得最大值即:当时y 的最大值为:故答案为:3【点 解析:3【分析】根据20-<知道一次函数23y x =-+是单调递减函数,即y 随x 的增大而减小,代入计算即可得到答案.【详解】解:∵20-<,∴一次函数23y x =-+是单调递减函数,即y 随x 的增大而减小,∴当05x ≤≤时,在0x =时y 取得最大值,即:当05x ≤≤时,y 的最大值为:max 0(2)33y =⨯-+=,故答案为:3.【点睛】本题主要考查了一次函数的性质,一次函数y kx b =+,当k 0<时y 随x 的增大而减小,0k >时,y 随x 的增大而增大;掌握一次函数的性质是解题的关键.18.【分析】根据一次函数图象上的点的坐标特征可得出点的坐标结合正方形的性质可得到点的坐标同理可得的坐标即可得到结果;【详解】当∴点的坐标为∵四边形为正方形∴点的坐标为当时∴的坐标为∵四边形为正方形∴点的 解析:()15,8【分析】根据一次函数图象上的点的坐标特征可得出点1A 的坐标,结合正方形的性质可得到点1B 的坐标,同理可得2B 、3B 、4B 的坐标,即可得到结果;【详解】当0x =,11y x =+=,∴点1A 的坐标为0,1,∵四边形111A B C O 为正方形,∴点1B 的坐标为()1,1,当1x =时,12y x =+=,∴2A 的坐标为1,2,∵四边形2221A B C C 为正方形,∴点2B 的坐标为()3,2,同理可得:点3A 的坐标为()3,4,点3B 的坐标为()7,4,点4A 的坐标为()7,8,点4B 的坐标为()15,8;故答案是()15,8.【点睛】本题考查了一次函数图象上点的坐标特征以及正方形的性质.通过求出B1、B2、B3 的纵坐标得出规律是解决问题的关键.19.(3132)【解析】分析:由题意结合图形可知从左至右的第1个正方形的边长是1第2个正方形的边长是2第3个正方形的边长是4……第n 个正方形的边长是由此可得点An 的纵坐标是根据点An 在直线y=x+1上可解析:(31,32)【解析】分析:由题意结合图形可知,从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n 个正方形的边长是12n -,由此可得点A n 的纵坐标是12n -,根据点A n 在直线y=x+1上可得点A n 的横坐标为121n --,由此即可求得A 6的坐标了. 详解:由题意结合图形可知:从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n 个正方形的边长是12n -,∵点A n 的纵坐标是第n 个正方形的边长,∴点A n 的纵坐标为12n -,又∵点A n 在直线y=x+1上,∴点A n 的横坐标为121n --,∴点A 6的横坐标为:612131--=,点A 6的纵坐标为:61232-=,即点A 6的坐标为(31,32).故答案为:(31,32).点睛:读懂题意,“弄清第n 个正方形的边长是12n -,点A n 的纵坐标与第n 个正方形边长间的关系”是解答本题的关键.20.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x 的图象经过第一三象限可得:k-1>0则k >1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.三、解答题21.(1)()1,3--;(2)见解析;(3)332k -<≤-. 【分析】(1)由“旋垂点”的定义可直接进行求解;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,根据题意易得PD=PE ,∠PMD=∠PNE ,进而可证△PDM ≌△PEN ,然后可得PM=PN ,则问题可求解;(3)过点T 作TA ⊥x 轴,根据题意易证△APT ≌△OQP ,则有AP=OQ ,进而可得AP=OQ=3,3OP k =-,然后可得33m k=--,最后问题可求解. 【详解】解:(1)如图,过点S 作SA ⊥x 轴,过点P 作PB ⊥x 轴,由“旋垂点”可得:△SAO ≌△PBO ,∴OB=OA ,PB=SA ,∵点()3,1S -,∴PB=1,OB=3,∴点()1,3P --,故答案为()1,3--;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,如图所示:∵OC 平分∠AOB ,∴PD=PE ,∵∠AOB=∠MPN=90°,∴由四边形内角和定理得:∠PMO+∠PNO=180°, ∵∠PMO+∠PMD=180°,∴∠PMD=∠PNE ,∵∠PDM=∠PEN=90°,∴△PDM ≌△PEN (AAS ),∴PM=PN ,∴点N 是点M 关于点P 的“旋垂点”; (3)过点T 作TA ⊥x 轴,如图所示:∴PQ=PT ,∵∠APT+∠APQ=90°,∠APQ+∠PQO=90°, ∴∠APT=∠OQP ,∴△APT ≌△OQP (AAS ),∴AP=OQ ,令y=0时,则03kx =+,解得:3x k =-, 当x=0时,则3y =,∴AP=OQ=3,3OP k =-, ∴OA=AP-OP=33k +, ∴33m k=--, ∵21m -<≤-,0k <, ∴3231k -<--≤-, 解得:332k -<≤-. 【点睛】本题主要考查一次函数与几何综合及一元一次不等式组的解法,熟练掌握一次函数与几何综合及一元一次不等式组的解法是解题的关键.22.(1)1860y x =+甲,30y x =乙;(2)点A 的坐标为(5,150),点A 的实际意义是当采摘量为5千克时,到两家果园所需总费用相同均为150元;(3)当采摘量大于5千克时,到甲果园更划算;当采摘量等于5千克时,两家果园所需总费用相同,所以到甲乙果园哪家都可以;当采摘量小于5千克时,到家乙果园更划算.【分析】(1)根据函数图象和图象中的数据可以解答本题;(2)根据(1)的结论,联立方程组解答即可;(3)根据(1)的结论列不等式或方程组解答即可;【详解】解:(1)根据题意得300.62031860y x x =⨯⨯+⨯=+甲,设2y k x =乙,∵点(10,30)在y 乙上根据题意得,210300k =,解得230k =,∴30y x =乙;(2)联立186030y x y x=+⎧⎨=⎩,解得5150x y =⎧⎨=⎩, ∴点A 的坐标为(5,150),点A 的实际意义是当采摘量为5千克时,到两家果园所需总费用相同均为150元;(3)由(2)知点A 的坐标为(5)150,,观察图象知: 当采摘量大于5千克时,到甲果园更划算;当采摘量等于5千克时,两家果园所需总费用相同,所以到甲乙果园哪家都可以; 当采摘量小于5千克时,到家乙果园更划算.【点睛】本意考查了一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答;23.(1)点()2,4在该一次函数的图象上,理由见解析;(2)当2x <时,12y y <,当2x >时,12y y >,当2x =时,12y y =;(3)68ABC S △<<【分析】(1)根据一次函数的性质,将点()2,4代入到函数解析式,判断等式两边是否相等即可; (2)根据(1)中结果,即可求得两个函数的交点,根据函数的增减性即可判断函数值1y 与2y 的大小;(3)根据函数的增减性以及若点A 到坐标原点的距离小于6,确定m 的取值范围,再用m 表示出ABC 的面积,即可求得ABC 面积的取值范围.【详解】(1)将点()2,4代入到函数解析式,得,4224m m =-+,即44=,∴点()2,4在该一次函数的图象上;(2)两函数联立得,1224264y mx m x y x y =-+=⎧⎧⇒⎨⎨=-+=⎩⎩, ∵一次函数 26y x =-+,10k =-<,∴该函数单调递减,∵一次函数124y mx m =-+,0k >,∴该函数单调递增,∴当2x <时,12y y <,当2x >时,12y y >,当2x =时,12y y =;(3)设A(0,y ),∵ABC 由A(0,y ),B ()0,2-,C ()2,1三点构成,又∵函数1y 随x 的增大而减小,∴0m <,当0x =时,246y m =-+<,解得,1m >-,∴10m -<<,∴A(0,24m -+),∵B ()0,2-,C ()2,1, ∴24226AB m m =-++=-+,∴12262ABC S AB m =⨯=-+△, ∵10m -<<, ∴6268m -+<<,∴68ABC S △<<.【点睛】本题考查了一次函数的性质、三角形的面积、绝对值的性质、平面直角坐标系中的点等知识,解题的关键是熟练运用以上知识点找到等量关系进行求解.24.(1)2-,2,图见解析;(2)①×,②√,③√;(3)11x =,20.2x =,3 1.5x =-.【分析】 (1)将2,2x x =-=直接代入函数解析式求解即可;(2)利用函数图像的性质,逐项判断即可;(3)结合图像,当11x =时等式成立,再确定此时2x 、3x 的范围,在范围内取值求解即可.【详解】解:(1)将2x =-代入251x y x =+中,则2y =- 将2x =代入251x y x =+中,则2y = 补全函数图形如图所示:(2)由函数图像可知函数为中心对称图形,故①错误;由图像可知当1x <-或1x >时,y 随x 增大而减小,当11x -<<时,y 随x 增大而增大,故当1x =和1x =-时取最大最小值,故②③正确(3)结合图像可知,当11x =时,2x 的值在01-之间、3x 的值在2-到1-之间 ∴代入0.2得2520.51x x x >++ 代入0.1得2520.51x x x <++代入0.15得2520.51x x x <++ 故2x 取0.2; 代入 1.5-得2520.51x x x >++ 代入 1.4-得2520.51x x x <++ 代入 1.45-得2520.51x x x <++ 故3x 取 1.5-所以11x =,20.2x =,3 1.5x =-.【点睛】本题考查了函数的图像和性质,会用描点法画出函数图像,利用数形结合的思想得到函数的性质是解题关键.25.(1)(0,3),3;(2)AD=2CE ,证明见解析.【分析】(1)过点C 作CD ⊥y 轴于点D ,可利用AAS 证明△ABO ≌△BCD ,则可得OB=CD ,根据直线3y kx =+与y 轴交于点B ,可得点B 的坐标,并由此得出OB=CD=3,即可求得点C 的横坐标;(2)延长CE ,与AB 相交于点F ,可利用ASA 证得△ABD ≌△CBF ,可得 AD=CF ,根据三角形内角和定理由CE ⊥x 轴及AO 平分∠BAC 得出∠AFE=∠ACE ,则由等角对等边得AC=AF ,再根据“三线合一”推出CF=2CE,则结论AD =2CE 得证.【详解】(1)解:如图,过点C 作CD ⊥y 轴于点D ,∴∠CDB=90°,∠C+∠CBD=90°.∵BC ⊥BA ,∴∠ABC=90°,∠ABO+∠CBD=90°.∴∠C=∠ABO ,∠CDB=∠ABC .在△ABO 和△BCD 中,CDB ABC C ABO AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△BCD (AAS ).∴OB=CD .∵直线3y kx =+与y 轴交于点B ,∴B(0,3).∴OB=3.∴点C 的横坐标为3.故答案为:(0,3),3.(2)AD=2CE .证明:如图,延长CE ,并与AB 相交于点F ,∵BC ⊥BA ,∴∠ABD=∠CBF=90°.∴∠BAD+∠BDA=90°,∠ECD+∠EDC=90°.∵∠BDA=∠EDC ,∴∠BAD=∠ECD .在△ABD 和△CBF 中,ABD CBF AB CB BAD BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABD ≌△CBF (ASA ).∴AD=CF .∵AO 平分∠BAC .∴∠EAF=∠EAC .∵CE ⊥x 轴,∴∠AEF=∠AEC=90°.∴∠EAF+∠AFE=∠EAC+∠ACE=90°.∴∠AFE=∠ACE .∴AC=AF.∴△ACF是等腰三角形.∴CE=FE.∴CF=2CE.∴AD=2CE.【点睛】此题考查了一次函数的图象与性质、全等三角形的判定与性质及等腰三角形的判定与性质等知识,掌握全等三角形与等腰三角形的判定与性质是解题的关键.26.(1)y=4x-2;(2)x=0.【分析】(1)根据正比例函数定义设设y=k(2x-1),将数值代入计算即可;(2)将y=-2代入(1)的函数解析式求解.【详解】解:(1)设y=k(2x-1),当x=3时,y=10,∴5k=10,解得k=2,∴y与x之间的函数关系式是y=4x-2;(2)当y=-2时4x-2=-2,解得x=0.【点睛】此题考查正比例函数的定义,求函数解析式,已知函数值求自变量,正确理解正比例函数的定义是解题的关键.。
北师大版初二数学上册第四章一次函数综合测评

