对流换热传热学课件06资料
高等传热学课件对流换热

高等传热学课件对流换热高等传热学课件对流换热一、概述湍流模型是半阅历、半理论的争论方法,其目的是将湍流的脉动相关项与时均量联系起来,使时均守恒方程封闭。
自1925年Prandtl提出混合长度理论,各国学者对湍流模型进行了大量争论,提出了许多模型。
W.C.Regnolds建议按模型中所包含的微分方程数目进行分类,成为目前适用的湍流模型分类方法。
一般将湍流模型分为:z 零方程模型(代数方程模型)z 一方程模型z 二方程模型z 多方程模型争论(Morkovin 莫尔科文)表明:当M5时,流体的可压缩性对湍流结构不起主导影响,因此我们仅参考不行压缩状况。
依据大量的试验争论结果,湍流边界层对流换热的强弱主要取决在内层区:由相像原理分析得出,Prt近似是一个常数(Prt≈0.9)这样,只要确定了νt,即可简洁地得到αt,所以在介绍湍流模型时,只给出νt或t时均量的关系式。
二、零方程模型(代数方程模型)零方程模型中不包含微分方程,而用代数关系式将νt与时均量关联起来。
Prandtl混合长度理论是最早的代数方程模型。
它适用于:充分进展的湍流剪切流边界层内层,y≤0.2δ。
对外层区,一些学者争论后仍沿用Prandtl混合长度的模型关系式:但,L=λδ(3.7.1)试验常数λ在0.08~0.09之间。
Von Kármán、Deissler、Van Driest、Taylor等人先后提出了更完善的代数方程模型。
(1) Von Kármán模型Von Kármán假设湍流内各点的脉动相像(局部相像),即各点之间只有长度尺度与空间尺度的.差别。
对平行流流场,若对某点(y0处)四周的时均速度进行Taylor开放:(a)若流淌相像,则必有尺度L与速度u0(u0=u(y0))使上式无量纲后成为通用分布。
u(y0)y令 Y=; U(Y)= u0L则有无量纲形式:(b)若上式是相像的通用速度分布,则式中各系数之比应与位置无关,而是一个常数。
传热学第二章对流换热

在y=δt时,流体温度接近主流温度
tf.流体由tw变化到接近tf的这一薄层 即为热边界层,δt为热边界层的厚
δtt
度。对流换热主要发生在热边界层
tw
内。
传热学第二律
一、边界层概念
在层流边界层中,热量的传递只能依靠流体层与层间的 导热作用,此时对流换热较弱。在紊流边界层中,层流底 层的热量传递方式仍是导热,但在层流底层以外存在着对 流,因而对流换热较强。所以对流换热实际上是包括流体 层流的导热和层流以外的对流共同作用的综合传热过程。 若同一流体在相同的温度下流过同一壁面时,则层流底层 越薄,对流换热越强烈。
一、沸腾换热
图中B点之前的过程, Δt=1-5℃,热流通量较低, 即使壁面上产生气泡也不能脱离上浮,蒸发只能在液 体表面进行。这时的沸腾称为对流沸腾。其换热服从 单相对流换热规律。
图中B—C段,Δt=5-25℃,温差增大,有大量气 泡在壁面上不断生成、长大、跃离。由于气泡的迅速 生长和激烈运动,强烈扰动周围液体,使换热系数α 和热流通量都急剧增大,在一定的Δt下α达到峰值。 因为在B—C段的换热主要取决于气泡的生成和运动, 故称泡态沸腾或核态沸腾。一般工业设备中的沸腾都 维持在泡态沸腾范围内。
传热学第二章对流换热
第二章 对流换热
1 对流换热分析及牛顿冷却定律
2 相似理论及其在对流换热中的应用
3 对流换热计算 4 沸腾与凝结换热
传热学第二章对流换热
第二章 对流换热
对流是指在流体各部分之发生相对位移时, 热量由一处传递到另一处的现象,这种现象只能 发生在流体内部。但是,在工程中通常遇到的并 不是只在流体内部进行的纯粹的热对流,而是在 流体与固体壁之间发生的对流换热。所谓对流换 热(又称放热)是指流体与固体壁直接接触而又 有相对运动时的热量传递过程。在这一过程中, 不仅有对流作用,同时还伴随有导热作用。
传热学第六章课件

ε R:弯管效应修正系数。(详见后述)
14
第一节 单相流体的强迫对流传热
(1)湍流强迫对流传热(P90-91)
