线性代数复习题-第四章

合集下载

【最新试题库含答案】线性代数练习册第四章习题及答案

【最新试题库含答案】线性代数练习册第四章习题及答案

线性代数练习册第四章习题及答案:篇一:线代第四章习题解答第四章空间与向量运算习题4.14-1-1、已知空间中三个点A,B,C坐标如下:A?2,?1,1?,B?3,2,1?,C??2,2,1? (1)求向量,,的坐标,并在直角坐标系中作出它们的图形;(2)求点A与B之间的距离.解:(1) (1,3,0), (?5,0,0), (4,?3,0)(2)AB??4-1-2.利用坐标面上和坐标轴上点的坐标的特征,指出下列各点的特殊位置: A?3,4,0?; B?0,4,3? ; C?3,0,0? ;D?0,?1,0? 解: A (3,4,0) 在xoy面上 B(0,4,3)点在yoz面上C(3,0,0)在x轴上 D(0,-1,0)在y轴上 4-1-6. 设u?a?b?2c,v??3b?c,试用a、b、c表示3u?3v.解:3u-2v=3(a-b+2c)-2(-3b-c)=3a+3b+8c4-1-7. 试用向量证明:如果平面上的一个四边形的对角线互为平分,那么这个四边形是平行四边形.解:设四边形ABCD中AC与DB交于O,由已知AO=OC,DO=OB 因为AB =AO+OB=OC+DO=DC,AD=AO+OD=OC+BO=BC 所以ABCD为平行四边形。

4-1-8. 已知向量a的模是4,它与轴u的夹角60,求向量a在轴u上的投影.?解:.prju?u)?4*cos60=4?r?rcos(r。

3=23 24-1-9. 已知一向量的终点在点B?2,?1,7?,它在x轴、y轴、z轴上的投影依次为4、-4、7,求这向量起点A的坐标解:设起点A为(x,y,z)prjxAB?(2?x0)?4prjyAB?(?1?y)??4 prjzAB?(7?z0)?7解得:x??2y?3z0?04-1-12. 求下列向量的模与方向余弦,并求与这些向量同方向的单位。

线性代数第四章题目及答案

线性代数第四章题目及答案

一、选择+填空(64课时)1. 向量(2,3,2)T β=在基1(1,1,1)T α=,2(0,1,1,)T α=,3(0,0,1)T α=下的坐标为:(2,1,-1) .2. 已知三维空间3R 的两组基为:1(1,1,0)T α=, 2(0,1,1)T α=, 3(1,0,1)T α=和1(1,0,3)T β=,2(1,1,0)T β=-,3(1,2,1)T β=,则由基1α,2α,3α到基1β,2β,3β的过渡矩阵为( 101111210-⎛⎫ ⎪- ⎪ ⎪⎝⎭).3. 设312312311212,,,,R ξξξηηηηξηξξ==-和是的两组基,其中,,3123ηξξξ=--,则32132ξξξα+-=关于基321321,,,,ηηηξξξ和的坐标为⎽⎽⎽1,-2,3 和 -1,5,-3 。

4. 向量组1(1,2,2)T α=-,2(1,0,1)T α=--,3(5,3,7)T α=--单位正交化后为:( 1/32/32/32/32/31/32/31/32/3-⎛⎫ ⎪--- ⎪ ⎪--⎝⎭)。

5. 向量(1,2,1,1)T α=与(3,1,0,1)T β-的内积为( 2 ).6. 向量(1,2,2,3)α=与向量(3,1,5,1)β=的夹角为 。

7. 下列集合是向量空间的是( CEG )A. 2323{(1,,,,)|,,,}T n n V x x x x x x R =∈B. 123123{(,,)|321}T V x x x x x x =-+=C. 2323{(0,,,,)|,,,}T n n V x x x x x x R =∈D. 1231{(,,)|0}T V x x x x =>E. 齐次线性方程组解空间{|0}V X AX ==F. 非齐次线性方程组解空间{|}V X AX b == G . 123123{(,,)|320}T V x x x x x x =-+=8. 若向量()524α=-,,,则α= 5 ,标准化之后为 524555⎛⎫- ⎪ ⎪⎝⎭,, 。