北师大版初二数学上册第四章一次函数综合测评一、选择题〔每题3分,共30分〕 1.以下图象不能表示y 是x 的函数的是〔 〕A B C D2.以下函数:①y =πx ;②y =2x -1;③y =x 1;④y =2-1-3x ;⑤y =x 2-1.其中是一次函数的有〔 〕A. 4个B. 3个C. 2个D. 1个3.一次函数3y kx =+经过点〔2,1〕,那么一次函数的图象经过的象限是〔 〕A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限4.一次函数y=〔k ﹣2〕x+k 2﹣4的图象经过原点,那么k 的值为〔 〕A .2B .﹣2C .2或﹣2D .35.如图1,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,那么这个一次函数的表达式为〔 〕A. y =2x +3B. y =x -3C. y =2x -3D. y =-x +3图1 图2 图36.在函数y =kx 〔k >0〕的图象上有三点A 1〔x 1,y 1〕,A 2〔x 2,y 2〕,A 3〔x 3,y 3〕,x 1<x 2<0<x 3,那么以下各式中正确的选项是〔 〕A. y 1<y 2<0<y 3B. y 3<0<y 1<y 2C. y 2<y 1<y 3<0D. y 3<y 1<0<y 27.两个一次函数y 1=mx+n 和y 2=nx+m ,它们在同一坐标系中的图象能够是〔 〕A B C D8.如图2,一次函数y=kx+b 的图象经过〔2,0〕和〔0,4〕两点,那么以下说法正确的选项是〔 〕A. y 随x 的增大而增大B. 当x <2时,y <4C. k =-2D. 点〔5,-5〕在直线y kx b =+上9.如图3,点A ,B ,C 在一次函数y=-2x+m 的图象上,它们的横坐标依次是-1,1,2,区分过这些点作x 轴与y 轴的垂线,那么图中阴影局部的面积之和是〔 〕A. 3〔m -1〕B. 23〔m -2〕 C. 1 D. 3 10.甲、乙两车从A 地动身,沿同一路途驶向B 地. 甲车先动身匀速驶向B 地,40 min 后,乙车动身,匀速行驶一段时间后,在途中的货站装货耗时半小时. 由于满载货物,为了行驶平安,速度增加了50km/h ,结果与甲车同时抵达B 地. 甲乙两车距A 地的路程y 〔km 〕与乙车行驶时间x 〔h 〕之间的函数图象如图4所示,那么以下说法:①a =4.5;②甲的速度是60 km/h ;③乙动身80 min 追上甲;④乙刚抵达货站时,甲距B 地180 km.其中正确的有〔 〕A. 1个B. 2个C. 3个D. 4个二、填空题〔每题4分,共32分〕11. 轮子每分钟转60转,那么轮子的转数n 与时间t 〔分〕之间的关系式为_______,自变量是_______,n 是t 的_______函数.12.一次函数y =kx +b 的图象如图5所示,那么当y <5时,x 的取值范围是________.图5 图6 图7 图4 y /km x /h13. 直线y =mx -n 经过第一、三、四象限,试写出一组m ,n 的值________.14.为了增强公民的节水看法,某市制定了如下用水收费规范:每户每月用水不超越10 t 时,水价为每吨3.0元;超越10 t 时,超越的局部按每吨4.5元收费. 现有某户居民5月份用水x t 〔x >10〕,应交水费y 元,那么y 与x 的关系式为___________.15.三点〔0,5〕,〔t ,2〕,〔-4,9〕在同一条直线上,那么t =_____.16.直线AB 经过点A 〔0,5〕,B 〔2,0〕,假定平移该直线,使其经过坐标原点,那么需将其向下平移_____个单位长度.17.如图6,射线OA ,BA 区分表示甲、乙两人骑自行车运动进程的一次函数图象,图中s ,t 区分表示行驶距离和时间,那么这两人骑自行车的速度相差_____km/h.18.图7所示放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为a 的等边三角形,点A 在x 轴上,点O ,B 1,B 2,B 3,…都在同一条直线上,那么点A 2021的坐标是_____________.三、解答题〔共58分〕19.〔8分〕正比例函数y =kx ,试回答以下效果:〔1〕假定函数图象经过第二、四象限,那么k 的取值范围是什么?〔2〕点〔1,-2〕在它的图象上,求它的函数表达式.20.〔12分〕作出函数y =21x -3的图象并回答: 〔1〕当x 的值添加时,y 的值如何变化?〔2〕图象与x 轴,y 轴的交点坐标区分是多少?〔3〕求出该图象与x 轴,y 轴所围成的三角形的面积.21.〔12分〕水龙头封锁不紧会形成滴水,小明用可以显示水量的容器做图8-①所示的实验,并依据实验数据绘制出图8-②所示的容器内盛水量W 〔L 〕与滴水时间t 〔h 〕的函数关系图象,请结合图象解答以下效果:〔1〕容器内原有水多少?〔2〕求W 与t 之间的函数关系式,并计算在这种滴水形状下一天的滴水量是多少升?图8 图922. 〔12分〕请你用学习〝一次函数〞时积聚的阅历和方法处置以下效果:〔1〕在平面直角坐标系中,画出函数y =|x|的图象;x… -3 -2 -1 0 1 2 3 … y … …②描点、连线,在图10所示的平面直角坐标系中画出y =|x|的图象;〔2〕结合所画函数图象,写出y =|x|的两条不同类型的性质.23. 〔14分〕直线y =-2x +6与x 轴交于点A ,与y 轴交于点B.〔1〕点A 的坐标为______,点B 的坐标为______;〔2〕求出△AOB 的面积;① ② W/Lt /h图10〔3〕直线AB 上能否存在一点C 〔C 与B 不重合〕,使△AOC 的面积等于△AOB 的面积? 假定存在,求出点C 的坐标;假定不存在,请说明理由.附加题〔15分,不计入总分〕24.依据题意,解答效果:〔1〕如图11-①,直线y =2x +4与x 轴,y 轴区分交于A ,B 两点,求线段AB 的长;〔2〕如图11-②,类比〔1〕的解题进程,请你经过结构直角三角形的方法,求出点M 〔3,4〕与点N 〔-2,-1〕之间的距离;〔3〕在〔2〕的基础上,假定有一点D 在x 轴上运动,当满足DM =DN 时,央求出此时点D 的坐标. 第四章 一次函数综合测评参考答案一、1. A 2. B 3. B 4. B 5. D 6. A 7. B 8. C 9. D10. D 提示:由于线段DE 代表乙车在途中的货站装货耗时半小时,所以a =4+0.5=4.5〔h 〕,即①成立;40 min =32h ,甲车的速度为460÷〔7+32〕=60〔km/h 〕,即②成立;设乙车刚动身时的速度为x km/h ,那么装满货后的速度为〔x -50〕km/h ,依据题意可知4x +〔7-4.5〕〔x -50〕=460,解得x =90. 乙车发车时,甲车行驶的路程为60×32=40〔km 〕,乙车追上甲车的时间为40÷〔90-60〕=34〔h 〕=80 min ,即③成立;乙车刚抵达货站时,甲车行驶的时间为〔4+32〕h ,此时甲车离B 地的距离为460-60×〔4+32〕=180〔km 〕,即④成立.二、11. n =60t t 正比例 12. x >0 13. 答案不独一,如2,314. y =4.5x -15 15. 3 16. 5 17. 0.818.〔1009a ,10083a 〕 提示:如图1,过点B 1向x 轴作垂线B 1C ,垂足为C. 由题意可得A 〔a ,0〕,AO ∥A 1B 1,∠B 1OC =60°,那么OC=21a ,CB 1=23a.所以B 1的坐标为〔21a ,23a 〕.所以点B 1,B 2,B 3,…都在直线y =3x 上.由于B 1〔21a ,23a 〕,所以A 1〔23a ,23a 〕,A 2〔2a ,3a 〕,…,A n 〔22n a ,23n a 〕.故A 2021〔1009a ,10083a 〕. 三、19. 解:〔1〕由于函数图象经过第二、四象限,所以k <0.〔2〕当x =1,y =-2时,那么k =-2,该函数表达式为y =-2x.20. 解:作函数图象略.〔1〕y 随x 的增大而增大.〔2〕图象与x 轴的交点坐标为〔6,0〕,与y 轴的交点坐标为〔0,-3〕.图1 ① ②图11〔3〕围成的三角形的面积=21×6×3=9. 21. 解:〔1〕由图象可知,容器内原有水0.3 L.〔2〕由图象可知W 与t 之间的函数图象经过点〔0,0.3〕,故设函数关系式为W =kt +0.3. 又由于函数图象经过点〔1.5,0.9〕,代入函数关系式,得1.5k +0.3=0.9,解得k =0.4.故W 与t 之间的函数关系式为W =0.4t +0.3.当t =24时,W =0.4×24+0.3=9.9〔L 〕,9.9-0.3=9.6〔L 〕,即在这种滴水形状下一天的滴水量为9.6 L.22. 解:〔1〕①填表如下:x… -3 -2 -1 0 1 2 3 … y … 3 2 1 0 1 2 3 …②画函数图象如图2所示: 〔2〕①增减性:x <0时,y 随x 的增大而减小;x >0时,y 随x 的增大而增大.②对称性:图象关于y 轴对称.③函数的最小值为0.23. 解:〔1〕当y =0时,-2x +6=0,解得x =3,那么A 点的坐标为〔3,0〕;当x =0时,y =-2x +6=6,那么B 点的坐标为〔0,6〕.〔2〕S △AOB =21×3×6=9. 〔3〕存在.理由如下:设点C 的坐标为〔t ,-2t +6〕. 由于△AOC 的面积等于△AOB 的面积,所以21×3×|-2t +6|=9,解得t 1=6,t 2=0〔与点B 重合,舍去〕.所以点C 的坐标为〔6,-6〕.24. 解:〔1〕令x =0,得y =4,即A 点的坐标为〔0,4〕. 令y =0,得x =-2,即B 点的坐标为〔-2,0〕. 在Rt △AOB 中,依据勾股定理,得AB =22AO BO +=()524222=+-.〔2〕如图3,区分过点M ,N 作x 轴,y 轴的垂线,两线交于点C.依据题意,得MC =4-〔-1〕=5,NC =3-〔-2〕=5.在Rt △MCN 中,依据勾股定理,得MN =25552222=+=+NC MC .〔3〕如图4,设点D 坐标为〔m ,0〕,衔接ND ,MD.过点N 作NG ⊥x 轴于G ,过点M 作MH ⊥x 轴于H ,那么GD =|m -〔-2〕|,GN =1,DN 2=GN 2+GD 2=12+〔m +2〕2.MH =4,DH =|3-m|,DM 2=MH 2+DH 2=42+〔3-m 〕2.由于DM =DN ,所以DM 2=DN 2,即12+〔m +2〕2=42+〔3-m 〕2,整理,得10m =20,解得m =2.故点D 的坐标为〔2,0〕.图2 图4 M 〔3,4〕N 〔-2,-1〕 D O GH y x图3 M 〔3,4〕 N 〔-2,-1〕 OC yx。
2022-2023学年北师大版数学八年级上册第四章 一次函数单元测试卷含答案

单元测试(4)——一次函数(满分120分)一、选择题(共30分,每小题3分)1.对于圆的周长公式C =2πR ,下列说法正确的是( ) A.π、R 是变量,2是常量 B.R 是变量,π、C 是常量 C.C 是变量,π、R 是常量 D.C 、R 是变量,2、π是常量2.已知函数y =-x -1,则函数的图象大致是( )3.下列函数中,y 随x 增大而减小的是( ) A.y =x -1 B.y =-2x +3 C.y =2x -1D.y =12x4.若点A (-3,1y ),B (2,2y ),C (3,3y )是函数y =-x +2图象上的点,则( )A.123y y y >>B.123y y y <<C.132y y y <<D.231y y y <<5.已知直线y =2x 与直线y =-x +b 的交点为(1,a ),则a 与b 的值为( ) A.a =-2,b =3B.a =2,b =-3C.a =2,b =3D.a =-2,b =-36.直线y =2x -1与直线y =x +1的交点如图所示,则方程组211x y y x -=⎧⎨-=⎩的解是( )A.1xy=⎧⎨=⎩B.1xy=⎧⎨=-⎩C.23xy=⎧⎨=⎩D.32xy=⎧⎨=⎩7.对于函数y=12-x+3,下列说法错误的是()A.图象经过点(2,2)B.y随着x的增大而减小C.图象与y轴的交点是(6,0)D.图象与坐标轴围成的三角形面积是98.某通讯公司就上宽带网推出A,B,C三种月收费方式这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱9.根据如图所示的程序计算函数y的值,若输人的x值是4或7时,输出的y值相等,则b等于()A.9B.-9C.7D.-710.如图,边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()二、填空题(共28分,每小题4分)11.已知正比例函数的图象经过点(1,3),则其关系式是12.若将直线y=2x-1向上平移3个单位,则所得直线的表达式为13.若直线y=2x+c的图象过点(1,-2),则直线y=2x+c的图象不经过第象限.14.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为15.将正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1A2在直线y=x+1上,点C1C2在x轴上,已知点A1的坐标是(0,1),则点B2的坐标为16.如图,已知一次函数y=-x+1的图象与x轴、y轴分别交于点A、点B,点M在坐标轴上,并且使以点A、B、M为顶点的三角形是等腰三角形,则这样的点M有_个.17.如图是一辆汽车油箱里剩油量y(L)与行驶时间x(h)的图象,则油箱中剩油量y(L)与行驶时间x(h)之间的函数关系是,自变量x的取值范围为三、解答题(一)(共18分,每小题6分)18.在弹性限度内,弹簧伸长的长度与所挂物体的质量成正比,某,弹簧不挂物体时长15cm;当所挂物体质量为3kg时,弹簧长16.8cm.(1)求弹簧长度y(cm)与所挂物体质量x(kg)之间的函数表达式;(2)表达式中一次项系数和常数项的实际意义分别是什么?19.已知一次函数y=2x-4,完成下列问题:(1)求此函数图象与x轴的交点坐标;(2)画出此函数的图象:观察图象,当0≤x≤4时,y的取值范围是(3)平移一次函数y=2x-4的图象后经过点(-3,1),求平移后的函数表达式20.为绿化校园,某校计划购进A、B两种树苗,共25棵.已知A种.树苗每棵90元,B种树苗每棵70元,设购买B种树苗x棵,购买两种树苗所需费用为y 元(1)y与x的函数关系式为(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.四、解答题(二)(共24分,每小题8分)21.为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.22.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),交y轴于点C.(1)求直线AB的解析式;(2)求△OAC的面积23.甲、乙两人同时从相距90km的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(km)与x (h)之间的函数关系图像(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后2h和甲相遇,求乙从A地到B地用了多长时间?五、解答题(三)(共20分,每小题10分)24.甲,乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元现两家商店搞促销活动.甲店:每买一副球拍赠一盒乒乓球;乙店:按定价的9折优惠某班级需购球拍4副,乒乓球若干盒(不少于4盒).(元),在乙(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),分别写出在两家商店购买的付款数与乒乓球盒数x 店购买的付款数为y乙之间的函数关系式;(2)就乒乓球盒数讨论去哪家商店购买合算?(3)若该班级需购买球拍4副,乒乓球12盒,请你帮助设计出最经济合算的购买方案.25.如图,直线y=kx+6与x轴y轴分别交于点E,F,点E的坐标为(-8,0),点A的坐标为(-6,0).