① ε l 为考虑入口段对平均对流传热系数影响的入口效应修正系
数,又称管长修正系数。
εl≥1
15
第一节 单相流体的强迫对流传热
(1)湍流强迫对流传热(P90-91)
3 加热液体或冷却气体
18
第一节 单相流体的强迫对流传热
(1)湍流强迫对流传热(P90-91)
② ε t 为温差修正系数:
综上所述,不均匀物性场对对流传热的影响,视液体还是气体、
加热还是冷却以及温差大小而异,温差修正系数εt 一般可按下式
计算:
液体:
加热
冷却
气体:
加热
冷却
19
第一节 单相流体的强迫对流传热
气体:
εR≥1
式中,R为弯管的弯曲半径
液体:
※特别地,对于蛇形管,直管段较短时必须考虑弯曲段的影响;
而直管段较长时(如锅炉过热器、省煤器的管子以及化工厂蛇形
管换热器中的管子等),弯曲管段对整个管子平均对流传热系数
的影响不大,可近似取εR=1。
21
第一节 单相流体的强迫对流传热
(1)湍流强迫对流传热(P90-91)
长铜管,进、出口温度分别为20℃和60℃。设铜管内壁的平
均温度为90℃,试计算冷却水侧的对流传热系数及单位管长
的传热量。
解: 由题意,
① 选取特征温度,查取有关物性参数值。
27
第一节 单相流体的强迫对流传热
② 计算雷诺数Re,判定流动状态。
③ 选取公式,计算Nu数,进一步计算平均对流传热系数h。
传热学第六章对流换热

6个未知量::速度 u、v、w;温度 t;压力 p;对流 换热系数h
6个方程:换热微分方程式、能量微分方程、x、y、z 三个方向动量微分方程、连续性微分方程
1 能量微分方程 微元体的能量守恒: ——描述流体温度场 假设:(1)流体的热物性均为常量,流体不做功 (2)无化学反应等内热源 由导热进入微元体的热量Q1 +由对流进入微元 体的热量Q2 = 微元体中流体的焓增H
2t 2t 2t 微元体导热热量:Q1 x 2 y 2 z 2 dxdydzd
微元体对流换热收支情况:
在d时间内, 由 x处的截面热对流进入微元体的热量为
' Qx c tudydzd
在d时间内, 由 x dx处的截面热对流流出微元体的热量为
由连续性方程知此项为0
t t t Q2 c u v w dxdydzd x y z
在d时间内, 微元体中流体 温度改变了(t / ) d , 其焓增为
t H c dxdydzd
能量微分方程
t t t t 2t 2t 2t u v w 2+ 2 2 x y z c x y z
boundary layer)
由于粘性作用,流体流速在靠近壁面 处随离壁面的距离的减小而逐渐降低; 在贴壁处被滞止,处于无滑移状态。
流场可以划分为两个区:边界层区与主流区 边界层区:流体的粘性作用起主导作用
主流区:速度梯度为0,τ=0;可视为无粘性理想流体
u , 牛顿粘性定律 y
2)热边界层(Thermal boundary layer) 热边界层:当壁面与流体间有温差时,会产生温度梯度很大的 温度边界层 热边界层厚度t (温度边 界层):过余温度(t -tw ) 为来流过余温度(tf - tw ) 的99%处定义为t的外边 界
《传热学》第五章 对流换热分析PPT演示课件

24
求解结果 局部表面传热系数:
或可写成:
其中:
——准则方程
——无量纲流速 ——无量纲物性 ——无量纲换热强度
准则方程的意义——
把微分方程所反映的众多因素间的规律用少数几个准则来概括, 从而减少变量个数,以便于进行对流换热问题的分析、实验研究 和数据处理。
将上式在x,y两个方向代入牛顿第二定律,得到Navier-Stokes方程: 对于不可压缩流体:
11
将其代入Navier-Stokes方程,并采用连续方程化简,得到:
对稳态流动:
惯性力
体积力 压强梯度 黏滞力
当只有重力场作用时:
12
四、能量微分方程式
推导依据—— 内能增量=导热热量+对流热量 1.导热热量:
外掠平板全板长平均换热准则方程:
29
第六节 相似理论基础
相似原理的意义——通过实验寻找现象的规律以及指导推广应用实验。