线性代数第四章答案

线性代数第四章答案

第四章 向量组的线性相关性1 设v1(1 1 0)T v2(0 1 1)T v3(3 4 0)T求v1v2及3v12v2v3解v1v2(1 1 0)T(0 1 1)T(10 11 01)T(1 0 1)T3v12v2v33(1 1 0)T 2(0 1 1)T (3 4 0)T(31203 31214 30210)T(0 1 2)T2 设3(a1a)2(a2a)5(a3a) 求a其中a1(2 5 1 3)Ta2(10 1 5 10)T a3(4 1 1 1)T解由3(a1a)2(a2a)5(a3a)整理得(1 2 3 4)T3 已知向量组A a1(0 1 2 3)T a2(3 0 1 2)T a3(2 3 0 1)TB b1(2 1 1 2)T b2(0 2 1 1)T b3(4 4 1 3)T证明B组能由A组线性表示但A组不能由B组线性表示证明由知R(A)R(A B)3 所以B组能由A组线性表示由知R(B)2 因为R(B)R(B A) 所以A组不能由B组线性表示4 已知向量组A a1(0 1 1)T a2(1 1 0)TB b1(1 0 1)T b2(1 2 1)T b3(3 2 1)T证明A组与B组等价证明由知R(B)R(B A)2 显然在A中有二阶非零子式故R(A)2 又R(A)R(B A)2 所以R(A)2 从而R(A)R(B)R(A B) 因此A组与B组等价5 已知R(a1a2a3)2 R(a2a3a4)3 证明(1) a1能由a2a3线性表示(2) a4不能由a1a2a3线性表示证明 (1)由R(a2a3a4)3知a2a3a4线性无关故a2a3也线性无关又由R(a1 a2a3)2知a1a2a3线性相关故a1能由a2a3线性表示(2)假如a4能由a1a2a3线性表示则因为a1能由a2a3线性表示故a4能由a2a3线性表示从而a2a3a4线性相关矛盾因此a4不能由a1a2a3线性表示6 判定下列向量组是线性相关还是线性无关(1) (1 3 1)T (2 1 0)T (1 4 1)T(2) (2 3 0)T (1 4 0)T (0 0 2)T解 (1)以所给向量为列向量的矩阵记为A因为所以R(A)2小于向量的个数从而所给向量组线性相关(2)以所给向量为列向量的矩阵记为B因为所以R(B)3等于向量的个数从而所给向量组线性相无关7 问a取什么值时下列向量组线性相关?a1(a 1 1)T a2(1 a 1)T a3(1 1 a)T解以所给向量为列向量的矩阵记为A由如能使行列式等于0,则此时向量组线性相关(具体看书后相应答案)8 设a1a2线性无关a1b a2b线性相关求向量b用a1a2线性表示的表示式解因为a1b a2b线性相关故存在不全为零的数12使(a1b)2(a2b)01由此得设则b c a1(1c)a2c R9 设a1a2线性相关b1b2也线性相关问a1b1a2b2是否一定线性相关?试举例说明之(也可看书后答案)解不一定例如当a1(1 2)T, a2(2 4)T, b1(1 1)T, b2(0 0)T时有a1b1(1 2)T b1(0 1)T, a2b2(2 4)T(0 0)T(2 4)T而a1b1a2b2的对应分量不成比例是线性无关的10 举例说明下列各命题是错误的(1)若向量组a1a2a m是线性相关的则a1可由a2a m线性表示解设a1e1(1 0 0 0) a2a3a m0则a1a2a m线性相关但a1不能由a2a m线性表示(2)若有不全为0的数12m使a1m a m1b1m b m01成立则a1a2a m线性相关, b1b2b m亦线性相关解有不全为零的数12m使a1m a m 1b1m b m01原式可化为(a1b1) m(a m b m)01取a1e1b1a2e2b2a m e m b m其中e1e2e m为单位坐标向量则上式成立而a1 a2a m和b1b2b m均线性无关(3)若只有当12m全为0时等式a1m a m1b1m b m01才能成立则a1a2a m线性无关, b1b2b m亦线性无关解由于只有当12m全为0时等式由1a1m a m1b1m b m0成立所以只有当12m全为0时等式(a1b1)2(a2b2) m(a m b m)01成立因此a1b1a2b2a m b m线性无关取a1a2a m0取b1b m为线性无关组则它们满足以上条件但a1a2a m线性相关(4)若a1a2a m线性相关, b1b2b m亦线性相关则有不全为0的数12m使a1m a m0 1b1m b m01同时成立解a1(1 0)T a2(2 0)T b1(0 3)T b2(0 4)Ta12a2 01221b12b2 01(3/4)210 与题设矛盾1211 设b1a1a2b2a2a3 b3a3a4 