(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OP A的面积S与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,探究:当点P运动到什么位置时,△OP A的面积为27,并说明理由;8(4)问在x轴上是否存在点Q,使得△EFQ为等腰三角形?若存在,请直接写出符合条件的点Q的坐标.单元测试(4)——一次函数1.D2.D3.B4.A5.C6.C7.C8.D9.B 10.A 11.y =3x 12.y =2x +2 13.二14.x >115.(3,2)16.717.y =-5x +400≤x ≤8.18.解,(1)设弹簧总长度y (cm)与所挂物体质量x (k g)之间符合一次函数关系为y =kx +15.由题意得16.8=3k +15,解得k =0.6,所以该一次函数解析式为y =0.6x +15., (2)一次项系数的实际意义是挂1k g 的物体弹簧伸长0.6cm , 常数项的实际意义是不挂物体时的弹簧长度. 19.解,(1)令y =0,解得x =2, ∴直线与x 轴交点坐标为(2,0);(2)画图如下,由图可知,y 的取值范围为-4≤y ≤4.(3)设平移后的函数表达式为y =2x +b ,将(-3,1)代人,解得b =7. ∴平移后的函数解析式为y =2x +7. 20.解,(1)由题意可得 y =90(25-x )+70x =-20x +2250, 故答案为y =-20x +2250. (2)由题意可得x <25-x 解得x <12.5, ∵y =-20x +2250,∴当x =12时,y 取得最小值,此时y =2010, 25-x =13,答,购买B 种树苗的数量少于A 种树苗的数量,最省费用的方案是购买A 种树苗13棵,B 种树苗12棵,所需费用为2010元. 21.解,(1)当0≤x ≤0.5时,y =0,当x ≥0.5时,设手机支付金额y (元)与骑行时间x (时)的函数关系式是y =kx +b ,则0.501,10.50.5k b k k b b +==⎧⎧⎨⎨⨯+==-⎩⎩解得 即当x ≥0.5时,手机支付金额y (元)与骑行时间x (时)的函数关系式是y =x -0.5,由上可得,手机支付金额y (元)与骑行时间x (时)的函数关系式是0(00.5)0.5(0.5)x y x x ≤≤⎧=⎨-≥⎩; (2)设会员卡支付对应的函数解析式为y =ax , 则0.75=a ×1,得a =0.75,即会员卡支付对应的函数解析式为y =0.75x , 令0.75x =x -0.5,得x =2,∴当0<x <2时,李老师选择手机支付比较合算, 当x =2时,李老师选择两种支付一样, 当x >2时,李老师选择会员卡支付比较合算. 22.解,(1)设直线AB 的解析式是y =kx +b ,根据题意得,4260k b k b +=⎧⎨+=⎩解得,16k b =-⎧⎨=⎩则直线的解析式是y =-x +6;(2)在y =-x +6中,令x =0,解得,y =6, 164122OAC S ∆=⨯⨯=23.解,(1)设甲从B 地返回A 地的过程中,y 与x 之间的函数关系式为y =kx +6(k ≠0),根据题意得,30601.590180k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解得 故y =-60x +180(1.5≤x ≤3); (2)当x =2时,y =-60×2+180=60.∴骑摩托车的速度为60÷2=30(千米/时), ∴乙从A 地到B 地用时为90÷30=3(小时). 24.解,(1)由题意得y 甲=20×4+5×(x -4)=60+5x (x ≥4), y 乙=20×4×0.9+5x ×0.9=4.5x +72(x ≥4);(2)当y 甲=y 乙时,即60+5x =4.5x +72,解得x =24,到两店价格一样; 当y 甲>y 乙时,即60+5x >4.5x +72,解得x >24,到乙店合算; 当y 甲<y 乙时,即60+5x <4.5x +72,解得4≤x <24,到甲店合算. (3)因为需要购买4副球拍和12盒乒乓球,而12<24, ①到甲店购买,需5x +60=5×12+60=120元;②采用两种购买方式,在甲店购买4副球拍,需要4x20=80元,同时可获赠4盒乒乓球;在乙店购买8盒乒乓球,需要8×5×90%=36元共需80+36=116元,显然116<120.∴最佳购买方案是,在甲店购买4副球拍,获赠4盒乒乓球;再在乙店购买8盒乒乓球.25.解,(1)∵直线y=kx+6经过点E(-8,0),∴-8k+6=0,解得k=3 4(2)∵点P(x,y)是第二象限内的直线上的一个动点,∴y=34x+6∵点A的坐标为(-6,0),∴O A=6,∴12S OA y=1366 249184xx=⨯⨯+=+()即918(80)4S x x=+-<<;(3)把278S=代入9184S x=+得2791884x=+解得132 x=-∴当点P(132-,98)时,△OP A的面积为278(4)∵E(-8,0),F(0,6) ∴OE=8,OF=6,EF=10,综上,符合条件的Q的坐标为(-18,0)或(2,0)或(8,0)或(74-,0)。
(北师大版)北京市八年级数学上册第四单元《一次函数》检测(包含答案解析)

一、选择题1.一个物体自由下落时,它所经过的距离h (米)和时间t (秒)之间的关系我们可以用5h t =来估算.假设物体从超过10米的高度自由下落,小明要计算这个物体每经过1米所需要的时间,则经过第5个1米时所需要的时间最接近( ) A .1秒B .0.4秒C .0.2秒D .0.1秒 2.若函数y =kx (k ≠0)的值随自变量的增大而增大,则函数y =x +2k 的图象大致是( ) A . B . C . D . 3.若一次函数y =kx +b 的图象经过第一、二、四象限,则一次函数y =bx +k 的图象大致是( )A .B .C .D . 4.如图,在矩形ABCD 中,一动点P 从点A 出发,沿着A→B→C→D 的方向匀速运动,最后到达点D ,则点P 在匀速运动过程中,△APD 的面积y 随时间x 变化的图象大致是( )A .B .C .D . 5.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为(1,1)A ,(3,1)B ,(2,2)C ,当直线3y kx =+与ABC ∆有交点时,k 的取值范围是( )A .2132k -≤≤- B .223k -≤≤- C .223k -<<- D .122k -≤≤- 6.对于函数31y x =-+,下列结论正确的是( ) A .它的图象必经过点(1,3)B .它的图象经过第一、三、四象限C .当x >0时,y <0D .y 的值随x 值的增大而减小 7.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( )A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+6 8.已知正方形轨道ABCD 的边长为2,m 小明站在正方形轨道AD 边的中点M 处,操控一辆无人驾驶小汽车,小汽车沿着折线A B C D ---以每秒1m 的速度向点D (终点)移动,如果将小汽车到小明的距离设为,S 将小汽车运动的时间设为,t 那么()S m 与()t s 之间关系的图象大致是( )A .B .C .D . 9.如图1,在矩形ABCD 中,动点E 从点B 出发,沿BADC 方向运动至点C 处停止,设点E 运动的路程为x ,△BCE 的面积为y ,如果y 关于x 的函数图象如图2所示,则矩形ABCD 的周长为( )A .20B .21C .14D .710.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D .11.已知正比例函数y=kx ,且y 随x 的增大而减少,则直线y=2x+k 的图象是( ) A . B . C . D . 12.在平面直角坐标系xOy 中,直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( )A .y=x+2B .22y x =+C .y=4x-12D .33y x =-二、填空题13.如图,点A (6,0),B (0,2),点P 在直线y =-x -1上,且∠ABP =45°,则点P 的坐标为_____________14.一条笔直的公路上依次有A ,B ,C 三地,甲,乙两人同时从A 地出发,甲先使用共享单车,经过B 地到达停车点C 地后再步行返回B 地,此时直接步行的乙也恰好到达B 地.已知两人步行速度相同,两人离起点A 的距离y (米)关于时间x (分)的函数关系如图,则m =______.15.已知一次函数y =kx +3(k >0)的图象与两坐标轴围成的三角形的面积为3,则一次函数的表达式为_____.16.函数y =2x +3的图像向下平移6个单位得到的函数为_____.17.小明家距离学校8千米,小明骑车上学途中,自行车出现故障,恰好路边有便民服务点,几分钟后车修好了,他增加速度骑车到校.我们根据小明的这段经历画了一幅图象(如图),该图描绘了小明行的路程s 与他所用的时间t 之间的关系.如果自行车未出现故障,小明一直用修车前的速度行驶,那么他比实际情况早到________分钟?(结果精确到0.1)18.请你直接写出一个图象经过点(0,-2),且y 随x 的增大而减小的一次函数的解析式_____.19.若直线3y kx =+与坐标轴所围成的三角形的面积为6,则k 的值为______. 20.若函数()224y m x m =-+-是关于x 的正比例函数,则常数m 的值是__________. 三、解答题21.如图1,在平面直角坐标系中,直线y =x ﹣12分别交x 轴、y 轴于A 、B 两点,过点A 作x 轴的垂线交直线y =34x 于点C ,D 点是线段AB 上一点,连接OD ,以OD 为直角边作等腰直角三角形ODE ,使∠ODE =90°,且E 点在线段AC 上,过D 点作x 轴的平行线交y 轴于G ,设D 点的纵坐标为m .(1)点C 的坐标为 ;(2)用含m 的代数式表示E 点的坐标,并求出m 的取值范围;(3)如图2,连接BE 交DG 于点F ,若EF =DF ﹣2m ,求m 的值.22.元旦期间,小明和父母一起开车到距家200千米的景点旅游出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内剩余油量y (升)是行驶路程x (千米)的一次函数,求y 与x 的函数关系式;写出自变量的取值范围.(2)当油箱中剩余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽乍报警前回到家?请说明理由.23.已知12y y y =+,其中1y 与3x -成正比例,2y 与21x +成正比例,且当0x =时,4y =-,当1x =-时,6y =-.(1)求y 与x 的函数关系式;(2)判断点()1,4A -是否在此函数图像上,并说明理由.24.小刚家与学校相距1000米,某天小刚上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小刚与家的距离y (米)关于时间x (分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小刚走了多远才返回家拿书?(2)求线段AB 所在直线的函数关系式;(3)求小刚走到8分钟时,小刚与家的距离.25.甲,乙两地相距300千米.一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA 表示货车离甲地的距离y (千米)与时间x (小时)之间的函数关系;折线BCD 表示轿车离甲地的距离y (千米)与时间x (时)之间的函数关系,线段CD对应的函数解析式是y=110x﹣195(2.5≤x≤4.5),在轿车行进过程中,轿车行驶多少时间,两车相距15千米?26.如图1,一次函数y=34x+3的图象与x 轴相交于点A,与y 轴相交于点 B,点 D是直线AB 上的一个动点, CD⊥x 轴于点C,点 P是射线 CD 上的一个动点.(1)求点A,B的坐标;(2)如图2,当点D在第一象限,且AB =BD时,将△ACP沿着 AP翻折,当点C的对应点C'落在直线AB上时,求点P的坐标.(3)点D在运动过程中,当△OCD的面积是△OAD面积的2倍时,请直接写出点D的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D根据第5个1米时所需要的时间等于经过5米所用时间与经过4米所用时间的差计算即可.【详解】解:经过第5个1米的时间差为:541t t -==, 0.80.9≈,10.90.1∴-=,故选D .【点睛】本题考查了无理数的估算,熟练掌握估算的基本策略和基本方法是解题的关键. 2.A解析:A【分析】先根据正比例函数的性质判断出k 的符号,再根据一次函数的图象和性质选出对应的答案.【详解】解:∵函数y kx =的值随自变量的增大而增大∴0k >,∵ 在函数2y x k =+中,10>,20k >∴函数2y x k =+的图象经过一、二、三象限.故选:A .【点睛】本题主要考查一次函数的图象和性质,牢记比例系数k 和常数b 的值所对应的一次函数图象是解题的关键.3.D解析:D【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=bx+k 图象在坐标平面内的位置关系,从而求解.【详解】解:∵一次函数y=kx+b 过一、二、四象限,∴则函数值y 随x 的增大而减小,图象与y 轴的正半轴相交∴k <0,b >0,∴一次函数y =bx +k 的图象y 随x 的增大而增大,与y 轴负半轴相交,∴一次函数y =bx +k 的图象经过一三四象限.故选:D .本题考查了一次函数的性质.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >0,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <0,一次函数y=kx+b 图象过原点⇔b=0. 4.D解析:D【分析】分点P 在AB 段运动、点P 在BC 段运动、点P 在CD 段运动三种情况,分别求函数表达式即可.【详解】当点P 在AB 段运动时,△APD 的面积y 随时间x 的增大而增大;当点P 在BC 段运动时,△APD 的面积y 保持不变;故排除A 、C 选项;当点P 在CD 段运动时,△APD 的面积y 随时间x 的增大而减小;故选:D .【点睛】本题考查的是动点图象问题,涉及到三角形面积计算等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.5.B解析:B【分析】把A 点和B 点坐标分别代入y=kx+3中求出对应的的值,即可求得直线y=kx+3与△ABC 有交点时k 的临界值,然后再确定k 的取值范围.【详解】解:把A (1,1)代入y=kx+3得1=k+3,解得k=-2把B (3,1)代入y=kx+3得1=3k+3,解得:k=23- 所以当直线y=kx+3与△ABC 有交点时,k 的取值范围是223k -≤≤-. 故答案为B .【点睛】 本题考查了一次函数与系数的关系,将A 、B 点坐标代入解析式确定k 的边界点是解答本题的关键.6.D解析:D【分析】根据一次函数图象上点的坐标特征对A 进行判断;根据一次函数的性质对B 、D 进行判断;利用x >0时,函数图象在y 轴的左侧,y <1,则可对C 进行判断.【详解】A 、当1x =时,312y x =-+=-,则点(1,3)不在函数31y x =-+的图象上,所以A 选项错误;B 、30k =-<,10b =>,函数图象经过第一、二、四象限,所以B 选项错误;C 、当x >0时,y <1,所以C 选项错误;D 、y 随x 的增大而减小,所以D 选项正确.故选:D .【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.由于y=kx+b 与y 轴交于(0,b ),当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.7.D解析:D【分析】设直线AB 的解析式为y=kx+b ,根据平移时k 的值不变可得k=-2,把(1,4)代入即可求出b 的值,即可得答案.【详解】设直线AB 的解析式为y=kx+b ,∵将直线y=-2x 向上平移后得到直线AB ,∴k=-2,∵直线AB 经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB 的解析式为:y=-2x+6,故选:D .【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k 值不变. 8.D解析:D【分析】求出小汽车在AB 、BC 上运动时,MQ 的表达式即可求解.【详解】解:设小汽车所在的点为点Q ,①当点Q 在AB 上运动时,AQ=t ,则MQ 2=MA 2+AQ 2=1+t 2,即MQ 2为开口向上的抛物线,则MQ 为曲线,②当点Q 在BC 上运动时,同理可得:MQ 2=22+(1-t+2)2=4+(3-t )2,MQ 为曲线;故选:D .【点睛】本题考查了动点图象问题,解题的关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.9.C解析:C【分析】分点E在AB段运动、点E在AD段运动时两种情况,分别求解即可.【详解】解:当点E在AB段运动时,y=12BC×BE=12BC•x,为一次函数,由图2知,AB=3,当点E在AD上运动时,y=12×AB×BC,为常数,由图2知,AD=4,故矩形的周长为7×2=14,故选C.【点睛】本题考查的是动点图象问题,涉及到一次函数、图形面积计算等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.10.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.11.D解析:D【详解】∵正比例函数y kx =,且y 随x 的增大而减少,0k .∴< 在直线2y x k =+中,200k ><,,∴函数图象经过一、三、四象限.故选D .12.D解析:D【分析】先确定A ,B 的坐标,从而确定交点横坐标的取值范围,后逐一计算选项直线与x 轴的交点,判断横坐标是否在求得的范围内,在范围内,满足条件,否则,不满足.【详解】∵直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,∴A (-1,0),B (2,0),∴-1≤x≤2,∵y=x+2交x 轴于点A (-2,0),且x= -2不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵2y =+交x 轴于点A (0),且x= 不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵y=4x-12交x 轴于点A (3,0),且x= 3不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵3y =-交x 轴于点A 0),且是-1≤x≤2的解,∴与x 轴的交点在线段AB 上,故选D .【点睛】本题考查了一次函数与x 轴的交点问题,利用交点的横坐标建立不等式解集,验证新直线与x 轴交点的横坐标是否是解集的解是解题的关键.二、填空题13.(3-4)【分析】将线段BA 绕点B 顺时针旋转90°得到BD 求出点D 坐标证得AD 的中点K 求出其坐标求出直线BK 的解析式直线BK 与直线的交点即为点P 利用方程组即可求得P 坐标【详解】设直线AB 解析式为y =解析:(3,-4)【分析】将线段BA 绕点B 顺时针旋转90°得到BD ,求出点D 坐标,证得AD 的中点K ,求出其坐标,求出直线BK 的解析式,直线BK 与直线1y x =--的交点即为点P ,利用方程组即可求得P 坐标.【详解】设直线AB 解析式为y =kx +b ,将点A (6,0),B (0,2)代入上式得:0=62k b b +⎧⎨=⎩解得:1=32k b ⎧-⎪⎨⎪=⎩,∴直线AB 解析式:123y x =-+ 将线段BA 绕点B 顺时针旋转90°得到BD ,设直线BD 解析式为3y x n =+∵点B (0,2)在直线BD 上,∴直线BD 解析式为32y x =+,∵BD =AB==设点D (x ,32x +BD ==整理得:24x =解得:12x =-或22x =(舍去)∴2324y =-⨯+=-则点D (﹣2,﹣4)设AD 与BP 交于点K ,∵AB =BD ,∠ABP =45°,∠ABD =90°∴BK 是△ABD 的中线,又A (6,0)∴K 是AD 的中点,坐标为(2,﹣2)直线BK 与直线1y x =--的交点即为点P ,设直线BK 的解析式为y kx b =+,将点B 和点K 代入得:222b k b =⎧⎨-=+⎩解得:22b k =⎧⎨=-⎩∴直线BK 的解析式为22y x =-+,由221y x y x =-+⎧⎨=--⎩解得:34x y =⎧⎨=-⎩∴P点坐标为(3,-4)故答案为:(3,-4).【点睛】本题考查一次函数图象上点的坐标的特征,等腰三角形的性质,待定系数法求解析式,解题的关键是学会作辅助线解决问题.14.10【分析】根据图象得BC两地相距1600-1000=600米AB两地相距1000米设两人步行速度为每分钟a米列出方程组解方程组即可求解【详解】解:由图象得BC两地相距1600-1000=600米A解析:10【分析】根据图象得B、C两地相距1600-1000=600米,A、B两地相距1000米,设两人步行速度为每分钟a米,列出方程组,解方程组即可求解.【详解】解:由图象得B、C两地相距1600-1000=600米,A、B两地相距1000米,设两人步行速度为每分钟a米,则()46001000a mam-=⎧⎪⎨=⎪⎩,解得10010am=⎧⎨=⎩.故答案为:10【点睛】本题考查了一次函数的图象的应用,认真理解题意,结合函数图象得到BC,AB的距离,并设出未知数,列出方程组是解题关键.15.【分析】根据三角形的面积公式求出OB把点B的坐标代入一次函数解析式计算得到答案【详解】解:一次函数y=kx+3与y轴的交点A的坐标为(03)则OA=3如图由题意得×OB×3=3解得OB=2则点B的坐解析:332y x=+【分析】根据三角形的面积公式求出OB,把点B的坐标代入一次函数解析式计算,得到答案.【详解】解:一次函数y=kx+3与y轴的交点A的坐标为(0,3),则OA=3,如图,由题意得,12×OB×3=3,解得,OB=2,则点B的坐标为(﹣2,0),∴﹣2k+3=0,解得,k=32,∴一次函数的表达式为y=32x+3,故答案为:y=32x+3.【点睛】本题考查的是一次函数图象上点的坐标特征、三角形的面积计算,掌握一次函数图象与坐标轴的交点的求法是解题的关键.16.y=2x-3【分析】根据上加下减从而得解【详解】解:函数y=2x+3的图象向下平移6个单位得到的函数为y=2x+3-6即y=2x-3故答案是:y=2x-3【点睛】本题主要考查了求一次函数解析式及图象解析:y=2x-3.【分析】根据“上加下减”,从而得解.【详解】解:函数y=2x+3的图象向下平移6个单位得到的函数为y=2x+3-6,即y=2x-3.故答案是:y=2x-3.【点睛】本题主要考查了求一次函数解析式及图象的变换,属于基础题.17.3【分析】先求出修车前的速度再求未出故障需要的时间然后与实际情况相减即可求解【详解】解:根据一次函数图象可知:修车前的速度:(千米/分钟)若未出故障小明一直用修车前的速度行驶需用时间:(分钟)∴≈3解析:3【分析】先求出修车前的速度,再求未出故障需要的时间,然后与实际情况相减即可求解.【详解】解:根据一次函数图象可知:修车前的速度:3310=10÷(千米/分钟)若未出故障,小明一直用修车前的速度行驶需用时间:3808=103÷(分钟)∴80103033-=≈3.3(分钟)故答案为:3.3.【点睛】本题主要考查函数图象的应用,涉及到路程、时间、速度三者之间的关系,解题的关键是正确解读题意,从图象中获取必要信息.18.y=-x-2(答案不唯一)【分析】由图象经过点(0-2)则b=-2又y随x的增大而减小只要k<0即可【详解】解:设函数y=kx+b(k≠0kb为常数)∵图象经过点(0-2)∴b=-2又∵y随x的增大解析:y=-x-2(答案不唯一).【分析】由图象经过点(0,-2),则b=-2,又y随x的增大而减小,只要k<0即可.【详解】解:设函数y=kx+b(k≠0,k,b为常数),∵图象经过点(0,-2),∴b=-2,又∵y随x的增大而减小,∴k<0,可取k=-1.这样满足条件的函数可以为:y=-x-2.故答案为:y=-x-2.【点睛】本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.19.±【分析】由直线的性质可知当x=0时可知函数与y轴的交点为(03)设图象与x轴的交点到原点的距离为a根据三角形的面积为6求出a的值从而求出k 的值【详解】当x=0时可知函数与y轴的交点为(03)设图象解析:±3 4【分析】由直线的性质可知,当x=0时,可知函数与y轴的交点为(0,3),设图象与x轴的交点到原点的距离为a,根据三角形的面积为6,求出a的值,从而求出k的值.【详解】当x=0时,可知函数与y轴的交点为(0,3),设图象与x轴的交点到原点的距离为a,则12×3a=6,解得:a=4,则函数与x轴的交点为(4,0)或(-4,0),把(4,0)代入y=kx+3得,4k+3=0,k=-34,把(-4,0)代入y=kx+3得,-4k+3=0,k=34,故答案为±3 4 .【点睛】本题考查了一次函数图象上点的坐标特征,直线与坐标轴的交点问题,解答时要注意进行分类讨论.20.【分析】根据正比例函数的定义列出式子计算求出参数m的值【详解】解:∵函数y=(m-2)x+4-m2是关于x的正比例函数∴4-m2=0且m-2≠0解得m=-2或m=2(不符合题意舍去)故答案为:m=-解析:2m=-【分析】根据正比例函数的定义列出式子计算求出参数m的值.【详解】解:∵函数y=(m-2)x+4-m2是关于x的正比例函数,∴4-m2=0且m-2≠0,解得,m=-2或m=2(不符合题意,舍去).故答案为:m=-2.【点睛】本题考查的是正比例函数的定义,一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.三、解答题21.(1)(12,9);(2)E(12,2m+12),﹣6≤m≤﹣32;(3)m=﹣4【分析】(1)先由直线y=x﹣12求得A、B的坐标,再将A的横坐标即为C的横坐标代入直线y=34x即可求得C的坐标;(2)用m表示点D坐标为(m+12,m),根据等腰直角三角形的性质和全等三角形的判定证明△OGD≌△DPE,则有EP=DG,再根据点E在线段AC上可求得点E坐标和m的取值范围;(3)根据点B、E坐标求出直线BE的表达式,根据题意可求得点F的坐标为(6,m),根据EF=DF﹣2m和两点间距离公式即可求得m的值.【详解】解:(1)∵直线y=x﹣12分别交x轴、y轴于A、B两点,∴令x=0,则y=0﹣12=﹣12,∴B(0,﹣12),令y=0,由0=x﹣12得:x=12,∴A(12,0),∵过点A作x轴的垂线交直线y=34x于点C,∴将x=12代入y=34x中,得:y=9,∴点C坐标为(12,9),故答案为:(12,9);(2)∵D点是线段AB上一点且D点的纵坐标为m,∴D(m+12,m),延长EA交直线GD于P,如图1,由题意知,∠EPD=∠DGO=90°,P(12,m),∵△ODE是等腰直角三角形且∠ODE=90°,∴OD=DE,∠ODG=∠DEP,∴△OGD≌△DPE(AAS),∴EP=GD=m+12,∴EA=EP﹣AP=2m+12,∵E点在线段AC上,∴E(12,2m+12),由0≤2m+12≤9得:﹣6≤m≤﹣32,即点E坐标为(12,2m+12),m的取值范围为﹣6≤m≤﹣32;(3)设直线BE 的表达式为y=kx+b ,将B(0,﹣12)、E (12,2m+12)代入,得:1212212b k b m =-⎧⎨+=+⎩,解得:12612m k b +⎧=⎪⎨⎪=-⎩, ∴设直线BE 的表达式为y=126m +x ﹣12, 由题意,将y=m 代入y=126m +x ﹣12中,解得:x=6, ∴F(6,m),∵EF=DF ﹣2m , ∴22(126)(212)m m -++-(m+12﹣6)﹣2m ,解得:m=﹣4.【点睛】本题考查了一次函数的综合,涉及求直线与坐标轴的交点、求两直线的交点坐标、坐标与图形、待定系数法求直线表达式、两点间距离公式、全等三角形的判定与性质、解二元一次方程组、解一元一次方程等知识,解答的关键是仔细审题,寻找知识点的关联点,利用数形结合等思想方法进行探究、推理和计算.22.(1)y=−110x+45(0≤x≤450);(2)能,见解析 【分析】(1)先设函数式为:y=kx+b ,然后利用两对数值可求出函数的解析式,(2)把x=400代入函数解析式可得到y ,有y 的值就能确定是否能回到家.【详解】解:(1)设y=kx+b ,当x=0时,y=45,当x=150时,y=30, ∴4515030b k b =⎧⎨+=⎩,解得11045k b ⎧=-⎪⎨⎪=⎩,∴y=−110x+45(0≤x≤450); (2)当x=400时,y=−110×400+45=5>3, ∴他们能在汽车报警前回到家.【点睛】本题考查一次函数的实际应用,用待定系数法求一次函数的解析式,再通过其解析式计算说明问题.由一次函数的解析式的求法,找到两点列方程组即可解决.23.(1)24y x x =-+-;(2)在,理由见解析.【分析】(1)根据正比例函数的定义,设()113y k x =-;()2221k x y =+,代入当0x =和1x =-时的值,即可求出和1k 和2k ,即可得到函数解析式;(2)将1x =代入函数解析式中,得出y 的值,如果等于-4,则A 点在函数图像上,如果不等于-4则不在函数图像上.【详解】(1)由题意得:设()113y k x =-;()2221k x y =+ ∴()()12213y x k x k =-++, 由当0x =时,4y =-,当1x =-时,6y =-,得,()()()()12124030161311k k k k ⎧-=-++⎪⎨-=--++⎪⎩,解得1211k k =⎧⎨=-⎩ ∴y 与x 的函数关系式为24y x x =-+-;(2)当1x =时,21144y =-+-=-∴A 点在函数图像上.【点睛】本考查了正比例函数的定义,待定系数法求函数解析式,关键是掌握待定系数法. 24.(1)小刚走了200米后返回家拿书;(2)y =200x−1000;(3)小刚走到8分钟时,小刚离家600米.【分析】(1)直接观察图象即可得到结果;(2)运用待定系数法设出直线AB 的方程,根据图象过点A ,B ,列出关于k 和b 的方程组,求解即可得到答案;(3)根据(2)中的结果可知AB 的函数解析式,将x =8代入求出y 的值,即可得到答案.【详解】解:(1)根据题中所给的分段函数的图象可得,小刚走了200米后返回家拿书; (2)设直线AB 的解析式为:y =kx +b ,∵图象过点A (5,0),B (10,1000),∴50101000k b k b +=⎧⎨+=⎩,解得:2001000k b =⎧⎨=-⎩, ∴直线AB 的解析式为:y =200x−1000;(3)由(2)可知,直线AB 的解析式为y =200x−1000,(5≤x≤10)∴当x =8时,y =200×8−1000=600,答:小刚走到8分钟时,小刚离家600米.【点睛】本题主要考查函数模型的选择与应用,函数解析式的求解及常用方法,考查了分段函数的理解.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.属于中档题.25.轿车行驶2.1小时或2.7小时时,两车相距15千米【分析】根据函数图象中的数据,可以求得轿车和货车的速度,先计算出当轿车行驶到点C 时两车的距离,然后再计算CD 段,两车相距15千米时的情况,从而可以解答本题,注意问题是轿车行进过程中,何时两车相距15千米.【详解】解:由图象可得,当1.5≤x≤2.5时,轿车的速度为80÷(2.5﹣1.5)=80(千米/时),货车的速度为:300÷5=60(千米/时),当轿车行驶到点C 时,两车相距60×2.5﹣80=150﹣80=70(千米),∴两车相距15千米时,在CD 段,由图象可得,OA 段对应的函数解析式为y =60x ,则|60x ﹣(110x ﹣195)|=15,解得x =3.6或x =4.2,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),即在轿车行进过程中,轿车行驶2.1小时或2.7小时时,两车相距15千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.26.(1)(4,0)A -,(0,3)B ;(2)84,3P ⎛⎫ ⎪⎝⎭;(3)(8,9)D 或(8,3)D --【分析】(1)把0x =代入334y x =+,把0y =代入334y x =+,即可求解; (2)先求出点D 的坐标,再设CP m =,利用勾股定理列出方程,即可求解; (3)由△OCD 的面积是△OAD 面积的2倍,得OC=2OA ,进而即可求解.【详解】解:(1)将0x =代入334y x =+,得3y =, ∴(0,3)B .将0y =代入334y x =+,得4x =-, ∴(4,0)A -; (2)当点D 在第一象限,且AB BD =时,∴(4,6)D ,∴8AC =,6CD =.由翻折可知,8AC AC '==,='CP C P .在Rt ACD 中,由勾股定理得,10AD =,∴1082C D '=-=.设CP m =,则6DP m =-,C P m '=.在Rt C DP '中,由勾股定理得,2222(6)m m +=-,解得,83m =, ∴84,3P ⎛⎫ ⎪⎝⎭; (3)当△OCD 的面积是△OAD 面积的2倍时,则OC=2OA ,∴OC=8,∴点D 的横坐标为±8,∴(8,9)D 或(8,3)D --.【点睛】本题主要考查一次函数与平面几何的综合,熟练掌握一次函数图像上点的坐标特征以及勾股定理是解题的关键.。
北师大版八年级上册数学第四章 一次函数含答案

北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/hB.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h2、某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A. B. C.y=-2x D.y=2x3、出生1﹣6个月的婴儿生长发育得非常快,他们的体重y(g)与月龄x(月)间的关系可以用y=a+700x来表示,其中a是婴儿出生时的体重,一个婴儿出生时的体重是3000g,这个婴儿第4个月的体重为( )A.6000gB.5800gC.5000gD.5100g4、如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是()A. B. C. D.5、一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20 LB.25 LC.27LD.30 L6、已知一次函数的图象,如图所示,当时,的取值范围是()A. B. C. D.7、正比例函数如图所示,则这个函数的解析式为( )A.y=xB.y=-xC.y=-2xD.y=8、弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5y/cm 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm9、如图,点、、、是正方形四条边(不含端点)上的点,设线段的长为,四边形的面积为,则能够反映与之间函数关系的图象大致是()A. B. C. D.10、已知点都在直线上,则大小关系是()A. B. C. D.不能比较11、若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0B.1C.±1D.-112、如图表示某加工厂今年前5个月每月生产某种产品的产量c(件)与时间t (月)之间的关系,则对这种产品来说,该厂()A.1月至3月每月产量逐月增加,4、5两月产量逐月减小B.1月至3月每月产量逐月增加,4、5两月产量与3月持平C.1月至3月每月产量逐月增加,4、5两月产量均停止生产 D.1月至3月每月产量不变, 4、5两月均停止生产13、某种出租车收费标准是:起步价7元(即行驶距离不超过3千米需付7元车费),超过了3千米以后,每增加1千米加收2.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费19元,设此人从甲地到乙地经过的路程为x千米,则x的最大值是A.11B.8C.7D.514、如图,韩老师早晨出门散步时离家的距离(y)与时间(x)之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()A. B. C. D.15、直线y=﹣x+1不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、已知是一次函数,则________.17、如图,在平面直角坐标系中,函数和的图象分别为直线,过上的点A1(1,)作x轴的垂线交于点A2,过点A2作y轴的垂线交于点A3,过点A3作x轴的垂线交于点A4…,一次进行下去,则点的横坐标为________ .18、某水果店五一期间开展促销活动,卖出苹果数量x(kg)与售价y(kg/元)的关系如下表:数量x(kg) 1 2 3 4 5 …售价y(kg/元)9 15 21 27 33 …则售价y(kg/元)与数量x(kg)之间的关系式是________.19、正方形,,,…按如图所示的方式放置.点,,,…和点,,,…分别在直线和轴上,则点的坐标是________.20、在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M 的坐标为________ .(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16<y′≤16,则实数a的取值范围是________ .21、若函数y=2x+b(b为常数)的图象经过点A(0,﹣2),则b=________.22、如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴正半轴于点C,则点C坐标为________.23、已知一次函数的图象经过点和,那么的值为________.24、直线y=-3x+m经过点A(-1,a)、B(4,b),则a________b(填“>”或“<”)25、已知一次函数的图像经过点,则________.三、解答题(共5题,共计25分)26、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.27、将若干张长为20里面、宽为10里面的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求2张白纸贴合后的总长度;那么3张白纸粘合后的总长度呢?4张呢?(2)设a张白纸粘合后的总长度为b里面,写出b与a之间的关系式,并求当a=100时,b的值.28、某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.29、某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4kg,乙种材料1kg;生产一件B产品需甲、乙两种材料各3kg.经测算,购买甲、乙两种材料各1kg共需资金60元;购买甲种材料2kg 和乙种材料3kg共需资金155元.(1)甲、乙两种材料每kg分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.30、某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12kg,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2kg,但耗水量是甲车间的一半.已知A产品售价为30元/kg,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价﹣购买原材料成本﹣水费)参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、B5、B6、7、B8、B9、A10、C11、B12、B13、B14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。
北师大版八年级数学上册第四章《一次函数》检测卷(附答案)

北师大版八年级数学上册第四章《一次函数》检测卷(附答案)(时间:120分,满分:90分钟)一、选择题(每题3分,共30分)1.下列图象中,表示y 是x 的函数的个数有( )(第1题)A .1个B .2个C .3个D .4个 2.直线y =x +3与y 轴的交点坐标是( )A .(0,3)B .(0,1)C .(1,0)D .(3,0)3.如图,直线O A 是某正比例函数的图象,下列各点在该函数图象上的是( ) A .(-4,16) B .(3,6) C .(-1,-1) D .(4,6)(第3题) (第4题) (第6题)4.如图,与直线AB 对应的函数表达式是( )A .y =32x +3B .y =-32x +3C .y =-23x +3D .y =23x +35.关于一次函数y =12x -3的图象,下列说法正确的是( )A .图象经过第一、二、三象限B .图象经过第一、三、四象限C .图象经过第一、二、四象限D .图象经过第二、三、四象限6.一次函数y 1=kx +b 与y 2=x +a 的图象如图所示,则下列结论中:①k<0;②a>0;③b>0;④当x =3时,y 1=y 2.正确的有( )A .0个B .1个C .2个D .3个7.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm )与所挂物体质量x(kg )间有如下关系(其中x≤12).下列说法不正确的是( )A. x 与y 都是变量,且x 是自变量 B .弹簧不挂物体时的长度为10 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg ,弹簧长度为14.5 cm8.若直线y =-3x +m 与两坐标轴所围成的三角形的面积是6,则m 的值为( ) A .6 B .-6 C .±6 D .±39.A ,B 两地相距20 km ,甲、乙两人都从A 地去B 地,如图,l 1和l 2分别表示甲、乙两人所走路程s(km )与时间t(h )之间的关系,下列说法:①乙晚出发1 h ;②乙出发3 h 后追上甲;③甲的速度是4 km /h ;④乙先到达B 地.其中正确的个数是( )A .1B .2C .3D .4(第9题) (第10题)10.一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶和玻璃杯的形状都是圆柱形,桶口的半径是杯口半径的2倍,其从正面看得到的图形如图所示.小亮决定做个实验:把塑料桶和玻璃杯看成一个容器,对准杯口匀速注水,注水过程中玻璃杯始终竖直放置,则下列能反映容器最高水位h 与注水时间t 之间关系的大致图象是( )二、填空题(每题3分,共24分)11.下列函数:①y=πx ;②y=2x -1;③y=1x +8;④y=kx +3;⑤y=x 2-(x -2)2.其中一定属于一次函数的是________.12.直线y =-3x +5不经过的象限为________.13.若一次函数y =2x +b(b 为常数)的图象经过点(1,5),则b =________. 14.在平面直角坐标系中,已知一次函数y =2x +1的图象经过P 1(x 1,y 1),P 2(x 2,y 2)两点,若x 1<x 2,则y 1________y 2.(填“>”“<”或“=”)15.如图,一次函数的图象经过点E ,且与正比例函数y =-x 的图象交于点F ,则该一次函数的表达式为____________.(第15题) (第17题) (第18题) 16.已知点(3,5)在直线y =ax +b(a ,b 为常数,且a≠0)上,则ab -5=________.17.如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当销售量x________时,该公司盈利(收入大于成本).18.将正方形A 1B 1C 1O 和正方形A 2B 2C 2C 1按如图所示方式放置,点A 1,A 2在直线y =x +1上,点C 1,C 2在x 轴上.已知点A 1的坐标是(0,1),则点B 2的坐标为________. 三、解答题(19题6分,20,21题每题9分,22题10分,23题8分,其余每题12分,共66分)19.已知y +2与x -1成正比例,且当x =3时,y =4. (1)求y 与x 之间的函数关系式; (2)当y =1时,求x 的值.20.作出函数y =3x +1的图象,根据图象回答: (1)当x 取什么值时,函数值y 大于零? (2)直接写出方程3x +1=0的解.21.已知直线y 1=-23x +3与x 轴交于点A ,与y 轴交于点B ,直线y 2=2x +b 经过点B ,且与x 轴交于点C ,求△ABC 的面积.22.请你根据如图所示的图象所提供的信息,解答下面问题:(1)分别写出直线l 1,l 2对应的函数中变量y 的值随x 的变化而变化的情况; (2)求出直线l 1对应的函数表达式.23.一次函数y =ax -a +1(a 为常数,且a≠0).(1)若点⎝ ⎛⎭⎪⎫-12,3在一次函数y =ax -a +1的图象上,求a 的值; (2)当-1≤x≤2时,函数有最大值2,请求出a 的值.24.某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印刷份数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种收费方式的费用y(元)与印刷份数x(份)之间的函数关系如图所示.(1)填空:甲种收费方式的函数关系式是__________,乙种收费方式的函数关系式是__________;(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种收费方式较合算?25.甲、乙两车分别从A,B两地同时出发相向而行,并以各自的速度匀速行驶,甲车途经C地休息了1 h,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(km)与甲车出发时间x(h)的函数图象.(1)直接写出a,m,n的值;(2)求出甲车与B地的距离y(km)与甲车出发时间x(h)的函数表达式(写出自变量x的取值范围);(3)当两车相距120 km时,乙车行驶了多长时间?参考答案1.B2.A3.B4.B 5.B 6.D 7.D 8.C 9.C 10.C 11.①②⑤ 12.第三象限 13.314.< 15.y =x +2 16.-1317.>4 18.(3,2)19.(1) y =3x -5.(2)当y =1时,x =2. 20.略 21.9.22.(1)直线l 1对应的函数中,y 的值随x 的增大而增大;直线l 2对应的函数中,y 的值随x 的增大而减小.(2)y =2x -1.23.(1) a =-43. (2)a =-12或a =1.24.解:(1)y =0.1x +6;y =0.12x(2)当甲、乙两种收费方式费用相同时,有 0.12x =0.1x +6, x =300.因此可得其函数图象交点横坐标为300. 如图,由函数图象可得(第24题)当100≤x<300时选择乙种收费方式较合算;当x =300时,选择甲、乙两种收费方式费用一样;当300<x≤450时,选择甲种收费方式较合算.25.(1)a =90,m =1.5,n =3.5.(2)y =⎩⎪⎨⎪⎧-120x +300(0≤x<1.5),120(1.5≤x<2.5),-120x +420(2.5≤x≤3.5).(3)乙车行驶了1 h 或3 h.。
北师大版八年级数学上册第四章一次函数测试卷
第四章 一次函数周周测7一、选择题:1.下列函数(1)πy x =;(2)21y x =-;(3)1y x=;(4)22y x =-;(5)21y x =-中,一次函数的个数是( ).A .4个B .3个C .2个D .1个2.若2(2)(4)y m x m =-+-是正比例函数,则m 的取值是( ). A .2 B .2- C .2± D 任意实数3.一次函数y kx b =+中,0k <,0b >,那么它的图像不经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限4.如图所示,函数y mx m =+的图像可能是下列图像中的( ).A.B.C.D.5.下列函数中,是正比例函数且y 随x 增大而减小的是( ). A .41y x =-+ B .2(3)6y x =-+C .3(2)6y x =-+D .2xy =-6.已知3y -与x 成正比例,且2x =时,7y =,则y 与x 的函数关系式为( ). A .23y x =+B .23y x =-C .323y x -=+D .33y x =+7.下列各点,在一次函数26y x =+的图像上的是( ). A .(5,4)-B .( 3.5,1)-C .(4,20)D .(3,0)-8.点1(3,)A y 和点2(2,)B y -都在直线23y x =-+上,则1y 和2y 的大小关系是( ).A .12y y >B .12y y <C .12y y =D .不能确定9.已知某一次函数的图像与直线1y x =--平行,且过点(8,2),那么此一次函数为( ). A .2y x =-- B .10y x =+ C .6y x =-- D .10y x =--10.等腰三角形的周长是40cm ,腰长(cm)y 是底边长(cm)x 的函数解析式正确的是( ). A .0.520(020)y x x =-+<< B .0.520(1020)y x x =-+<< C .240(1020)y x x =-+<<D .240(020)y x x =-+<<11.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图所示,相交于点P 的两条线段1l ,2l 分别表示小敏、小聪离B 地的距离km y 与已用时间h x 之间的关系,则小敏、小聪行走的速度分别是( ).A .3km/h 和4km/hB .3km/h 和3km/hC .4km/h 和4km/hD .4km/h 和3km/h12.若甲、乙两弹簧的长度cm y 与所挂物体质量kg x 之间的函数表达式分别为11y k x b =+和22y k x b =+,如图所示,所挂物体质量均为2kg 时,甲弹簧长为1y ,乙弹簧长为2y ,则1y 与2y 的大小关系为( ).A .12y y >B .12y y =C .12y y <D 不能确定y ()2y=k 1x+b 1二、填空题:13.已知一次函数的图像过点(1,2),且y 随x 的增大而减少.请写出一个符合条件的一次函数的解析式__________.(写出一个符合条件的解析式即可)14.一次函数26y x =-+的图像与x 轴交点坐标是__________.15.直线36y x =+与两坐标轴围成的三角形的面积是__________.16.直线23y x =+与32y x b =-的图像交x 轴上同一点,则b =__________.17.已知一次函数(1)3k y k =-⨯+,则k =__________.18.在平面直角坐标系中,如果点(,4)x ,(0,8),(4,0)-在同一条直线上,则x =__________.19.已知直线33y x =-向左平移4个单位后,则该直线解析式是__________.20.长沙向北京打长途电话,设通话时间x (分),需付电话费y (元),通话3分以内话费为3.6元,请你根据如图所示的y 随x 的变化的图像,找出通话5分钟需付电话费__________元.21.假定甲、乙两人在一次赛跑中,路程s 与时间t 的关系如图所示,那么可以知道:(1)这是一次__________赛跑.(2)甲、乙两人中先到达终点的是__________. (3)乙在这次赛跑中的速度是__________米/秒.秒三、解答下列各题:22.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便名卡”与“如意卡”在某市范围内每月(30天)的通话时间(min)x与通话费y(元)的关系如图所示:(1)分别求出通话费1y,2y与通话时间x之间的函数关系式.(2)请帮用户计算,在一个月内通话时间多长时,两种卡的通话费一样?便名卡()如意卡())min()23.为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为x(立方米),应交水费为y(元).(1)分别写出用水未超过7立方米和多于7立方米时,y与x间的函数关系式.(2)如果某单位共有用户50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?掌握的三个数学答题方法树枝答题法关注数学题的解题过程2014年上海市中考状元徐瑜卿认为,数学是一门思维学科,并不是平时做题多就一定会拿高分。
北师大版八年级数学上册第四章 一次函数综合测评(含答案)
第四章 一次函数综合测评 〔时间: 总分值:120分〕 〔班级: 姓名: 得分: 〕一、精心选一选〔每题3分,共30分〕1. 以下图象中,y 不是x 的函数的是〔 〕A B C D2. 直线y =kx +b 的图象如图1所示,那么k ,b 的值为〔 〕A. k =32-,b =-2B. k =32,b =-2C. k =32-,b =2 D. k =32,b =23. 在平面直角坐标系中,函数y=-x+1的图象经过〔 〕A. 第一、二、三象限B. 第二、三、四象限C. 第一、三、四象限D. 第一、二、四象限4. 在函数y =kx 〔k >0〕的图象上有三点A 1〔x 1,y 1〕,A 2〔x 2,y 2〕,A 3〔x 3,y 3〕,x 1<x 2<0<x 3,那么以下各式中正确的选项是〔 〕A. y 1<0<y 3B. y 3<0<y 1C. y 2<y 1<y 3D. y 3<y 1<y 2 5. 如图2,两个物体A ,B 所受压强分别为P A 〔帕〕与P B 〔帕〕〔P A ,P B 为常数〕,它们所受压力F 〔牛〕与受力面积S 〔平方米〕的函数关系图象分别是射线A l 、B l ,那么〔 〕A. P A <P BB. P A =P BC. P A >P BD. P A ≤P B6. 小明用20元零花钱购置水果慰问老人,水果单价是每千克4元,设购置水果x 千克用去的钱为y 元,用图象表示y 与x 的函数关系,其中正确的选项是〔 〕A B C D7. 某航空公司规定,旅客乘机所携带行李的质量x 〔kg 〕与其运费y 〔元〕的函数图象如图3所示,函数关系式为y =kx -600,那么旅客携带50 kg 行李时的运费为〔 〕A. 300元B. 500元C. 600元D. 900元8. 一次函数的图象过点〔0,3〕,且与两坐标轴围成的三角形的面积为3,那么这个一次函数的表达式为〔 〕A. y =+3B. y =+3C. y =+3或y =+3D. y =或y =9. 在同一坐标系中表示一次函数y=ax+b 与正比例函数y=abx 〔a ,b 是常数,且ab≠0〕的图象正确的选项是〔 〕A B C D10. 如图4,一辆汽车和一辆摩托车分别从A ,B 两地去同一城市,l 1 ,l 2分别表示汽车、摩托车离A 地的间隔 s 〔km 〕随时间t 〔h 〕变化的图象,那么以下结论:①摩托车比汽车晚到1 h ;②A ,B 两地的间隔 为20 km ;③摩托车的速度为45 km/h ,汽车的速度为60 km/h ;④汽车出发1 h 后与摩托车相遇,此时间隔 B 地40 km ;⑤相遇前摩托车的速度比汽车的速度快.其中正确的结论有〔 〕A. 2个B. 3个C. 4个D. 5个 二、细心填一填〔每题3分,共24分〕11. 假设y =〔m +1〕x +m 2-1是关于x 的正比例函数,那么m 的值图1 图2 图3 y/元 x/kg O O l 1 l 2 s /km t /h 图4 O为______.12. 甲、乙两人在一次赛跑中,间隔 s 与时间t 的关系如图5所示,那么这是一次_____米赛跑.13. 将一次函数y =3x -1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__________.14. 等腰三角形的周长为4,一腰长为x ,底边长为y ,那么y 关于x 的函数关系式为_______,自变量x 的取值范围是________.15. 阅读以下信息:①它的图象是不经过第二象限的一条直线,且与y 轴的交点P 到原点O 的间隔 为3;②当x 的值为2时,函数y 的值为0.请写出满足上述条件的函数表达式:______________.16. 在函数y=-3x+5的图象上有A 〔1,y 1〕,B 〔-1,y 2〕,C 〔-2,y 3〕三个点,那么y 1,y 2,y 3的大小关系是_____________.17. 点A 1〔a 1,a 2〕,A 2〔a 2,a 3〕,A 3〔a 3,a 4〕,…,A n 〔a n ,a n +1〕〔n 为正整数〕都在一次函数y=x +3的图象上.假设a 1=2,那么a 2021的值为______. 18. 李教师开车从甲地到相距240千米的乙地,假如油箱剩余油量y 〔升〕与行驶路程x 〔千米〕之间是一次函数关系,其图象如图6所示,那么到达乙地时油箱剩余油量是______升.三、耐心解一解〔共66分〕19.〔6分〕声音在空气中的传播速度v 〔m/s 〕与温度t 〔℃〕的关系如下表: t 〔℃〕 1 2 3 4 5 V 〔m/s 〕〔1〕写出速度v 〔m/s 〕与温度t 〔℃〕之间的关系式;〔2〕当t =℃时,求声音的传播速度.20.〔8分〕在平面直角坐标系中,一次函数y =kx +b 的图象经过点A 〔2,1〕,B 〔0,2〕,C 〔-1,n 〕,试求n 的值.21.〔8分〕一次函数y =〔m -3〕x +2m +4的图象经过直线y =31 x +4与y 轴的交点M ,求此一次函数的表达式.22.〔8分〕一次函数y=2x-3,试解决以下问题:〔1〕在平面直角坐标系中画出该函数的图象;〔2〕判断点C 〔-4,-8〕是否在该一次函数图象上,并说明理由.23.〔8分〕一次函数y =23x +m 与y =-21x +n 的图象都过点A 〔-2,0〕,且与y 轴分别交于点B ,C ,求△ABC 的面积.24.〔8分〕一辆旅游车从大理返回昆明,旅游车到昆明的间隔 y 〔km 〕与行驶时间x 〔h 〕之间的函数关系如图7所示,试答复以下问题:〔1〕求间隔 y 〔km 〕与行驶时间x 〔h 〕的函数表达式〔不求自变量的取值范围〕;〔2〕假设旅游车8:00从大理出发,11:30在某加油站加油,问此时旅游车间隔 昆明还有多远〔途中停车时间不计〕?25.〔10分〕在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余局部的高度y 〔cm 〕与燃烧时间x 〔h 〕之间的关系如图8所示,请根据图象所提供的信息解答以下问题:〔1〕甲、乙两根蜡烛燃烧前的高度分别是__________,从点燃到燃尽所用的时间分别是________;图7 图8 y/cm x/h 图9 y/千米 x/分 图6 35y/升x/千米25〔2〕分别求甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式;〔3〕燃烧多长时间,甲、乙两根蜡烛的高度一样?〔不考虑都燃尽时的情况〕26.〔10分〕甲、乙两名大学生到距学校36千米的某乡镇进展社会调查.他们从学校出发,同骑一辆电动车行驶20分时发现忘带相机,甲下车继续步行前往,乙骑电动车按原路返回.乙取相机后〔在学校取相机所用时间忽略不计〕,骑电动车追甲,在距该乡镇千米处追上甲后一起骑车前往,电动车的速度始终不变.设甲与学校相距y 甲〔千米〕,乙与学校相距y 乙〔千米〕,甲分开学校的时间为x 〔分〕,那么y 甲、y 乙与x 之间的函数图象如图9所示,结合图象解答以下问题:〔1〕电动车的速度为_____千米/分;〔2〕甲步行所用的时间为______分;〔3〕求乙返回到学校时,甲与学校相距多远?〔拟题 于华虎〕第四章 一次函数综合测评〔一〕参考答案一、1. D 2. B 3. D 4. A 5. A 6. C 7. D 8. C 9. A 10. B二、11. 1 12. 100 13. y =3x +2 14. y =-2x+4 1<x <2 15. y =23x -3 16. y 1<y 2<y 317. 6044 提示:将a 1=2代入a 2=x +3,得a 2=5. 同理,得a 3=8,a 4=11,a 5=14,…,a n =2+3〔n -1〕,故a 2021=2+3×〔2021-1〕=2+3×2021=2+6042=6044.18. 2 提示:设函数关系式为y =kx +b.因为图象经过点〔0,〕,所以b =;又图象经过点〔160,〕,所以160k +=,解得k =1160-.所以函数关系式为y =1160-x +72. 当x =240时,y =1160-×240+72=2,即到达乙地时油箱里剩余油量为2升.三、19.〔1〕v =331+;〔2〕时,声音的传播速度为 m/s.20. 解:由题意,得b=2,2k+b=1,将b=2代入2k+b=1,解得k=1-2.故函数关系式为y =21-x +2.因为图象经过点〔-1,n 〕,所以n =21+2=25. 21. 解:由题意,知点M 的坐标为〔0,4〕.因为待求函数图象经过点M ,所以2m +4 =4,解得m =0.所以此一次函数的表达式为y=-3x+4.22. 解:〔1〕当x =0时,y =-3;当y =0时,x =23.所以一次函数图象经过〔0,-3〕和302⎛⎫ ⎪⎝⎭,两点.图象略.〔2〕点C 〔-4,-8〕不在该一次函数图象上.理由:当x =-4时,2×〔-4〕-3=-11≠-8.23. 解:由题意,得23×〔-2〕+m=0,-21×〔-2〕+n=0,解得m =3,n =-1.所以函数关系式分别为y =23x +3,y =-21x-1.所以点B 的坐标为〔0,3〕,点C 的坐标为〔0,-1〕. 所以S △ABC =21BC·OA=21×4×2=4. 24. 解:〔1〕设函数表达式为y =kx +b.由图象可知直线经过点〔0,360〕,〔,240〕,得b=360,1.5k+b=240,将b=360代入1.5k+b=240,解得k=-80.故函数表达式为y =-80x +360.〔2〕由题意,知x =,那么y =+360=80〔km 〕,此时旅游车间隔 昆明还有80 km.25. 解:〔1〕30 cm ,25 cm 2 h , h〔2〕设甲蜡烛燃烧时,y甲与x之间的函数关系式为y甲=k1x+b1.由图可知,函数的图象过点〔0,30〕,〔2,0〕,那么b1=30,2k1+b1=0,将b1=30代入2k1+b1=0,解得k1=-15.所以y甲=-15x+30;设乙蜡烛燃烧时,y乙与x之间的函数关系式为y乙=k2x+b2.由图可知,函数的图象过点〔0,25〕,〔,0〕,那么b22+b2=0,将b22+b2=0,解得k2=-10.所以y乙=-10x+25.〔3〕由题意,得-15x+30=-10x+25,解得x=1,即当蜡烛燃烧1 h,甲、乙两根蜡烛的高度一样.26.解:〔1〕由图象,得〔千米/分〕.〔2〕乙按原路返回学校用时20分,乙从学校追上甲所用的时间为〔〕÷0.9=25〔分〕,所以甲步行所用的时间为20+25=45〔分〕.〔3〕由题意,得甲步行的速度为〔〕〔千米/分〕.乙返回到学校时,甲与学校的间隔为18+0.1×20=20〔千米〕.。
北师大版八年级数学上册第四章一次函数专题练习
一次函数专题练习题型一:判断一次函数的图象1.正比例函数y=kx (k ≠0)函数值y 随x 的增大而增大,则y=kx ﹣k 的图象大致是( )A .B .C .D .2.已知正比例函数y =kx 的图象经过第二、四象限,则一次函数y =kx ﹣k 的图象可能是图中的( )A. B. C. D.3.在同一坐标系中,正比例函数y=kx 与一次函数y=x -k 的图象为( )A. B. C. D.4.如图,一次函数y 1=ax +b 与y 2=abx +a 在同一坐标系内的图象正确的是( )A .B .C .D .5.两个一次函数1y mx n=+,2y nx m=+,它们在同一坐标系中的图象可能是图中的( )A .B .C .D .6.如图,在同一直角坐标系中,直线l1:y=kx和l2:y=(k−2)x+k的位置不可能是()A. B. C. D.7.两个一次函数①y1=ax+b与②y2=bx+a在同一坐标系中的大致图象是()A. B. C. D.题型二:根据一次函数解析式判断其经过象限1.函数2y x=-的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.一次函数35y x=-的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限3.已知直线y=kx+b,若k+b=﹣5,kb=5,那该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.一次函数y=–5x+b的图象一定经过的象限是()A.第一、三象限B.第二、三象限C.第二、四象限D.第一、四象限5.函数y x=的图象与21y x=+的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限6.已知一次函数1y kx=+,y随x的增大而增大,则该函数的图象一定经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限题型三:已知函数经过的象限,求参数的取值范围1.已知一次函数y =(k ﹣2)x+k 不经过第三象限,则k 的取值范围是( ) A.k ≠2 B.k >2 C.0<k <2 D.0≤k <22.已知一次函数2y kx m x =--的图象经过第一、三、四象限,则下列结论正确的是( ) A .0,0k m >< B .2,0k m >>.C .2,0k m ><D .2,0k m <>3.函数y=(m-4)x+2m-3的图象经过一、二、四象限,那么m 的取值范围是( ) A .4m <B .1.54m <<C . 1.54m -<<D .4m >4.若一次函数(2)y m x m =-+的图像经过第一,二,三象限,则m 的取值范围是( ) A.02m << B.02m <≤ C.2m > D.02m ≤<5.已知一次函数y kx b =+的图象不经过第三象限,则k 、b 的符号是( ) A.k 0<,0b > B.0k >,0b ≥C.k 0<,0b ≥D.0k >,0b ≤题型四:一次函数图象与坐标轴交点问题1.一次函数23y x =--的图象与y 轴的交点坐标是( ) A .(3,0)B .(0,3)C .(3,0)-D .(0,3)-2.直线y=x+1与x 轴交于点A ,则点A 的坐标为( ) A.(2,1) B.(-1,0)C.(1,-5)D.(2,-1)3.如图,一次函数y =2x+1的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则△AOB 的面积为( )A .14 B .12 C .2 D .44.已知一次函数4y kx =-(k 0<)的图像与两坐标轴所围成的三角形的面积等于4,则该一次函数表达式为( )A.4y x =-- B .24y x =-- C.34y x =-- D.44y x =-- 5.一次函数y=-2(x-3)在y 轴上的截距是( ) A.2B.-3C.6D.66.已知直线y =kx+8与x 轴和y 轴所围成的三角形的面积是4,则k 的值是( ) A .-8 B .8 C .土8 D .4 题型五:一次函数图象平移问题1.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A.()2,2 B.()2,3 C.()2,4 D.(2,5)2.将直线y =3x −1向上平移1个单位长度,得到的一次函数解析式为( ) A.y =3x B.y =3x +1 C.y =3x +2 D.y =3x +33.已知直线y =﹣2x+1通过平移后得到直线y =﹣2x+7,则下列说法正确的是( ) A.向左平移3个单位 B.向右平移3个单位 C.向上平移7个单位 D.向下平移6个单位4.把直线y kx =向上平移3个单位,经过点()1,5,则k 值为( )A .-1B .2C .3.D .5题型六:判断一次函数的增减性1.已知点(-1,y 1)、(3,y 2)都在直线y=-2x+1上,则y 1、y 2大小关系是( )A .12y y > B .12y y = C .12y y < D .不能比较2.已知一次函数32y x =+上有两点()11,M x y ,()22,N x y ,若12x x >,则1y 、2y 的关系是( )A.12y y > B.12y y = C.12y y < D.无法判断3.已知点(-2,y 1),(-1,y 2),(1,y 3)都在直线y=-13x+b 上,则y 1,y 2,y 3的值的大小关系是( ).A.y 1>y 2>y 3B.y 1<y 2<y 3C.y 3>y 1>y 2D.y 3>y 1>y 24.一次函数y 1=kx+b 与y 2=x+a 的图象如图所示,则下列结论中正确的个数是( )①y 2随x 的增大而减小;②3k+b =3+a ;③当x <3时,y 1<y 2; ④当x >3时,y 1<y 2. A .3B .2C .1D .0题型七:根据一次函数增减性求参数1.已知一次函数y =(3﹣a )x+3,如果y 随自变量x 的增大而增大,那么a 的取值范围为( ) A .a <3 B .a >3 C .a <﹣3 D .a >﹣32.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+题型八:根据一次函数增减性判断自变量的变化1.如图是一次函数y=kx+b 的图象,当y <1时,x 的取值范围是( ) A .x <2 B .x >2 C .x <3 D .x >3 题型九:求一次函数解析式1.已知函数3y x b =-+,当13x =-时,1y =,则b =____.2.直线y kx b =+与51y x =-+平行,且经过(2,1),则k +b =______。
初中数学北师大版(2024)八年级上册 第四章 一次函数单元测试(含简单答案)
第四章一次函数一、单选题1.下列曲线中,表示y是x的函数的是()A.B.C.D.2.关于一次函数y=−2x+3,下列结论正确的是( )A.图象过点(1,−1)B.其图象可由y=−2x的图象向上平移3个单位长度得到C.y随x的增大而增大D.图象经过一、二、三象限3.设半径为r的圆的周长为C,则C=2πr,下列说法错误的是()A.常量是π和2B.常量是2C.用C表示r为CD.变量是C和r2π4.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是( )A.B.C.D.5.如果M(−1,y1),N(2,y2)是正比例函数y=kx的图象上的两点,且y1>y2.那么符合题意的k的值可能是()A.1B.1C.3D.−236.如图所示,已知点C(1,0),直线y=−x+7与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是()A.42B.10C.42+4D.127.函数y=|kx|(k≠0)的图象可能是()A.B.C.D.8.我们把三个数的中位数记作Z{a,b,c}.例如Z{1,3,2}=2.函数y=|2x+b|的图象为C1,函数y=Z{x+1,-x+1,3}的图象为C2.图象C1在图象C2的下方点的横坐标x满足-3<x<1,则b的取值范围为()A.0<b<3B.b>3或b<0C.0≤b≤3D.1<b<39.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.汽车在高速公路上的行驶速度为100km/h B.乡村公路总长为90kmC.汽车在乡村公路上的行驶速度为65km/h D.该记者在出发后5h到达采访地10.如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论:①k<0;②a>0;③b>0:④方程kx+b=x+a的解是x=3,错误的个数是()A.1个B.2个C.3个D.4个二、填空题11.函数y=−3x+6的图象与x轴.y轴围成的三角形面积为.12.如图,购买一种商品,付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次性购买50千克这种商品要付款元.13.直线y=kx+b平行于直线y=−2x,且与y轴交于点(0,3),则此函数的解析式y=.14.已知点A(2,y1),B(3,y2)在直线y=﹣3x+1上,则y1与y2的大小关系为:y1y2.(填“>”,“=”或“<”)15.若y=(m−1)x|m|+2是关于x的一次函数,则m等于.16.已知一次函数y1=kx﹣2k(k是常数)和y2=﹣x+1.若无论x取何值,总有y1>y2,则k的值是.17.杭黄高铁开通运营,已知杭州到黄山距离300千米,现有直达高铁往返两城市之间,该高铁每次到达杭州或黄山后,均需停留一小时再重新出发.暑假期间,铁路局计划在同线路上加开一列慢车直达旅游专列,在试运行期间,该旅游专列与高铁同时从杭州出发,在整个小时两车第一次相遇.两车之间的距离y千米运行过程中,两列车均保持匀速行驶,经过103与行驶时间x小时之间的部分函数关系如图所示,当两车第二次相遇时,该旅游专列共行驶了千米.18.如图,在平面直角坐标系中,点A1(1,1)在直线y=x图象上,过A1点作y轴平行线,交直线y=−x于点B1,以线段A1B1为边在右侧作正方形A1B1C1D1,C1D1所在的直线交y=x 的图象于点A2,交y=−x的图象于点B2,再以线段A2B2为边在右侧作正方形A2B2C2D2⋯依此类推,按照图中反映的规律,第2020个正方形的边长是.三、解答题19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了表格.距离地面高度(千米)12345温度(℃)201482−4−10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答;(1)如果用ℎ表示距离地面的高度,用t表示温度,写出t与ℎ的关系式;(2)你能计算出距离地面16千米的高空温度是多少吗?x+2和y=2x﹣3的图象分别交y轴与A、B两点,两个一次函数的20.已知一次函数y=﹣12图象相交于点P.(1)求△PAB的面积;(2)求证:∠APB=90°;(3)若在一次函数y=2x﹣3的图象上有一点N,且横坐标为x,连结NA,请直接写出△NAP 的面积关于x的函数关系式,并写出相应x的取值范围.21.已知直线y=-4x+4与x轴和y轴分别交于B、A两点,另一直线经过点B和点D3(11,6).(1)求A、B的坐标;(2)证明:△ABD是直角三角形;(3)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标.22.如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?23.如图1,某地铁车站在出入口设有上、下行自动扶梯和步行楼梯,甲、乙两人从车站入口同时下行去乘坐地铁,甲乘自动扶梯,乙走步行楼梯,乙离地铁进站入口地面的高度ℎ(单位:m)与下行时间x(单位:s)之间具有函数关系ℎ=−15x+6,甲离地铁进站入口地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达地铁进站入口地面.24.已知直线y=kx+b可变形为:kx−y+b=0,则点P(x0, y0)到直线kx−y+b=0的距离d可用公式d=|kx0−y0+b|1+k2计算.例如:求点P(-2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x−y+1=0,其中k=1,b=1.所以点P(-2,1)到直线y=x+1的距离为d=|kx0−y0+b|1+k2=|1×(−2)−1+1|1+12=22=2.根据以上材料求:(1)点P(2,-1)到直线y=2x−1的距离;(2)已知M为直线y=−x+2上的点,且M到直线y=2x−1的距离为35,求M的坐标;(3)已知线段y=kx+3(−1≤x≤2)上的点到直线y=x+1的最小距离为1,求k的值.25.如图,一次函数y=x+1的图象分别与x轴,y轴交于点B与点A,直线AC与x轴正半轴交于点C,且∠BAO=45°,OC=2OB.(1)求直线AC的函数表达式;(2)点D在直线AB上且不与点B重合,点E在直线AC上.若以A,D,E为顶点的三角形与△ABC全等,请直接写出点D的坐标(不必写解答过程);(3)已知平面内一点P(m,n),作点P关于直线AB的对称点P1,作P1关于y轴的对称点P2,若P2恰好落在直线AC上,则m,n应满足怎样的等量关系?说明理由.26.某企业准备为员工采购20000袋医用口罩.经市场调研,准备购买A,B,C三种型号的口罩,这三种型号口罩的价格如下表所示:型号A B C价格/(元/袋)303540已知购买B型号口罩的数量是A型号口罩的2倍,设购买A型号口罩x袋,该企业购买口罩的总费用为y元.(1)请求出y与x之间的函数表达式;(2)因为A型号口罩的数量严重不足,口罩生产厂家能提供的A型号口罩的数量不大于C型号口罩的数量,怎样购买能使该企业购买口罩的总费用最少?请求出费用最少的购买方案,并求出总费用的最小值.参考答案:1.D 2.B 3.B 4.B 5.D 6.B 7.C 8.C 9.D 10.A 11.612.42013.−2x +314.>15.−116.−117.25018.2×3201919.(1)t =20−6ℎ(ℎ≥0)(2)距离地面16千米的高空温度是−76℃20.(1)5;(3)当x >2时,△NAP 的面积S=52(x ﹣2);当x <2时,△NAP 的面积S=52(2﹣x ).21.(1)A (0,4),B (3,0);(3)C (14122,0).22.(1)5海里;(2)走私船:1海里/分;公安快艇:1.5海里/分(3)y 1=t+5 ;y 2=32t ;(4)2海里;23.(1)y =−310x +6;(2)甲先到地铁进站入口地面.24.(1)455;(2)M (6,-4)或M (-4,6);(3)k =−2+3或22x+125.(1)y=−12(2)点D的坐标为(−102,1−102)或(1,2)或(102,1+102);(3)2m+1=n,26.(1)y=−20x+800000(2)当购买A型号口罩5000袋,B型号口罩10000袋,C型号口罩5000袋时,该企业购买口罩的总费用最少,总费用的最小值为700000元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 一次函数周周测6 一. 选择题 11. 正比例函数y=(2k-3)x 的图像过点(-3,5),则k 的值为 ( )
A. 95
B. 37
C. 35
D. 32 12. 函数y=(m-2)x n-1+n 是一次函数,m,n 应满足的条件是 ( )
A. m ≠2且n=0
B. m=2且n=2
C. m ≠2且n=2
D. m=2且n=0
13. 一次函数的图像交x 轴于(2,0),交y 轴于(0,3),当函数值大于0时,x 的取值范围是
( )
A. x>2
B. x<2
C. x>3
D. x<3
14. 已知直线y=kx+b 经过(-5,1)和点(3,-3),那么k 和b 的值依次是 ( )
A. -2,-3
B. 1,-6
C. -2
1 D. 1,6 15. 与x 轴交点的横坐标是负数的直线是 ( )
A. y=-x+2
B. y=x+2
C. y=x
D. y=x-2
16. 如图2-1所示,如果k ·b<0,且k<0,那么函数y=kx+b 的图像大致是 ( )
y y y y
X x
X x
A B C D
图2-1
17. 已知正比例函数y=(2m-1)x 的图像上两点A(x 1,y 1),B(x 2,y 2),当x 1<x 2时,有y 1>y 2,那么m
的取值范围是 ( )
A. m<21
B. m>2
1 C. m<
2 D. m>0 18. 若函数y=3x-6和y=-x+4有相等的函数值,则x 的值为 ( )
A. 21
B. 25
C. 1
D. -2
5 19. 某一次函数的图像经过点(-1,2),且函数y 的值随自变量x 的增大而减小,则下列函数
符合上述条件的是 ( ) A. y=4x+6 B. y=-x C. y=-x+2 D. y=-3x+5
20. 已知一次函数y=23x+m 和y=-2
1x+n 的图像都经过点A(-2,0), 且与y 轴分别交于B,C 两点,那么△ABC 的面积是 ( )
A. 2
B. 3
C. 4
D. 6
二. 填空题
1. 若点P(3,8)在正比例函数y=kx 的图像上,则此正比例函数是________________.
2. 若一次函数y=-x+a 与一次函数y=x+b 的图像的交点坐标为(m,8),则a+b=_________.
3. 若一次函数y=kx+b 交于y 轴的正半轴,且y 的值随x 的增大而减小,则
k______0,b___0.(填”>””=””<”号)
4. 已知一次函数y=kx+b 的图像经过点(1,3)和(-1,-1),则此一次函数关系式为________.
5. 若直线y=2x+6与直线y=mx+5平行,则m=____________.
6. 已知点A(-4, a),B(-2,b)都在一次函数y=2
1x+k(k 为常数)的图像上,则a 与b 的大小关系是a____b(填”<””=”或”>”);若k=2,则ab=___________.
7. 已知点(a,4)在连结点(0,8)和点(-4,0)的线段上,则a=_________________.
8. 已知一次函数y=2x-a 与y=3x-b 的图像交于x 轴上原点外的一点,则b
a a =________. 9. 一次函数y=2x+
b 与两坐标轴围成三角形的面积为4,则b=________________.
10. 根据一次函数y=-3x-6的图像,当函数值大于零时,x 的范围是______________.
三. 解答题
21. 离山脚高度30m 处向上铺台阶,每上4个台阶升高1m.
(1) 求离山脚高度hm 与台阶阶数n 之间的函数关系式;
(2) 已知山脚至山顶高为217 m,求自变量n 的取值范围.
22. 已知y-3与4x-2成正比例,且当x=1时,y=5.
(1) 求y 与x 的函数关系式;
(2) 求当x=-2时的函数值;
(3) 如果y 的取值范围是0≤y ≤5,求x 的取值范围.
23. 已知一次函数的图像经过(-3,5),(1,
3
7)两点,求此一次函数的解析式.
24. 在平面直角坐标系中作出一次函数y=3x-2与y=3x+4的图像,并回答下列问题:
(1) 一次函数y=3x-2中y 的值随x 的增大怎样变化?
(2) 在同一坐标系中上述两个函数图像有何位置关系?
(3) 当x=8时,其对应的y 值分别是多少?
25. 阅读下面的文字后,解答问题:
有这样一道题目;”已知,一次函数y=kx+b 的图像经过A(0,a),B(-1,2),________,则△ABO 的面积为2,试说明理由.题目中横线部分是一段被墨水污染了的无法辨认的文字.
根据现有信息,你能否求出题目中一次函数的解析式?若能,请写出适合条件的一次函数解析式?
(1) 请根据你的理解,在横线上添加适当的条件,把原题补充完整.
四. 应用题
26. 求直线y=2x+3和y=-3x+8与x轴所围成的面积.
y
Y=2x+3
B
A 0 C x
Y=3X+8
27. 某厂有甲,乙两条生产线先后投产,在乙生产线投产以前,甲生产线已生产了200吨成品;从乙生产线投产开始,甲,乙两条生产线每天分别生产20吨和30吨成品.
(1) 分别求出甲,乙两条生产线投产后,总产量y(吨)与从乙开始投产以来所用时间x(天)之间的函数关系式;
(2) 分别指出第15天和25天结束时,哪条生产线的总产量高?
28. 为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的.研究表明:假设课
桌的高度为ycm,椅子的高度(不含靠背)为xcm,则y应是x的一次函数,下表列出两套符合条件的课桌椅的高度.
第一套第二套
椅子高度x(cm) 40.0 37.0
桌子高度y(cm) 75.0 70.0
(1)请确定y与x的函数关系式(不要求写出x的取值范围);
(2)现有一把高42.0 cm的椅子和一张高78.2 cm的课桌,它们是否配套?请通过计算说明
理由.
29. 已知一次函数y=(3-k)x-2k2+18,
(1) k为何值时,它的图像经过原点;
(2) k为何值时,它的图像经过点(0,-2);
(3) k为何值时,它的图像与y轴的交点在x轴的上方;
(4) k为何值时,它的图像平行于直线y=-x;(5) k为何值时,y随x的增大而减小.
初中数学公式大全
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理三角形两边的和大于第三边
16 推论三角形两边的差小于第三边
17 三角形内角和定理三角形三个内角的和等于180 °
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形
21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形
22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形
23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形
24 矩形性质定理 1 矩形的四个角都是直角
25 矩形性质定理 2 矩形的对角线相等
26 矩形判定定理 1 有三个角是直角的四边形是矩形
27 矩形判定定理 2 对角线相等的平行四边形是矩形
28 菱形性质定理 1 菱形的四条边都相等
29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
30 菱形面积= 对角线乘积的一半,即S= (a×b )÷2
31 菱形判定定理1 四边都相等的四边形是菱形
32 菱形判定定理2 对角线互相垂直的平行四边形是菱形
33 正方形性质定理1 正方形的四个角都是直角,四条边都相等
34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
35 定理1 关于中心对称的两个图形是全等的
36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。