一、物理相似的基本概念
1.几何相似
LA、LB——几何相似准则
30
2.物理现象相似
以管内流动为例,当两管各r之比满足下列 关系时:
若: 则速度场相似。 以外掠平板为例,当x,y坐标满足下列关系时:
《传热学》
1
第五章 对流换热分析
研究对象——流体与固体壁面之间的传热过程
研究目的——确定牛顿冷却定律
中的h
对流表面 传热系数
局部对流表面传热系数hx 平均对流表面传热系数
Isaac Newton(1642-1727)
确定对流表面传热系数的四种方法
分析法
类比法 数值法 实验法
传热学第五章_对流换热原理-6

2-2)管内流体平均温度
t f
c p tudf
f
c pudf
2 R 2um
R
turdr
0
f
其中,tf为根据焓值计算的截断面平均温度。
由热平衡方程
dQ hx (tw t f )x * 2R * dx cpumR2dt f
和
dQ q * 2R * dx
可得
dt f 2q 2hx (tw t f ) x
t
( tw t r tw t f
)rR
( r )rR tw t f
const
而同时又有
q
(
t r
)
r
R
h(t w
tf
)
于是,得
(
t r
)
r
R
h
const
tw t f
上式又表明,常物性流体在热充分发展段的一个特点是 换热系数保持不变。
另外,如果边界层在管 中心处汇合时流体流动 仍然保持层流,那么进 入充分发展区后也就继 续保持层流流动状态, 从而构成流体管内层流 流动过程。
若 Pr<1, 则意味着流动进口段长于热进口段; 1-3)管内流动充分发展段的流态判断
Re 2300 2300 Re 10 4 Re 10 4
层流 过渡流 旺盛湍流
2)管内流体平均速度与平均温度
2-1)管内流体运动平均速度
um
f udf 0f
2
R 2
R rudr V
0
f
其中,V-体积流量;f-管的截断面积;u-局部流速
dx c pum R
c pum R
积分上式可得全管长流体的平均温度。
由于热边界存在有均匀壁温和均匀热流两种典型情
高等传热学课件对流换热-第6章-1

第六章高速流动对流换热在前面几章介绍的强制对流换热中,我们假设速度和速度梯度充分小,以致动能和粘性耗散的影响可以忽略不计。
现在考虑高速和粘性耗散的影响。
我们主要介绍有更多重要应用的外部边界层。
6.1 高速流对流换热基本概念高速对流主要涉及以下两类现象:z从机械能向热能的转换,导致流体中的温度发生变化;z由于温度变化使流体的物性发生变化。
空气一类气体若具有极高的速度,将会导致超高温离解、质量浓度梯度,并因此发生质量扩散,使问题变得更加复杂。
这里仅限于关注未发生化学反应的边界层;对空气来说,这意味着我们将不考虑温度超过2000K或者马赫数高于5的情况。
对液体,如果普朗特数足够高的话,粘性耗散实际上在中等速度时就具有很可观的作用。
我们的讨论仅限于普朗特数接近于1的气体。
有关高速对流的研究大都涉及对机械能转换和流体物性随温度变化两个因素的总体考虑,很难看到它们单独的影响。
这里,我们暂不考虑变物性的影响,首先讨论能量转换问题。
能量转换过程能可逆地发生,也能不可逆地发生。
比如,在边界层内,激波与粘性的相互作用使得机械能与热能间的不可逆转换增大,无粘性的速度变化(比如在接近亚音速滞止点附近流体的减速)则产生可逆的,或者非常接近可逆的能量转换。
高速边界层滞止点的比较能很好地说明这两种情况的明显区别。
z在滞止点(图6-1)处速度降低,边界层以外的压力和温度提高。
对于亚音速流动,该过程几乎是等熵的,流体粘度不起什么作用。
无论减速可逆还是不可逆,滞止区边界层以外的流体温度等于滞止温度,也就是说,流体温升来自于绝热减速:(6.1.1) 若不考虑变物性影响,并用*T ∞代替T ∞,低速滞止点的解也能适用于高速滞止点问题: w w ()q h T T ∗∞=− (6.1.2)z 但高速边界层问题有所不同。
如果自由速度很高,边界层以内速度梯度很大,边界层内因粘性切应力产生粘性耗散。