b4a4a1证明向量组b1b2b3b4线性相关证明由已知条件得a1b1a2a2b2a3 a3b3a4 a4b4a1于是a1 b1b2a3b1b2b3a4b1b2b3b4a1从而b1b2b3b40这说明向量组b1b2b3b4线性相关12 设b1a1b2a1a2b r a1a2 a r且向量组a1a2a r线性无关证明向量组b1b2b r线性无关证明已知的r个等式可以写成上式记为BAK因为|K|10 K可逆所以R(B)R(A)r从而向量组b1b2b r线性无关13 求下列向量组的秩, 并求一个最大无关组(1)a1(1 2 1 4)T a2(9 100 10 4)T a3(2 4 2 8)T解 由知R(a1a2a3)2 因为向量a1与a2的分量不成比例故a1a2线性无关所以a1 a2是一个最大无关组(2)a1T(1 2 1 3) a2T(4 1 5 6) a3T(1 3 4 7)解由知R(a1T a2T a3T)R(a1a2 a3)2 因为向量a1T与a2T的分量不成比例故a1T a2T 线性无关所以a1T a2T是一个最大无关组14 利用初等行变换求下列矩阵的列向量组的一个最大无关组(1)解因为所以第1、2、3列构成一个最大无关组.(2)解因为所以第1、2、3列构成一个最大无关组(关于14的说明:14题和书上的14题有些不同,答案看书后的那个)15 设向量组(a 3 1)T (2 b 3)T(1 2 1)T (2 3 1)T的秩为2 求a b解设a1(a 3 1)T a2(2 b 3)T a3(1 2 1)T a4(2 3 1)T因为而R(a1a2a3a4)2 所以a2 b516 设a1a2a n是一组n维向量已知n维单位坐标向量e1e2e n能由它们线性表示证明a1a2a n线性无关证法一记A(a1a2a n) E(e1e2e n) 由已知条件知存在矩阵K使EAK两边取行列式得|E||A||K|可见|A|0 所以R(A)n从而a1a2a n线性无关证法二因为e1e2e n能由a1a2a n线性表示所以R(e1e2e n)R(a1a2a n)而R(e1e2e n)n R(a1a2a n)n所以R(a1a2a n)n从而a1a2a n线性无关17 设a1a2a n是一组n维向量, 证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示证明必要性设a为任一n维向量因为a1a2a n线性无关而a1a2a n a 是n1个n维向量是线性相关的所以a能由a1a2a n线性表示且表示式是唯一的充分性已知任一n维向量都可由a1a2a n线性表示故单位坐标向量组e1 e2e n能由a1a2a n线性表示于是有nR(e1e2e n)R(a1a2a n)n即R(a1a2a n)n所以a1a2a n线性无关18 设向量组a1a2a m线性相关且a10证明存在某个向量a k (2km) 使a k能由a1a2a k1线性表示证明因为a1a2a m线性相关所以存在不全为零的数12m使a12a2m a m01而且23m不全为零这是因为如若不然则1a10由a10知10 矛盾因此存在k(2km) 使0 k1k2m0k于是a12a2k a k01a k(1/k)(1a12a2k1a k1)即a k能由a1a2a k1线性表示19 设向量组B b1b r能由向量组A a1a s线性表示为(b1b r)(a1a s)K其中K为sr矩阵且A组线性无关证明B组线性无关的充分必要条件是矩阵K的秩R(K)r证明 令B(b1b r) A(a1a s) 则有BAK必要性设向量组B线性无关由向量组B线性无关及矩阵秩的性质有rR(B)R(AK)min{R(A) R(K)}R(K)及R(K)min{r s}r因此R(K)r充分性因为R(K)r所以存在可逆矩阵C使为K的标准形于是(b1b r)C( a1a s)KC(a1a r)因为C可逆所以R(b1b r)R(a1a r)r从而b1b r线性无关20 设证明向量组12n与向量组12n等价证明将已知关系写成将上式记为BAK因为所以K可逆故有ABK1由BAK和ABK1可知向量组12n与向量组12n可相互线性表示因此向量组12n与向量组12n等价21 已知3阶矩阵A与3维列向量x满足A3x3A x A2x且向量组x A x A2x线性无关(1)记P(x A x A2x) 求3阶矩阵B使APPB解因为APA(x A x A2x)(A x A2x A3x)(A x A2x 3A x A2x)所以(2)求|A|解由A3x3A x A2x得A(3x A x A2x)0因为x A x A2x线性无关故3x A x A2x0即方程A x0有非零解所以R(A)3 |A|0(从22题开始,凡涉及到基础解系问题的,答案都不是唯一的,可以参考本文答案,也可以看书后的答案,不过以书后的答案为主。

线性代数第四章习题答案

线性代数第四章习题答案

0 a+1 1 −1
1 − a2 = (a + 1)2 (a − 2). a
a −1 a
0 a + 1 −1 − a
1 −1
所以, a = −1 或 a = 2 时向量组线性相关. 更常规的思路是: 向量组 a1 , a2 , a3 线性相关, 则存在不全为零的数 k1 , k2 , k3 使得
k1 a1 + k2 a2 + k3 a3 = 0.
50
第四章 向量组的线性相关性 解: (1) 因为
A= −1 2 3 1 1 0 1 −1 0 0 2 7 2 1 7 2 −1 0 0 2 1 0 1 1 , 0
r2 + 3r1 4 r3 + r1 1
可见 R(A) = 2, 所以该向量组是线性相关的. 或者: 由 −1 2 1 3 + 1 = 4 1 0 1 知线性相关. (2) 因为

1 a3 = −1 1
4
.
解: 由 3(a1 − a) + 2(a2 + a) = 5(a3 + a) 得 2 10 1 1 5 + 1 1 a = (3a1 + 2a2 − 5a3 ) = 6 2 1 3 5 3= 3 0 1
2
;

4 −2 1 , b3 = B : b1 = , b2 = 1 1 1 3 1 2
2


0


4
.
即线性方程组

线性代数第4章习题答案(48p)

线性代数第4章习题答案(48p)
k 1 k 1 −1 = k 2 − 3k − 4 = (k − 4)(k + 1) ≠ 0 1
由于 D = 1
2 −1
⇒ k ≠ 4且k ≠ −1. 故应选 (C) .
(2) 线性方程组 Am×n X = b 有唯一解的条件是 B ). 有唯一解的条件是( (B) R(A) = R(A b) = n ; (A) m = n ; ) 都不对. 都不对 (C) Ax = θ 只有零解 只有零解; (D) (A),(B),(C)都不对 解: 线性方程组 Am×n X = b 有唯一解的充要条件是其 系数矩阵的秩与增广矩阵的秩相等且为n 选项(A)只 系数矩阵的秩与增广矩阵的秩相等且为 . 选项 只 表明方程组中方程的个数与未知量个数相同, 表明方程组中方程的个数与未知量个数相同 此时系 数矩阵的秩与增广矩阵的秩未必相等且为n 数矩阵的秩与增广矩阵的秩未必相等且为 , 故选项 (A)不正确 选项 成立的条件是系数矩阵的秩为 , 不正确. 选项(C)成立的条件是系数矩阵的秩为 成立的条件是系数矩阵的秩为n 不正确 也不正确. 但此时增广矩阵的秩未必为n, 故选项(C)也不正确 但此时增广矩阵的秩未必为 故选项 也不正确 由排除法知选项(B)正确 因此应选(B). 由排除法知选项 正确, 因此应选 正确
四. 求方程组
x1 + 2 x2 + 3 x3 + 4 x4 = 5 的特解. x1 − x2 + x3 + x4 = 1 的特解
解: B = 1 2 3 4 5 → 1 2 3 4 5 1 −1 1 1 1 0 −3 −2 −3 −4
∴ R( A) = R( B) = 2 < 4 = n.
α 4. 设Ax = b为四元齐次线性方程组,R(A)=3,1 , α 2 , α 3 为四元齐次线性方程组, 为四元齐次线性方程组 ,

复习线性代数习题

复习线性代数习题

第一章 行列式1、多项式1211123111211)(xxxx x f -=,求3x 的系数2、求多项式xxx x x f --=12312)(中的2x 项的系数是 3.四阶行列式ij a 的展开式中,项21133442a a a a 所带的符号是 号.4、1223545i j k a a a a a 是五阶行列式(),1,2,...,5ij a i j =中前面冠以负号的项,那么,,i j k 的值可以为( )。

(A )1,4,3i j k === (B )4,1,3i j k === (C )3,1,4i j k === (D )4,3,1i j k ===5.若二阶行列式11122122a a a a a =,11112121b a b b a =,则111211212221a a b a a b +=+ .6.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则行列式123123123a a ab b bc c c =( )。

(A )3 (B )3- (C )6 (D )6-8、已知四阶行列式D 中第一行的元素依次为1,2,0,4,第3行的元素的余子式依次为6,x ,19,2, 则x = 。

9、设某三阶行列式第三列元素依次为1,2,3-,它们的代数余子式依次为3,2,1-,则此 行列式的值等于 。

10.若四阶行列式中,第三行元素依次为1,2,0,1-,对应的余子式依次为5,3,7,4-,则该行列式的值为 ( )(A )3- (B )5- (C )15- (D )511、设行列式132x D x-=,且111112120a A a A +=,则x = 。

)(324324324,173331323123212221131112111333231232221131211=---===aaa aa a a a a a a a D aaaa a a a a a D 、若12、计算行列式(1)224041353123251D ---=-- (2)1111121412113045-。

线性代数复习题

线性代数复习题

请各位同学首先复习《线性代数》后四章内容及书上习题,有时间再独立选作补充题,最后才参考答案。

《线性代数》期末复习补充题第四章 内积和正交矩阵1.设12(,,,)n A ααα=是一个实矩阵,证明:T A A 是对角矩阵⇔12,,,n ααα两两正交.2.A 是m n ⨯实矩阵,()m n ≥.证明TA A 是单位矩阵⇔A 的列向量组是正交单位向量组, 3.已知12,,,s ααα和12,,,t βββ是两个线性无关的n 维向量组,并且每个i α和每个j β正交.证明1212,,,,,,,s t αααβββ线性无关.4. 已知12,,,s ααα和12,,,t βββ是两个n 维实向量组,并且每个i α和每个j β正交.证明 12121212(,,,,,,,)(,,,)(,,,).s t s t r r r αααβββαααβββ=+5.A 是r n ⨯矩阵,(),r A r =实非零向量β是AX o =的解.记12,,,r ααα是A 的行向量组.证明12,,,,r αααβ线性无关.7.设A 是n 阶非零实矩阵(2n >),并且T*A A =,证明A 是正交矩阵.8.设A 是3阶正交矩阵,它的第一行第一列的元素T111,(1,0,0)a β==,则方程AX β=的解为β9.设α是n 维实列向量,证明T2E αα-是正交矩阵⇔α是单位向量或零向量.10.设123,,ααα和123,,βββ都是5维向量组,并且每个i α和每个j β都正交.证明123,,ααα和123,,βββ这两个向量组至少有一个线性相关.11.设A 是n 阶实的反对称矩阵.证明:(1)对于任何n 维实列向量α,α和A α正交; (2)()A E +和()A E -都可逆; (3)1()()A E A E --+是正交矩阵. 12.给定向量组T T T 123=(1,1,0,0),(1,0,1,0),(1,0,0,1).ααα==-求与此向量组等价的单位正交向量组.13.设n 阶矩阵A 可逆.证明存在上三角矩阵T ,使得AT 是正交矩阵.第五章 特征向量和矩阵的对角化1.求4阶矩阵1111111111111111A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭的特征值和特征向量. 2.设122212221A -⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭求A 和1A E -+的特征值. 3.设T T 1212(,,,),(,,,),1n n a a a b b b n αβ==>,,αβ都不是零向量.记T .A αβ= (1)求A 的特征值; (2)证明α是A 的特征向量; (3)证明A 可对角化⇔(,)0.αβ≠4.设A 是3阶实对称矩阵,其各行之和为3,并且T (1,2,1),--T (0,1,1)-都是AX o =的解,求.A5.设3阶矩阵2125312A a b -⎛⎫⎪= ⎪ ⎪--⎝⎭有一个特征向量T (1,1,1)η=-,求,a b 和η所属的特征值.6.设T T T 123(1,1,1),(1,2,4),(1,3,9)ααα===都是3阶矩阵A 的特征向量,特征值依次为1,2,3..又设T (1,1,3)β=,求n A β.7.已知3阶矩阵A 满足|||||42|0,A E A E E A +=-=-=求32|5|.A A -8.已知n 阶矩阵A 满足3A E =,证明22A A E ++可逆. 9.设A 和B 都是n 阶矩阵,并且都相似于对角矩阵.证明~A B ⇔A 和B 的特征多项式相等.10.给定n 阶矩阵11,1⎛⎫ ⎪⎪= ⎪⎪⎝⎭b b b b A b b(1)求A 的特征值与特征向量;(2)求可逆矩阵P ,使得1P AP -是对角矩阵.11.已知111200242~020.3300A B x y -⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭(1)求x 和y ;(2)求可逆矩阵U ,使得1U AU B -=.12.设3221,423A kk k -⎛⎫⎪=-- ⎪ ⎪-⎝⎭为何值时A 可对角化?此时求可逆矩阵P .使得1P AP -是对角矩阵.13.已知n 阶矩阵A 满足()()A aE A bE O --=,其中a b ≠,证明A 可对角化.14.设T T T 123(1,2,2),(2,2,1),(2,1,2)ηηη==-=--都是3阶矩阵A 的特征向量,特征值依次为1,2,3,求A .15.设3阶实对称矩阵A 的特征值为1,2,3,T 1(1,1,1)η=--和T 2(1,2,1)η=--分别是属于1和2的特征向量,求属于3的特征向量,并且求A 。

线性代数课后习题解答第四章习题详解

线性代数课后习题解答第四章习题详解

第四章 向量组的线性相关性1.设T T T v v v )0,4,3(,)1,1,0(,)0,1,1(321===, 求21v v -及32123v v v -+. 解 21v v -T T )1,1,0()0,1,1(-=T )10,11,01(---=T )1,0,1(-=32123v v v -+T T T )0,4,3()1,1,0(2)0,1,1(3-+=T )01203,41213,30213(-⨯+⨯-⨯+⨯-⨯+⨯= T )2,1,0(=2.设)(5)(2)(3321a a a a a a +=++-其中T a )3,1,5,2(1=, T a )10,5,1,10(2=,T a )1,1,1,4(3-=,求a . 解 由)(5)(2)(3321a a a a a a +=++-整理得)523(61321a a a a -+=])1,1,1,4(5)10,5,1,10(2)3,1,5,2(3[61T T T --+=T)4,3,2,1(=3. 已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由 ⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r ⎪⎪⎪⎭⎫⎝⎛-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示.4. 已知向量组A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ;B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.5. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示; (2) a 4不能由a 1, a 2, a 3线性表示.证明 (1)由R (a 2, a 3, a 4)=3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1, a 2, a 3)=2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示. (2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示.6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.7. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关.8. 设a 1, a 2线性无关, a 1+b , a 2+b 线性相关, 求向量b 用a 1, a 2线性表示的表示式.解 因为a 1+b , a 2+b 线性相关, 故存在不全为零的数λ1, λ2使 λ1(a 1+b )+λ2(a 2+b )=0,由此得 2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=, 设211λλλ+-=c , 则 b =c a 1-(1+c )a 2, c ∈R .9. 设a 1, a 2线性相关, b 1, b 2也线性相关, 问a 1+b 1, a 2+b 2是否一定线性相关?试举例说明之. 解 不一定.例如, 当a 1=(1, 2)T , a 2=(2, 4)T , b 1=(-1, -1)T , b 2=(0, 0)T 时, 有 a 1+b 1=(1, 2)T +b 1=(0, 1)T , a 2+b 2=(2, 4)T +(0, 0)T =(2, 4)T , 而a 1+b 1, a 2+b 2的对应分量不成比例, 是线性无关的.10.举例说明下列各命题是错误的:(1) 若向量组m a a a ,,,21 是线性相关的,则1a 可由,,2m a a 线性表示.(2) 若有不全为0的数m λλλ,,,21 使 01111=+++++m m m m b b a a λλλλ 成立, 则m a a ,,1线性相关, m b b ,,1 亦线性相关. (3) 若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ 才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.(4) 若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数, m λλλ,,,21 使.0 ,01111=++=++m m m m b b a a λλλλ 同时成立.解 (1) 设)0,,0,0,1(11 ==e a , 032====m a a a满足m a a a ,,,21 线性相关, 但1a 不能由,,,2m a a 线性表示.(2) 有不全为零的数m λλλ,,,21 使 01111=+++++m m m m b b a a λλλλ原式可化为 0)()(111=++++m m m b a b a λλ取 m m m b e a b e a b e a -==-==-==,,,222111 . 其中m e e ,,1 为单位向量,则上式成立,而m a a ,,1 ,m b b ,,1 均线性相关.(3) 由01111=+++++m m m m b b a a λλλλ (仅当01===m λλ )m m b a b a b a +++⇒,,,2211 线性无关取021====m ααα , 取m b b ,,1 为线性无关组. 满足以上条件,但不能说是m ααα,,,21 线性无关的.(4) Ta )0,1(1= Ta )0,2(2= Tb )3,0(1= Tb )4,0(2=⎪⎭⎪⎬⎫-=⇒=+-=⇒=+21221121221143020λλλλλλλλb b a a 021==⇒λλ与题设矛盾.11.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关. 证明 设有4321,,,x x x x 使得044332211=+++b x b x b x b x 则0)()()()(144433322211=+++++++a a x a a x a a x a a x 0)()()()(443332221141=+++++++a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k ,411x x k +=; 212x x k +=; 323x x k +=; 434x x k +=;由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,即4321,,,b b b b 线性相关. (2) 若4321,,,a a a a 线性无关, 则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+000043322141x x x x x x x x 011000110001110014321=⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛⇒x x x x 由01100011000111001= 知此齐次方程存在非零解. 则4321,,,b b b b 线性相关. 综合得证.12.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.证明 设02211=+++r r b k b k b k 则++++++++++p r p r r a k k a k k a k k )()()(2211 0=+r r a k因向量组r a a a ,,,21 线性无关,故⎪⎩⎪⎨⎧==++=+++000221r r r k k k k k k ⇔⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛0001001101121 r k k k因为0110011011≠= 故方程组只有零解. 则021====r k k k . 所以r b b b ,,,21 线性无关13.求下列向量组的秩,并求一个最大无关组:(1) ⎪⎪⎪⎪⎭⎫ ⎝⎛-=41211a ,⎪⎪⎪⎪⎭⎫ ⎝⎛=41010092a ,⎪⎪⎪⎪⎭⎫⎝⎛---=82423a ; (2) )3,1,2,1(1=T a ,)6,5,1,4(2---=T a ,)7,4,3,1(3---=Ta .解 (1) 3131,2a a a a ⇒=-线性相关.由⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛824241010094121321T T Ta a a ⎪⎪⎪⎭⎫⎝⎛--000032198204121~秩为2,一组最大线性无关组为21,a a .(2) ⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛743165143121321T T T a a a ⎪⎪⎪⎭⎫⎝⎛------10550189903121~⎪⎪⎪⎭⎫⎝⎛---0000189903121~ 秩为2,最大线性无关组为TT a a 21,.14.利用初等行变换求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组线性表示:(1) ⎪⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125; (2) ⎪⎪⎪⎪⎭⎫ ⎝⎛---14011313021512012211.解 (1) ⎪⎪⎪⎪⎭⎫⎝⎛482032251345494751325394754317312514131233~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛531053103210431731252334~r r r r --⎪⎪⎪⎪⎭⎫ ⎝⎛0003100321043173125 所以第1、2、3列构成一个最大无关组.(2) ⎪⎪⎪⎪⎭⎫⎝⎛---1401131302151201221114132~r r r r --⎪⎪⎪⎪⎭⎫⎝⎛------222001512015120122114323~rr r r ↔+⎪⎪⎪⎪⎭⎫⎝⎛---00000222001512012211,所以第1、2、3列构成一个最大无关组.15. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=5200111031116110111031113111332221) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5.16.设n a a a ,,,21 是一组n 维向量,已知n 维单位坐标向量n e e e ,,,21 能由它们线性表示,证明n a a a ,,,21 线性无关.证明 n 维单位向量n e e e ,,,21 线性无关. 不妨设:nnn n n n nn n n a k a k a k e a k a k a k e a k a k a k e +++=+++=+++= 22112222121212121111所以 ⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛T n T Tnn n n n n T n T T a a a k k k k k k k k k e ee 2121222211121121两边取行列式,得T n T T nn n n n nTnTTa a a k k k k k k k k k e e e2121222211121121= 由 002121≠⇒≠T nT T T n T T a a a e e e 即n 维向量组n a a a ,,,21 所构成矩阵的秩为n . 故n a a a ,,,21 线性无关.17.设n a a a ,,,21 是一组n 维向量,证明它们线性无关的充分必要条件是:任一n 维向量都可由它们线性表示.证明 设n εεε,,,21 为一组n 维单位向量,对于任意n 维向量T n k k k a ),,,(21 =则有n n k k k a εεε+++= 2211即任一n 维向量都可由单位向量线性表示.必要性⇒n a a a ,,,21 线性无关,且n a a a ,,,21 能由单位向量线性表示,即nnn n n n nn n n k k k k k k k k k εεεαεεεαεεεα+++=+++=+++= 22112222121212121111故 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛n T T T nn n n n n T n T T k k k k k k k k k a aa εεε2121222211121121 两边取行列式,得 TnTTnn n n n n TnTTk k k k k k k k k a a a εεε2121222211121121=由 0021222211121121≠⇒≠nnn n nn T n T T k k k k k k k k k a a a令 ⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯nn n n n n n n k k k k k k k k k A212222111211 . 由⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛⇒⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫⎝⎛-T n T T T n T TT n T T T n T Ta a a A A a a a εεεεεε 212112121即n εεε,,,21 都能由n a a a ,,,21 线性表示,因为任一n 维向量能由单位向量线性表示,故任一 n 维向量都可以由n a a a ,,,21 线性表示.充分性⇐已知任一n 维向量都可由n a a a ,,,21 线性表示,则单位向量组:n εεε,,,21 可由n a a a ,,,21 线性表示,由16题知n a a a ,,,21 线性无关.18. 设向量组a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, 且a 1≠0, 证明存在某个向量a k (2≤k ≤m ), 使a k 能由a 1, a 2, ⋅ ⋅ ⋅, a k -1线性表示.证明 因为a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, 所以存在不全为零的数λ1, λ2, ⋅ ⋅ ⋅,λm , 使λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λm a m =0,而且λ2, λ3,⋅ ⋅ ⋅, λm 不全为零. 这是因为, 如若不然, 则λ1a 1=0, 由a 1≠0知λ1=0, 矛盾. 因此存在k (2≤k ≤m ), 使λk ≠0, λk +1=λk +2= ⋅ ⋅ ⋅ =λm =0,于是λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λk a k =0,a k =-(1/λk )(λ1a 1+λ2a 2+ ⋅ ⋅ ⋅ +λk -1a k -1),即a k 能由a 1, a 2, ⋅ ⋅ ⋅, a k -1线性表示.19.设向量组:B r b b ,,1 能由向量组:A s a a ,,1 线性表示为K a a b b s r ),,(),,(11 =,其中K 为r s ⨯矩阵,且A 组线性无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 特征值与特征向量 复习题
一、填空题
1.向量121a ⎛⎫ ⎪= ⎪ ⎪-⎝⎭ 与 101b ⎛⎫ ⎪= ⎪ ⎪⎝⎭
的内积为 ,夹角为 . 2.3阶方阵A 的特征值为3,1,2-,则A =_______.
3.设A 是n 阶正交矩阵,则A =______.
4.已知1234,,,a a a a 为非零3维向量组,且123,,a a a 两两正交,则向量组1234,,,a a a a 的秩为______.
5.若3λ=是可逆方阵A 的一个特征值,则1A -必有一个特征值为 .
6.设12,αα是分别属于方阵A 的不同特征值12,λλ的特征向量,则12,αα必线性 .
7.已知2是A 的一个特征值,则_______________|6|2=-+E A A .
8.设向量(1,5,,1)T k α=-与向量(2,3,2,)T k k β=-相互正交,则k = .
9.已知3阶矩阵A 的特征值为1,1,2-,则矩阵3B A =的特征值为_______________.
10.已知)1,0,2,1(),1,0,1,1(--=-=βα.则内积=+-),3(βαβα .
11.已知3阶方阵A 的特征值为3,2,1-,则E A A ++22
的特征值为 .
12. 设()()1,2,,4,4,,2,1--==b a βα,若α与β正交,则b a ,应满足的关系为 .
13.设A 为n 阶方阵,且O E A A =+-652,则A 的特征值只能是________________. 14.设⎪⎪⎪⎭⎫ ⎝⎛=0111α和⎪⎪⎪⎭
⎫ ⎝⎛=1012α都是矩阵A 对应特征值2=λ的特征向量,且212ααβ-=,则向量=βA . 15.设n λλλ,,,21 是方阵n n ij a A ⨯=)(的n 个特征值,=+++n λλλ 21 .
二、判断题
1.矩阵111
2311122
11132A ⎛⎫- ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪- ⎪⎝⎭是正交矩阵.
2.正交阵的列向量都是单位向量,且两两正交.
3.若λ是n 阶矩阵A 的特征值,则2
λ是2A 的特征值. 4.设A 为正交阵,则矩阵A 的特征值λ满足等式:2
1λ=. 5.若A 是正交方阵,则1T A A -=也是正交阵,且1-=A 或1-.
6.设A ,B 都是n 阶正交方阵,则AB 也是n 阶正交方阵.
7.设21,λλ是矩阵A 的两个不同的特征值,21,ξξ是对应的特征向量,则21ξξ+也是A 的特征向量.
8.设A 为n 阶方阵,则A 与T A 有相同的特征多项式.
9.设A 为n 阶方阵,则A 与T A 有相同的特征值.
10.矩阵1849998149994479
99A ⎛⎫-
- ⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪-- ⎪⎝⎭是正交矩阵. 三、计算题 1.求310410482A ⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭
的特征值、特征向量. 2.求211020413A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭
的特征值及特征向量.
3.设()()122,2,1,0,1,1T T
αα=-=-,试求数k k 12,,使βαα=+k k 1122 是与α1正交的单位向量,并求β. 4.设311353002A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭
.(1)求A 的特征值与特征向量.(2)写出322B A A E =-+的所有特征值, 5.设三阶方阵 A 的特征值为101,,- , 其相应的特征向量分别为1231001,1,0111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
, 求88A .
6.已知3阶方阵A 的特征值为3,2,1-,试求E A A 23++*
.
7.求200032023A ⎛⎫ ⎪= ⎪ ⎪⎝⎭
的特征值和特征向量; 8.若⎪⎪⎪⎭⎫ ⎝⎛-=111ξ是矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135
212b a A 的一个特征向量,试求参数b a ,及特征向量ξ所对应的特征值.。

相关文档
最新文档