如果物体是绝热的,那么耗散产生的热量可以靠分子或者涡漩传导的机理,从靠近表面的向边界层外传递出去,如图6-2所示。
传热学对流传热的理论基础课件

特征数方程中的 几位人物
传热学对流传热的理论基础课件
(4) 与 t 之间的关系及 Pr
对于外掠平板的层流流动: uco,n st
动量方u程 u x: v u y y 2u 2
d d
p 0 x
此时动量方程与能量方程的形式完全一致:
u
t x
v
t y
a
2t y2
表明:此情况下动量传递与热量传递规律相似
上述理论解与实验值吻合。
普朗特边界层理论在流体力学发展史上具有划时代的意义!
传热学对流传热的理论基础课件
5.3 流体外掠等温平板传热的理论分析
当壁面与流体间有温差时,会产生温度梯度很大的温度 边界层(热边界层, thermal boundary layer )
厚度t 范围 — 热边界层或温度边界层
预期解的形式
传热学对流传热的理论基础课件
4. 如何指导实验
• 同名的已定特征数相等 • 单值性条件相似:初始条件、边界条件、几何条件、
物理条件
实验中只需测量各特征数所包含的物理量,避免了测量的盲 目性——解决了实验中测量哪些物理量的问题 按特征数之间的函数关系整理实验数据,得到实用关联式 ——解决了实验中实验数据如何整理的问题 可以在相似原理的指导下采用模化试验 —— 解决了实物 试验很困难或太昂贵的情况下,如何进行试验的问题
Nu — 待定特征数 (含有待求的 h)
Re,Pr,Gr — 已定特征数
特征关联式的具体函数形式、定性温度、特征长度等的确 定需要通过理论分析,同时又具有一定的经验性。
传热学对流传热的理论基础课件
关联式中的待定参数需由实验数据确定,通常由图解法 和最小二乘法确定。如通过相似原理或理论分析,预期
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度场
2.热流边界条件
y
w,x
w,x
能量方程 + 速度场
对流换热系数与流体温度场的关系,称为对流换 热过程微分方程式。
§2 二维对流换热微分方程组
(Two-dimensional convection heat transfer equations)
x方向动量方程
微 分
y方向动量方程 确定速度场
▪ 流体平均温度
Average temperature of fluid ▪ 壁表面温度
Temperature of wall surface ▪ 流体与壁的算术平均温度
Average temperature between fluid and wall surface
三、流体的相变(Phase Change) 四、换热面几何尺寸、形状及位置
u
u x
u y
Fx
p x
(
2u x 2
2u y 2
)(5-4a)
u
x
y
Fy
பைடு நூலகம்
p y
(
2
x 2
2
y 2
() 5-4b)
(1)
(2)(3) (4)
Physical significance:(1)惯性力(inertia force)
(2)体积力(body force)
(3)压力梯度(pressure gradient)
方 程
连续性方程
确定温度场
组 能量方程
表面传热系数
未知量:速度分量u ,速度分量v,温度t,压力p
2.1 连续性方程(Continuity equation)
Mass conservation of control volume(dxdy),
X-direction:(unit time,z=1)
Inflow M x udy
t y
dx 1
" y
c ptdx
x方向导入的净热量=
'x
( 'x
'x
x
dx)
Chapter 6 对流换热分析
Introduction to Convection
对流换热:流体与固体壁直接接触时所 发生的热量传递过程。 牛顿冷却公式
q h(tw t f )
确定换热系数(h)的途径 ➢ 理论解法:分析解法、积分近似解法、数
值解法和比拟解法 ➢ 实验研究:相似原理指导
§1 对流换热概述
1.1 影响对流换热的因素
一、流动起因和流动状态
1.流动起因 1) 自然对流(free convection) 2) 受迫对流(forced convection) 2.流动状态 1)层流(laminar flow) 2)紊流(turbulent flow)
二、流体的物理性质 (Thermophysical properties of fluids)
▪ 密度(Density):,kg/m3
▪ 热导率(Thermal conductivity):, W/m·K
▪ 定压比热(Specific heat at constant pressure):cp, J/kg·K
▪ 热扩散率(Thermal diffusivity):a, m2/s
▪ 动力粘度(Dynamic viscosity):, N ·s/m2
y
y
xy
x
dxdy
法向应力(Normal stresses):x, y ;
切向应力(Shear stresses):xy, yx
动量守恒方程(Momentum equations)
u
u
u x
u y
Fx
x
x
yx
y
u
x
y
Fy
xy
x
y
y
x
p
2
u x
yx
xy
u y
x
代入上两式得
u
▪ 运动粘度(Kinematic viscosity):, m2/s
▪ 体膨胀系数(Volumetric thermal expansion coefficient):
v, 1/K (影响自然对流换热)
v
1 v
v T
p
1
T
p
❖定性温度(Characteristic temperature): 确定流体物性的特征温度。
(4)粘滞力(viscosity force)
对于稳态流动
u v 0
只有重力场时
Fx g x Fy g y
❖连续性方程+动量方程速度场
2.3 能量微分方程式(Energy Equations)
设 为' 导热量; "为热对流传递的能量
'x t dy 1
x
x" cptudy
'y
x 方向加速度
D u D x y
y 方向加速度
2.微元体所受的外力
1)体积力(body
forces)
Fx dx dy Fy dx dy
式中X、Y为单位体积流体在x、y方向分别受到的
体积力分量
2)表面力(surface forces)
x, y方向受到的表面力分别为:
x
x
yx
y
dxdy
Outflow
M xdx
Mx
M x x
dx
Y-direction:
Inflow M y dx
Outflow
M ydy
My
M y y
dy
质量守恒(Mass conservation)
M x dx M y dy 0
x
y
M x udy; M y vdx
常物性、不可压缩稳态流动
(Constant properties, incompressible fluids, steady flow)
const u 0( , 5-3)
x y
2.2 动量微分方程式(Momentum equation)
1. 惯性力=微元体的质量加速度 Inertia force=MassAcceleration
dxdy 1 DU D
x DU 在 和 y 方向分别为
D
Du u u u u D x y
qx
L
t y
w,
x
qx hx tw t f x hx tx
(1) (2)
引入过余温度
t tw; tx (tw t f )x (w f )x x
hx
L x
y
w,x
——对流换热过程微分 方程式
目的:求解hx 边界条件:
1.壁温边界条件
求温度梯度
y
w,x
(temperature gradient)
壁面几何因素影响流体在壁面的流态、速度分 布、温度分布()。 ❖定型尺寸(l):对换热有决定影响的特征尺寸。
总结:
h f (u,tw,t f,,cp,,v,,l,)
1.2 对流换热过程微分方程式
(Convection transfer differential equations)
根据傅立叶定律和牛顿冷却公式: