一元二次方程(提升篇)(Word版 含解析)

合集下载

第二章 一元二次方程 分类提升训练(含答案) 2024--2025学年 北师大版 九年级数学上册

第二章 一元二次方程 分类提升训练(含答案) 2024--2025学年 北师大版 九年级数学上册

第二章 一元二次方程分类提升训练 2024--2025学年 北师大版 九年级数学上册一、单选题1.关于x 的一元二次方程有两个不相等的实数根,则m 的值可能是( )A .9B .6C .4D .2.下列方程是一元二次方程的是( )A .B .C.D .3.已知关于x 的方程有两个相等的实数根,则()A .10B .25C .D .4.设,是关于x 的一元二次方程x 2−2(m +1)x +m 2+2=0的两个实数根,且(x 1+1)(x 2+1)=13,则m 的值为( )A .2B .4C .2或D .或45.某厂家今年一月份的口罩产量是50万个,三月份的口罩产量是80万个,若设该厂家一月份到三月份口罩产量的月平均增长率为x ,则所列方程为( )A .B .C .D .6.如图,一次函数的图象交轴于点,交轴于点,点在线段上不与点,重合,过点分别作和的垂线,垂足为,.当矩形的面积为时,点的坐标为( )A .B .C .或D .或7.一个研究小组有若干人,互送研究成果,若全组共送研究成果72个,这个小组共有( )人A .8B .9C .10D .72240x x m ++=1-22510x y ++=20ax bx c +-=212x x +=20x =2100x x m -+=m =25-25±1x 2x 4-2-250(1)80x +=250(1)80x -=()501280x +=()250180x +=26y x =-+x A y B P AB (A B)P OA OB C D OCPD 4P ()2,21,52⎛⎫ ⎪⎝⎭()1,41,52⎛⎫ ⎪⎝⎭()1,4()2,28.将方程化为一元二次方程的一般形式,其中二次项系数为,则一次项系数、常数项分别是( )A .、B .、C .、D .、9.已知、是关于的一元二次方程的两个不相等的实数根,且满足,则的值是( )A .B .C .或D .或二、填空题10.已知,是一元二次方程的两根,则  .11.数字下乡,农货上行,直播逐渐成为农户销售农产品的重要渠道,某地农村网商年为家,年达到家,设年到年农村网商的月平均增长率为,根据题意可列方程为  .12.关于的一元二次方程的两实数根分别为,,且,则的值为 .13.已知关于的 方程 有两个实数根,则 的取值范围是 .14.劳动教育已纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为,则可列方程为  .15. 二次项系数为,且两根分别为,的一元二次方程为 .(写成的形式)16.如图,在等边三角形中,D 是的中点,P 是边上的一个动点,过点P 作,交于点E ,连接.若是等腰三角形,则的长是  .2316x x +=36-16161-6-1-αβx 22(23)0x m x m +++=111αβ+=-m 3131-3-11x 2x 2320220x x --=2111234x x x x --+=202115002023216020212023x x 210x kx k +++=1x 2x 22121x x +=k x 21(1)02m x --=m x 211x =212x =20ax bx c ++=ABC AC AB PE AB ⊥BC ,DP DE 8,AB PDE =V BP三、解答题17.“一盔一带”安全守护行动在全国各地积极开展某品牌头盔的销量逐月攀升,某超市以每个元的进价购进一批该品牌头盔,当该头盔售价为元个时,七月销售个,八九月该品牌头盔销量持续上涨,在售价不变的基础上,九月的销量达到个.(1)求八,九两月销量的月平均增长率;(2)十月该超市为了减少库存,开始降价促销,经调查发现,该品牌头盔售价每降低元,月销量在九月销量的基础上增加个,当该品牌头盔售价为多少元时,超市十月能获利元?18.解方程:(1)(2)19.已知关于x 的一元二次方程 有两个不相等的实数根 m ,n.(1)求t 的取值范围.(2)当t=3时,解这个方程.(3)若m ,n 是方程的两个实数根,设Q=(m-2)(n-2),试求Q 的最小值.20.某水果超市以每千克元的价格购进一批水果,然后以每千克元的价格出售,一天可以售出千克.通过调查发现,每千克的售价每降低元,一天可以多售出千克.(1)若将这种水果每斤的售价降低元,则每天的销售量是______千克,每千克盈利______元(用含x 的代数式表示);.2030/2002881318002531x x x -=+3(2)2(2)x x x -=-222tx t 2t 40x -+-+=9121000.120x(2)要想一天盈利元,且保证一天销售量不少于千克,商店需将每千克的售价降低多少元?21.若是关于x 一元二次方程ax 2+bx+c=0(a≠0)的两个根,则方程的两个根和系数a 、b 、c有如下关系:,,把它们称为一元二次方程根与系数关系定理.已知是关于x 的一元二次方程x 2−2(m+1)x+m 2+5=0的两实数根.(1)求的取值范围;(2)若,求的值;(3)已知等腰三角形的一边长为,若、恰好是另外两边的长,求这个角形的周长.22.某超市从厂家购进A 、B 两种型号的水杯,两次购进水杯的情况如下表:进货批次A 型水杯(个)B 型水杯(个)总费用(元)一1002008000二20030013000(1)求A 、B 两种型号的水杯进价各是多少元?(2)在销售过程中,A 型水杯因为物美价廉而更受消费者喜欢.为了增大B 型水杯的销售量,超市决定对B 型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B 型水杯降价多少元时,每天售出B 型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A 型水杯可获利10元,售出一个B 型水杯可获利9元,超市决定每售出一个A 型水杯就为当地“新冠疫情防控”捐b 元用于购买防控物资.若A 、B 两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b 为多少?利润为多少?50025012x x 、12x x 、12b x x a +=-12cx x a=12x x 、m ()()121119x x --=m ABC 71x 2x ABC ∆23.某网店准备销售一种多功能旅行背包,计划从厂家以每个120元的价格进货.(1)经过市场调查发现,当每个背包的售价为140元时,月均销量为980个,售价每增长10元,月均销量就相应减少30个,若使这种背包的月均销量不低于800个,每个背包售价应不高于多少元?(2)在实际销售过程中,由于原材料涨价和生产成本增加的原因,每个背包的进价为150元,而每个背包的售价比(1)中最高售价减少了a%(a>0),月均销量比(1)中最低月均销量800个增加了5a%,结果该店销售该背包的月均利润达到了40000元,求在实际销售过程中每个背包售价为多少元?答案解析部分1.【答案】D 2.【答案】D 3.【答案】B 4.【答案】A 5.【答案】A 6.【答案】D 7.【答案】B 8.【答案】A 9.【答案】A 10.【答案】404811.【答案】1500(1+x )2=216012.【答案】13.【答案】0≤m≤2且m≠114.【答案】15.【答案】16.【答案】或或.17.【答案】(1)解:设八,九两月销量的月平均增长率为,由题意可得:,解得:,,不符合题意,舍去,答:八,九两月销量的月平均增长率为;(2)解:设该品牌头盔售价降低元,,整理得:,解得:,不符合题意,舍去,元,答:该品牌头盔售价为元时,超市十月能获利元.18.【答案】(1)解:原方程化为,,,,1-2300(1)363x +=22310x x -+=3-+412-x 2200Ω)288%x +=10.220%x ==22x =-()20%a ()()302028831800a a --+=2863600a a +-=14a =290(a =-)3030426(a -=-=)26180025410x x --=5a =4b =-1c =-所以,所以方程有两个不相等的实数根,即,(2)解:原方程可化为,所以,所以,.19.【答案】(1)解:∵ 原方程有两个不相等的实数根,∴b 2-4ac >0即4t 2-4(t 2-2t+4)>0,解之:t>2(2)解:当t=3时,x 2-6x+7=0解之:x₁=3+,x₂=3- (3)解:∵m ,n 是方程的两个实数根,∴m+n=2t ,mn=t 2-2t+4,∴Q=(m-2)(n-2)=mn-2(m+n )+4=t 2-2t+4-4t+4=(t-3)2-1,当t=3时Q 有最小值为-1.20.【答案】(1),(2)商店需将每千克的售价降低元21.【答案】(1)m≥2;(2)m=5;(3)这个角形的周长为17.22.【答案】(1)A 型号水杯进价为20元,B 型号水杯进价为30元;(2)超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元;(3)A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元.23.【答案】(1) 200元;(2) 190元22Δ4(4)45(1)360b ac =-=--⨯⨯-=>4610x ±==11x =215x =-3(2)2(2)0x x x -+-=(32)(2)0x x +-=12x =223x =-()100200x +()3x -2。

一元二次方程培优提高题解析

一元二次方程培优提高题解析

一元二次方程培优提高题解析一、利用判别式判断方程根的情况1. 已知关于x的一元二次方程(m - 1)x^2+2x - 1=0有两个不相等的实数根,求m 的取值范围。

解析:对于一元二次方程ax^2+bx + c = 0(a≠0),判别式Δ=b^2-4ac。

在方程(m - 1)x^2+2x - 1=0中,a = m- 1,b=2,c=-1。

因为方程有两个不相等的实数根,所以Δ>0且a≠0。

首先计算Δ = 2^2-4(m - 1)×(-1)>0,4 + 4(m - 1)>0,4+4m-4>0,4m>0,解得m>0。

又因为a=m - 1≠0,即m≠1。

所以m的取值范围是m>0且m≠1。

2. 若关于x的一元二次方程kx^2-2x + 1 = 0没有实数根,求k的取值范围。

解析:对于方程kx^2-2x + 1=0,其中a = k,b=-2,c = 1。

因为方程没有实数根,所以Δ=b^2-4ac<0。

Δ=(-2)^2-4k×1<0,4 - 4k<0,-4k<-4,解得k > 1。

又因为方程是一元二次方程,所以k≠0。

综上,k的取值范围是k>1。

二、一元二次方程根与系数的关系(韦达定理)1. 已知方程x^2-3x - 4 = 0的两根为x_1,x_2,求x_1^2+x_2^2的值。

解析:对于一元二次方程ax^2+bx + c=0(a≠0),若两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。

在方程x^2-3x - 4 = 0中,a = 1,b=-3,c=-4。

所以x_1+x_2=-(-3)/(1)=3,x_1x_2=(-4)/(1)=-4。

x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=3^2-2×(-4)=9 + 8=17。

2. 已知关于x的方程x^2+kx + k - 1=0的两根为x_1,x_2,且x_1^2+x_2^2=5,求k的值。

人教版初中九年级数学上册第二十一章《一元二次方程》提高卷(含答案解析)(1)

人教版初中九年级数学上册第二十一章《一元二次方程》提高卷(含答案解析)(1)

一、选择题1.下列方程中,没有实数根的是( )A .2670x x ++=B .25260x x --=C .22270x x -=D .2220x x -+-=D解析:D【分析】根据判别式的意义对各选项进行判断.【详解】A 、224641780b ac =-=-⨯⨯=>,则方程有两个不相等的实数根,所以A 选项不符合题意;B 、()()224541261290b ac =-=--⨯⨯-=>,则方程有两个不相等的实数根,所以B 选项不符合题意;C 、()224274207290b ac =-=--⨯⨯=>,则方程有两个不相等的实数根,所以C 选项不符合题意;D 、()()224241240b ac =-=-⨯-⨯-=-<,则方程没有实数根,所以D 选项符合题意.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.2.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b C解析:C【分析】 由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出a b的值即可得到a 、b 的关系式 .【详解】 解:由图可知21422S ab ab =⨯=, ∵1253S S =,∴1255102333S S ab ab ==⨯=, 又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭, ∴133a ab b ==,(舍去), ∴a=3b ,故先C .【点睛】 本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.3.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确是( )A .(1)81x x x ++=B .2181x x ++=C .1(1)81x x x +++=D .(1)81x x +=C解析:C【分析】平均一人传染了x 人,根据有一人患病,第一轮有(x+1)人患病,第二轮共有x+1+(x+1)x 人,即81人患病,由此列方程求解.【详解】解:设每轮传染中平均一个人传染了x 个人,根据题意得,x+1+(x+1)x=81故选:C .【点睛】本题考查了一元二次方程的应用,关键是得到两轮传染数量关系,从而可列方程求解. 4.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20%D 解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 5.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .9D 解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.6.不解方程,判断方程23620x x --=的根的情况是( )A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .以上说法都不正确C解析:C【分析】根据方程的系数结合根的判别式即可得出△=60>0,由此即可得出结论.【详解】解:∵在方程23620x x --=中,△=(-6)2-4×3×(2)=60>0,∴方程23620x x --=有两个不相等的实数根.故选: C【点睛】本题考查了根的判别式,熟练掌握“当△>0时方程有两个不相等的实数根”是解题的关键.7.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2-D解析:D【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②, ①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得, ∵240ax bx a +-=,240ax a -=24ax a =∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.8.方程23x x =的解为( )A .3x =B .3x =-C .10x =,23x =D .10x =,23x =-C解析:C【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:方程变形得:x 2-3x=0,分解因式得:x (x-3)=0,可得x=0或x-3=0,解得:x 1=3,x 2=0.故选:C .【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 9.下列方程是关于x 的一元二次方程的是( )A .212x x x -=B .2(2)x x x -=C .23(2)x x =+D .20ax bx c ++=C 解析:C【分析】根据一元二次方程的定义逐项判断即可得.【详解】A 、方程212x x x -=中的1x 不是整式,不满足一元二次方程的定义,此项不符题意;B 、方程2(2)x x x -=可整理为20x -=,是一元一次方程,此项不符题意;C 、方程23(2)x x =+满足一元二次方程的定义,此项符合题意;D 、当0a =时,方程20ax bx c ++=不是一元二次方程,此项不符题意;故选:C .【点睛】本题考查了一元二次方程,熟记一元二次方程的概念是解题关键.10.如图,是一个简单的数值运算程序,则输入x 的值为( )A 31B .31C 31或31D .无法确定C解析:C 【分析】先根据数值运算程序可得一个关于x 的一元二次方程,再利用直接开平方法解方程即可得.【详解】由题意得:()2319x --=-, ()213x -=,13-=x ,13x =±即31x =或31x =-,故选:C .【点睛】本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键.二、填空题11.解方程:268x x +=-解:两边同时加_________,得26x x ++________8=-+________则方程可化为(_______)2=________两边直接开平方得_____________即_________或_____________所以1x =__________,2x =___________.999x+31x+3=±1x+3=1x+3=-1-2-4【分析】根据配方法求解即可【详解】解:两边同时加9得99则方程可化为1两边直接开平方得x+3=±1即x+3=1或x+3=-1所以-2-4故答案解析:9 9 9 x+3 1 x+3=±1 x+3=1 x+3=-1 -2 -4【分析】根据配方法求解即可.【详解】解:两边同时加9,得26x x ++98=-+9,则方程可化为()23x +=1,两边直接开平方得x+3=±1,即x+3=1或x+3=-1,所以1x =-2,2x =-4.故答案为:9;9;9;x+3;1;x+3=±1;x+3=1;x+3=-1;-2;-4.【点睛】本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______.0【分析】由于定义一种运算*为:m*n=mn+n 所以关于x 的方程x*(a*x )=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可以得到关解析:0【分析】由于定义一种运算“*”为:m*n=mn+n ,所以关于x 的方程x*(a*x )=14-变为(a+1)x 2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a 的关系式,即可解决问题.【详解】解:由x*(a*x )=14-得(a+1)x 2+(a+1)x+14=0, 依题意有a+1≠0,△=(a+1)2-(a+1)=0,解得,a=0,或a=-1(舍去).故答案为:0.【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x 的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题.13.若二次式236x -的值与2x -的值相等,则x 的值为_______.-1或【分析】先根据题意列出关于x 的方程整理为一般式再利用因式分解法求解即可【详解】解:根据题意得:3x2-6=x-2整理得:3x2-x-4=0∴(x+1)(3x-4)=0∴x+1=0或3x-4=0解析:-1或43 【分析】先根据题意列出关于x 的方程,整理为一般式,再利用因式分解法求解即可.【详解】解:根据题意,得:3x 2-6=x-2,整理,得:3x 2-x-4=0,∴(x+1)(3x-4)=0,∴x+1=0或3x-4=0, 解得1241,,3=-=x x ∴当x=-1或43时,二次式3x 2-6的值与x-2的值相等, 故答案为:-1或43 【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.方程230x -=的解为___________.【分析】先移项然后利用数的开方直接求出即可【详解】移项得解得:故答案为:【点睛】此题主要考查了直接开平方法解一元二次方程用直接开方法求一元二次方程的解要仔细观察方程的特点解析:x =【分析】先移项,然后利用数的开方直接求出即可.【详解】移项得,23x =,解得:x =故答案为:x =此题主要考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解,要仔细观察方程的特点.15.已知方程2x 2+4x ﹣3=0的两根分别为出x 1和x 2,则x 1+x 2+x 1x 2=_____.﹣【分析】根据根与系数的关系得到x1+x2=﹣=﹣2x1x2=﹣然后利用整体代入的方法计算【详解】根据题意得x1+x2=﹣=﹣2x1x2=﹣所以x1+x2+x1x2=﹣2﹣=﹣故答案为:﹣【点睛】本解析:﹣72【分析】 根据根与系数的关系得到x 1+x 2=﹣42=﹣2,x 1x 2=﹣32,然后利用整体代入的方法计算.【详解】 根据题意得x 1+x 2=﹣42=﹣2,x 1x 2=﹣32, 所以x 1+x 2+x 1x 2=﹣2﹣32=﹣72. 故答案为:﹣72. 【点睛】 本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a. 16.已知方程22610x x -+=的两根为12,x x ,则2212x x +=_______.8【分析】利用一元二次方程根与系数的关系可列出两根之和及两根之积的值再对其进行变形即可求解【详解】由题可得:∴故答案为:8【点睛】本题考查一元二次方程根与系数的关系进行变形求值熟记结论且灵活变形是解解析:8【分析】利用一元二次方程根与系数的关系,可列出两根之和及两根之积的值,再对其进行变形即可求解.【详解】 由题可得:1212132x x x x +==,, ∴()222212121212329182x x x x x x +=+-=-⨯=-=, 故答案为:8.本题考查一元二次方程根与系数的关系进行变形求值,熟记结论且灵活变形是解题关键. 17.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 19.已知1x ,2x 是方程2250x x --=的两个实数根,则2212123x x x x ++=__________.—1【分析】根据根与系数之间的关系解题即可【详解】∵是方程的两个实数根∴∴故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系解题的关键是根据公式正确计算解析:—1【分析】根据根与系数之间的关系解题即可.【详解】∵1x ,2x 是方程2250x x --=的两个实数根,∴122x x +=,125x x =,∴()()2222112*********x x x x x x x x ++++=+-=-=, 故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系,解题的关键是根据公式正确计算. 20.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.【分析】由在绿地中开辟三条宽为xm 的道路后剩余绿地的面积为144m2即可得出关于x 的一元二次方程此题得解【详解】解:设道路的宽为xm 根据题意得:(18﹣2x )(15﹣x )=144解得:或(舍去)答: 解析:3【分析】由在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设道路的宽为xm ,根据题意得:(18﹣2x )(15﹣x )=144,解得:13x =或221x =(舍去),答:道路的宽为3m .故答案为:3.【点睛】此题考查一元二次方程的应用,根据题意找出等量关系,正确列方程是解题的关键.三、解答题21.解方程:2410y y --=.解析:12y =22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.【详解】解:2410y y --= 24=1y y -24+4=5y y -2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键. 22.设,a b 是一个直角三角形的两条直角边的长,且()()2222112a ba b +++=,求这个直角三角形的斜边长c 的值.【分析】对题目中所给的条件进行变形,利用整体思想求解出22a b +的值,从而结合勾股定理求解斜边长即可.【详解】由题意得()()22222120a b a b +++-=, ()()2222340a b a b +∴+-+=223a b ∴+=或224a b +=-(不合题意,舍去)则2223c a b =+=c ∴=负舍).【点睛】本题考查解一元二次方程及勾股定理的应用,能够准确从条件中求解出直角边的平方和是解题关键.23.已知关于x 的方程()22120x k x k ---=,求证:不论k 取何值,这个方程都有两个实数根.解析:见解析.【分析】根据方程的系数结合根的判别式,可得出△=4k 2+4k+1≥0,进而即可证出:不论k 取何值方程都有两个不相等的实数根.【详解】证明:()()()2224124412211k k k k k -⨯⨯-∆=--⎡⎤⎣=+=+⎦+. ∵()2210k +≥,即0∆≥, ∴不论k 取何值,这个方程都有两个实数根.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.24.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),若苗圃园的面积为72平方米.求这个苗圃园垂直于墙的一边长为多少米?解析:这个苗圃园垂直于墙的一边长为12米.【分析】设这个苗圃园垂直于墙的一边长为x 米,利用长方形面积公式列方程求解,再根据靠墙边的长度范围确定取值即可.【详解】设这个苗圃园垂直于墙的一边长为x 米,根据题意得:()30272x x -=解得:13x =,212x =,∵30218x -≤,∴6x ≥,∴12x =.答:这个苗圃园垂直于墙的一边长为12米.【点睛】本题考查了长方形的周长公式的运用,长方形的面积公式的运用,一元二次方程的解法的运用,解答时根据长方形的面积公式建立方程是关键,注意实际应用中的取值范围. 25.阿里巴巴电商扶贫对某贫困地区一种特色农产品进行网上销售,按原价每件200元出售,一个月可卖出100件,通过市场调查发现,售价每件每降低1元,月销售件数就增加2件.(1)已知该农产品的成本是每件100元,在保持月利润不变的情况下,尽快销售完毕,则售价应定为多少元;(2)小红发现在附近线下超市也有该农产品销售,并且标价为每件200元,买五送一,在(1)的条件下,小红想要用最优惠的价格购买38件该农产品,应选择在线上购买还是线下超市购买?解析:(1)售价应定为150元;(2)选择在线上购买更优惠【分析】(1)设售价应定为x 元,则每件的利润为()100-x 元,月销售量为(5002)-x 件,列出方程计算即可;(2)分别算出线上购买和线下购买的费用,再进行比较即可;【详解】解:(1)当售价为200元时月利润为()2001001001000-⨯=(元).设售价应定为x 元,则每件的利润为()100-x 元,月销售量为2001002(5002)1x x -+⨯=-件, 依题意,得:()()100500210000x x --=,整理,得:2350300000--=x x ,解得:1150x =,2200x =(舍去).答:售价应定为150元.(2)线上购买所需费用为150385700⨯=(元);∵线下购买,买五送一,∴线下超市购买只需付32件的费用,∴线下购买所需费用为200326400⨯=(元).57006400<.答:选择在线上购买更优惠.【点睛】本题主要考查了一元二次方程的应用,准确列方程计算是解题的关键.26.解方程:2x²-4x-3=0.解析:12x x == 【分析】 利用公式法解一元二次方程即可求解.【详解】解:2x²-4x-3=0∵ a=2,b=-4,c=-3,∴()()22=b 4442340ac ∆-=--⨯⨯-=>0, ∴一元二次方程有两个不相等的实数根,∴x ===∴122222x x +==. 【点睛】本题考查了公式法解一元二次方程,熟练掌握一元二次方程的求根公式是解题关键. 27.解答下列各题.(1)解方程:2(1)90x --=.(2)已知1x =,求225x x -+的值.解析:(1)14x =,22x =-;(2)6.【分析】(1)方程整理后,直接开平方即可求解;(2)代数式225x x -+配方整理成()214x -+后,把x 的值代入计算即可.【详解】(1)由原方程得2(1)9x -=, ∴13x -=±,解得:14x =,22x =-;(2)∵2225(1)4x x x -+=-+,将1x =代入得:原式)2114=-+ 24=+6=.【点睛】本题考查了解一元二次方程-直接开平方法以及求代数式的值,熟练掌握完全平方公式是解本题的关键.28.(12. (2)解一元二次方程:x 2﹣4x ﹣5=0.解析:(1)2;(2)125, 1.x x ==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.【详解】解:(1|2|3+23=2(2)x2﹣4x﹣5=0,(x﹣5)(x+1)=0,∴x﹣5=0或x+1=0,∴x1=5,x2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题。

九年级数学上册 一元二次方程(提升篇)(Word版 含解析)

九年级数学上册 一元二次方程(提升篇)(Word版 含解析)

九年级数学上册 一元二次方程(提升篇)(Word 版 含解析)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在矩形ABCD 中,6AB cm =,8AD cm =,点P 从点A 出发沿AD 向点D 匀速运动,速度是1/cm s ,过点P 作PE AC ∥交DC 于点E ,同时,点Q 从点C 出发沿CB 方向,在射线CB 上匀速运动,速度是2/cm s ,连接PQ 、QE ,PQ 与AC 交与点F ,设运动时间为()(08)<<t s t .(1)当t 为何值时,四边形PFCE 是平行四边形;(2)设PQE 的面积为2()s cm ,求s 与t 的函数关系式;(3)是否存在某一时刻t ,使得PQE 的面积为矩形ABCD 面积的932; (4)是否存在某一时刻t ,使得点E 在线段PQ 的垂直平分线上.【答案】(1)83t =;(2)S =299(08)8t t t -+<<;(3)当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932;(4)当573256=t 时,点E 在线段PQ 的垂直平分线上 【解析】 【分析】(1)由四边形PFCE 是平行四边形,可得,PF CE ∥由PD QC 得四边形CDPQ 为平行四边形,即PD CQ =,列式82t t -=,计算可解. (2)由PE AC ∥,得=DP DE DA DC ,代入时间t ,得886-=t DE 解得364=-DE t ,34CE t =再通过S S =梯形CDPQ PDE CEQ S S --△△构建联系,可列函数式299(08)8S t t t =-+<<.(3)由PQE 的面积为矩形ABCD 面积的932得299986832S t t =-+=⨯⨯,可解当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932. (4)当点E 在线段PQ 的垂直平分线上时,=EQ PE ,得22=EQ PE ,由Rt CEQ 与△Rt PDE 可得,222+=CE CQ EQ ,222PD DE PE +=,即2222+=+CE CQ PD DE ,代入364=-DE t ,34CE t =,2CQ t =,8PD t =-可得222233(2)(8)644⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭t t t t ,计算验证可解.【详解】(1)当四边形PFCE 是平行四边形时,∥PF CE , 又∵PD QC ,∴四边形CDPQ 为平行四边形, ∴PD CQ =, 即82t t -=, ∴83t =(2)∵PE AC ∥,∴=DP DEDA DC , 即886-=t DE, ∴364=-DE t , ∴336644=-+=CE t t ,∴21133(8)66242248⎛⎫=⋅=--=-+ ⎪⎝⎭△PDE S PD DE t t t t , 2113322244=⋅=⨯⨯=△CEQ S CE CQ t t t ,S 梯形11()(28)632422=+⋅=+-⋅=+CDPQ QC PD CD t t t ,∴S S =梯形299(08)8--=-+<<△△CDPQ PDE CEQ S S t t t(3)由题意,299986832-+=⨯⨯t t 解得12t =,26t =所以当2t s =或6s 时,PQE 的面积为矩形ABCD 面积的932.(4)当点E 在线段PQ 的垂直平分线上时,=EQ PE , ∴22=EQ PE ,在Rt CEQ 中,222+=CE CQ EQ , 在△Rt PDE 中,222PD DE PE +=, ∴2222+=+CE CQ PD DE ,即222233(2)(8)644⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭t t t t 解得1573256-=t ,2573256+=-t (舍)所以当57325-=t 时,点E 在线段PQ 的垂直平分线上. 【点睛】本题考查的是一次函数与几何图形的实际应用,勾股定理,平行线的性质,解一元二次方程,需要注意的是在解一元二次方程的实际应用中经常会涉及到解的验证,不可忽略.2.已知:在平面直角坐标系xoy 中,直线k y x b =+分别交x 、y 轴于点A 、B 两点,OA=5,∠OAB=60°.(1)如图1,求直线AB 的解析式;(2)如图2,点P 为直线AB 上一点,连接OP ,点D 在OA 延长线上,分别过点P 、D 作OA 、OP 的平行线,两平行线交于点C ,连接AC,设AD=m,△ABC 的面积为S,求S 与m 的函数关系式; (3)如图3,在(2)的条件下,在PA 上取点E ,使PE=AD, 连接EC,DE,若∠ECD=60°,四边形ADCE 的周长等于22,求S 的值.【答案】(1)直线解析式为353y x =-+53253+;(3)203S =. 【解析】 【分析】(1)先求出点B 坐标,设AB 解析式为y kx b =+,把点A(5,0),B(0,3分别代入,利用待定系数法进行求解即可;(2)由题意可得四边形ODCP 是平行四边形,∠OAB=∠APC=60°,则有PC=OD=5+m ,∠PCH=30°,过点C 作CH ⊥AB ,在Rt △PCH 中 利用勾股定理可求得CH=)52m +,再由S=12AB •CH 代入相关数据进行整理即可得; (3) 先求得∠PEC=∠ADC ,设∠OPA=α,则∠OPC= ∠ADC= ∠PEC=60°+α,在BA 延长线上截取AK=AD ,连接OK ,DK ,DE ,证明△ADK 是等边三角形,继而证明△PEC ≌△DKO ,通过推导可得到OP=OK=CE=CD ,再证明△CDE 是等边三角形,可得CE=CD=DE ,连接OE ,证明△OPE ≌△EDA ,继而可得△OAE 是等边三角形,得到OA=AE=5 ,根据四边形ADCE 的周长等于22,可得ED=172m -,过点E 作EN ⊥OD 于点N ,则DN=52m +,由勾股定理得222EN DN DE +=, 可得关于m 的方程,解方程求得m 的值后即可求得答案.【详解】(1)在Rt △ABO 中OA=5,∠OAB=60°, ∴∠OBA=30°,AB=10 , 由勾股定理可得OB=, ∴B(0,,设AB 解析式为y kx b =+,把点A(5,0),B(0,)分别代入,得05k bb=+⎧⎪⎨=⎪⎩,∴k b ⎧=⎪⎨=⎪⎩,∴直线解析式为y =+ (2)∵CP//OD ,OP//CD ,∴四边形ODCP 是平行四边形,∠OAB=∠APC=60°, ∴PC=OD=5+m ,∠PCH=30°, 过点C 作CH ⊥AB ,在Rt △PCH 中 PH=52m +,由勾股定理得CH=()52m +, ∴S=12AB •CH=110)2m ⨯+=+;(3) ∵∠ECD=∠OAB=60°,∴∠EAD+∠ECD=180°,∠CEA+∠ADC=180°, ∴∠PEC=∠ADC ,设∠OPA=α,则∠OPC= ∠ADC= ∠PEC=60°+α, 在BA 延长线上截取AK=AD ,连接OK ,DK ,DE , ∵∠DAK=60°, ∴△ADK 是等边三角形, ∴AD=DK=PE ,∠ODK=∠APC , ∵PC=OD , ∴△PEC ≌△DKO ,∴OK=CE ,∠OKD=∠PEC=∠OPC=60°+α, ∠AKD= ∠APC=60° , ∴∠OPK= ∠OKB , ∴OP=OK=CE=CD , 又∵∠ECD=60°, ∴△CDE 是等边三角形, ∴CE=CD=DE ,连接OE ,∵ ∠ADE=∠APO ,DE=CD=OP , ∴△OPE ≌△EDA , ∴AE=OE , ∠OAE=60°, ∴△OAE 是等边三角形, ∴OA=AE=5 ,∵四边形ADCE 的周长等于22, ∴AD+2DE=17, ∴ED=172m-, 过点E 作EN ⊥OD 于点N ,则DN=52m +, 由勾股定理得222EN DN DE +=,即22253517()()()222m m -++=, 解得13m =,221m =-(舍去), ∴S=15325322+=203.【点睛】本题考查的四边形综合题,涉及了待定系数法,平行四边形的判定与性质,勾股定理,全等三角形的判定与性质,等边三角形的判定与性质,解一元二次方程等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.3.(1)课本情境:如图,已知矩形AOBC ,AB =6cm ,BC =16cm ,动点P 从点A 出发,以3cm/s 的速度向点O 运动,直到点O 为止;动点Q 同时从点C 出发,以2cm/s 的速度向点B 运动,与点P 同时结束运动,出发 时,点P 和点Q 之间的距离是10cm ; (2)逆向发散:当运动时间为2s 时,P ,Q 两点的距离为多少?当运动时间为4s 时,P ,Q 两点的距离为多少?(3)拓展应用:若点P 沿着AO→OC→CB 移动,点P ,Q 分别从A ,C 同时出发,点Q 从点C 移动到点B 停止时,点P 随点Q 的停止而停止移动,求经过多长时间△POQ 的面积为12cm 2?【答案】(1)85s 或245s (2)62cm ;213cm (3)4s 或6s 【解析】 【分析】(1)过点P 作PE ⊥BC 于E ,得到AP =3t ,CQ =2t ,PE =6,EQ =16﹣3t ﹣2t =16﹣5t ,利用勾股定理得到方程,故可求解;(2)根据运动时间求出EQ 、PE ,利用勾股定理即可求解;(3) 分当点P 在AO 上时,当点P 在OC 上时和当点P 在CB 上时,根据三角形的面积公式列出方程即可求解. 【详解】解:(1)设运动时间为t 秒时,如图,过点P 作PE ⊥BC 于E , 由运动知,AP =3t ,CQ =2t ,PE =6,EQ =16﹣3t ﹣2t =16﹣5t , ∵点P 和点Q 之间的距离是10 cm , ∴62+(16﹣5t )2=100, 解得t 1=85,t 2=245, ∴t =85s 或245s . 故答案为85s 或245s(2)t=2时,由运动知AP =3×2=6 cm ,CQ =2×2=4 cm , ∴四边形APEB 是矩形, ∴PE =AB =6,BE =6,∴EQ =BC ﹣BE ﹣CQ =16﹣6﹣4=6, 根据勾股定理得2262PE EQ += ∴当t =2 s 时,P ,Q 两点的距离为2 cm ;当t =4 s 时,由运动知AP =3×4=12 cm ,CQ =2×4=8cm , ∴四边形APEB 是矩形, ∴PE =AB =6,BQ =8,CE=OP=4 ∴EQ =BC ﹣CE ﹣BQ =16﹣4﹣8=4, 根据勾股定理得22213PE EQ +=, P ,Q 两点的距离为13.(3)点Q 从C 点移动到B 点所花的时间为16÷2=8s , 当点P 在AO 上时,S △POQ =2PO CO ⋅=(163)62t -⋅=12, 解得t =4.当点P 在OC 上时,S △POQ =2PO CQ ⋅=(316)22t t-⋅=12, 解得t =6或﹣23(舍弃). 当点P 在CB 上时,S △POQ =2PQ CO ⋅=(2223)62t t +-⨯=12, 解得t =18>8(不符合题意舍弃),综上所述,经过4 s 或6 s 时,△POQ 的面积为12 cm 2. 【点睛】此题主要考查勾股定理的应用、一元二次方程与动点问题,解题的关键是熟知勾股定理的应用,根据三角形的面积公式找到等量关系列出方程求解.4.已知关于x 的一元二次方程()221210m x m x +-+=有两个不相等的实数根.(1)求实数m 的取值范围;(2)若原方程的两个实数根分别为1x ,2x ,且满足1212215x x x x +=-,求m 的值. 【答案】(1)14m <且0m ≠;(2)15m =- 【解析】 【分析】(1)根据一元二次方程的定义和判别式的意义得到:()22140m m ∴∆=-->且20m ≠,然后求出两个不等式解集的公共部分即可.(2)利用根与系数的关系得到12221m x x m -+=, 1221x x m=,加上14m <且0m ≠,则可判断10x <,20x <,所以1212215x x x x --=-,2221215m m m--=-,然后解方程求出m 即可得到满足条件的m 的值.【详解】(1)因为方程()221210m x m x +-+=有两个不相等的实数根,()221240m m ∴∆=-->,解得14m <; 又因为是一元二次方程,所以20m ≠,0m ∴≠.m ∴的取值范围是14m <且0m ≠. (2)1x ,2x 为原方程的两个实数根,12221m x x m -∴+=,1221x x m= 14m <且0m ≠,122210m x x m -∴+=<,12210x x m=>,10x ∴<,20x <. 1212215x x x x +=-,1212215x x x x --=-,2221215m m m -∴-=-,215210m m ∴--=,解得113m =,215m =-, 14m <且0m ≠,113m ∴=不合题意,舍去,15m ∴=-. 【点睛】 此题主要考查一元一次方程的定义和判别式的意义,正确理解概念和熟练运用根的判别式是解题的关键.5.已知关于x 的一元二次方程x 2﹣x +a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】 【分析】(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案. 【详解】(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0, (x +3)(x ﹣4)=0, x +3=0或x ﹣4=0, ∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,, ∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,. ∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦, 把22112211x x a x x a -=--=-,代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9, 解得:a =﹣4,a =2(舍去), 所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.6.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1%2a ,B 种品牌的建材的销售量减少了2%5a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23a ,求a 的值.【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30. 【解析】 【分析】(1)设销售A 品牌的建材x 件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;(2)根据题意列出方程求解即可. 【详解】(1)设销售A 品牌的建材x 件.根据题意,得()60009000126966000x x +-≥, 解这个不等式,得56x ≤, 答:至多销售A 品牌的建材56件.(2)在(1)中销售额最低时,B 品牌的建材70件, 根据题意,得()()()12260001%561%90001%701%6000569000701%2523a a a a a ⎛⎫⎛⎫⎛⎫-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令%a y =,整理这个方程,得21030y y -=,解这个方程,得1230,10y y ==, ∴10a =(舍去),230a =,即a 的值是30.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.7.如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别以3cm /s 、2cm /s 的速度从点A 、C 同时出发,点Q 从点C 向点D 移动.(1)若点P 从点A 移动到点B 停止,点P 、Q 分别从点A 、C 同时出发,问经过2s 时P 、Q 两点之间的距离是多少cm ?(2)若点P 从点A 移动到点B 停止,点Q 随点P 的停止而停止移动,点P 、Q 分别从点A 、C 同时出发,问经过多长时间P 、Q 两点之间的距离是10cm ?(3)若点P 沿着AB →BC →CD 移动,点P 、Q 分别从点A 、C 同时出发,点Q 从点C 移动到点D 停止时,点P 随点Q 的停止而停止移动,试探求经过多长时间△PBQ 的面积为12cm 2?【答案】(1)2cm ;(2)85s 或245s ;(3)经过4秒或6秒△PBQ 的面积为 12cm 2.【解析】 试题分析:(1)作PE ⊥CD 于E ,表示出PQ 的长度,利用PE 2+EQ 2=PQ 2列出方程求解即可;(2)设x 秒后,点P 和点Q 的距离是10cm .在Rt △PEQ 中,根据勾股定理列出关于x 的方程(16-5x )2=64,通过解方程即可求得x 的值;(3)分类讨论:①当点P 在AB 上时;②当点P 在BC 边上;③当点P 在CD 边上时. 试题解析:(1)过点P 作PE ⊥CD 于E .则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴2cm;∴经过2s时P、Q两点之间的距离是2;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,∴16-5x=±8,∴x1=85,x2=245;∴经过85s或245sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤163时,则PB=16-3y,∴12PB•BC=12,即12×(16-3y)×6=12,解得y=4;②当163<x≤223时,BP=3y-AB=3y-16,QC=2y,则1 2BP•CQ=12(3y-16)×2y=12,解得y1=6,y2=-23(舍去);③223<x≤8时,QP=CQ-PQ=22-y,则1 2QP•CB=12(22-y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ 的面积为 12cm 2.考点:一元二次方程的应用.8.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数;(2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由.②若线段AD EC =,求a b的值. 【答案】(1)ACD ∠=31︒;(2)①是;②34a b =. 【解析】【分析】(1)根据三角形内角和定理求出∠B ,根据等腰三角形的性质求出∠BCD ,计算即可; (2)①根据勾股定理求出AD ,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.【详解】(1)在ABC ∆中,90ACB ∠=︒.∴90B A ∠=︒-∠9028=︒-︒62=︒,∵BC BD =,∴1802B BCD BDC ︒-∠∠=∠= 180622︒-︒= 59=︒.∴DCA ACB BCD ∠=∠-∠9059=︒-︒31=︒.(2)①BD BC a ==,∴AD AB BD =-AB a =-.在Rt ABC ∆中,90ACB ∠=︒,AB ==∵2220x ax b +-=,∴22a x -±=a =-a AB =-±.∴线段AD 的长度是方程2220x ax b +-=的一个根.②∵AE AD =,又∵AD EC =, ∴2b AE EC ==, ∴2b AD =. 在Rt ABC ∆中,222AB AC BC =+, ∴2222b a b a ⎛⎫+=+ ⎪⎝⎭, 22224b a ab b a ++=+, ∴234b ab =. ∵0b >, ∴34b a =, ∴34a b =. 【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.9.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点.己知函数222(3)yx mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0时,该函数的零点为6和6-.(2)见解析,(3)AM 的解析式为112y x =--. 【解析】【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根. 即无论m 取何值,该函数总有两个零点.(3)依题意有, 由解得.∴函数的解析式为. 令y=0,解得∴A(),B(4,0) 作点B 关于直线10y x =-的对称点B’,连结AB’,则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45°∴BC=CB’=6,∠B’CD=∠BCD=45°∴∠BCB’=90°即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.10.如图,在矩形ABCD 中,6AB = ,10BC = ,将矩形沿直线EF 折叠.使得点A 恰好落在BC 边上的点G 处,且点E 、F 分别在边AB 、AD 上(含端点),连接CF . (1)当32BG = 时,求AE 的长;(2)当AF 取得最小值时,求折痕EF 的长;(3)连接CF ,当△FCG 是以CG 为底的等腰三角形时,直接写出BG 的长.【答案】(1)92AE =;(2)62EF =3)185BG =. 【解析】【分析】 (1)根据折叠得出AE=EG ,据此设AE=EG=x ,则有BE=6-x ,由勾股定理求解可得;(2)由FG ⊥BC 时FG 的值最小,即此时AF 能取得最小值,显然四边形AEGF 是正方形,从而根据勾股定理可得答案;(3)由△CFG 是以FG 为一腰的等腰三角形,可知应分两种情况讨论:①FG=FC ;②FG=GC ;分别求解可得.【详解】(1)由折叠易知,AE EG =,设AE EG x ==,则有6BE x =-,由勾股定理,得()(222632x x =-+,解得92x =,即92AE = (2)由折叠易知,AF FG =,而当FG BC ⊥时,FG 的值最小,即此时AF 能取得最小值,当FG BC ⊥时,FG 的值最小,即此时AF 能取得最小值,当FG BC⊥时,点E与点B重合,此时四边形AEGF是正方形,∴折痕226662EF=+=.(3)由△CFG是以FG为一腰的等腰三角形,可知应分两种情况讨论:①当FG=FC时,如图2,过F作FH⊥CG于H,则有:AF=FG=FC,CH=DF=GH设AF=FG=FC=x,则DF=10-x=CH=GH在Rt△CFH中∵CF2=CH2+FH2∴x2=62+(10-x)2解得:x=345,∴DF=CH=GH=10-165,即BG=10-165×2=185,②当FG=GC时,则有:AF=FG=GC=x,CH=DF=10-x;∴GH=x-(10-x)=2x-10,在Rt△FGH中,由勾股定理易得:x2=62+(2x-10)2,化简得:3x2-40x+136=0,∵△=(-40)2-4×3×136=-32<0,∴此方程没有实数根.综上可知:BG=185.【点睛】本题主要考查四边形的综合问题,解题的关键是掌握矩形和翻折变换的性质、正方形的判定与性质、勾股定理、一元二次方程根与系数的关系等知识点,也考查了分类讨论的数学思想.。

一元二次方程提高(中等及较难)(含解析)

一元二次方程提高(中等及较难)(含解析)

一元二次方程提高(中等及较难)一、选择题1、某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=1822、如下图,小雨在一幅长90cm、宽40cm的油画四周外围镶上一条宽度相同的边框,制成一幅挂图,并使油画画面的面积是整个挂图面积的54%,设边框的宽度为xcm,根据题意所列方程正确的是()A.(90+x)(40+x)×54%=90×40B.(90+2x)(40+2x)×54%=90×40C.(90+x)(40+2x)×54%=90×40D.(90+2x)(40+x)×54%=90×40二、填空题3、某公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入广告费为x(万元)时,产品的年销售量将是原销售量的y倍,且y=-+x+.如果把利润看作是销售额减去成本费和广告费,则当年利润为16万元时,广告费x为__________万元.三、解答题4、某商场销售一种品牌羽绒服和防寒服,其中羽绒服的售价是防寒服售价的5倍还多100元,2014年1月份(春节前期)共销售500件,羽绒服与防寒服销量之比是4:1,销售总收入为58.6万元.(1)求羽绒服和防寒服的售价;(2)春节后销售进入淡季,2014年2月份羽绒服销量下滑了6m%,售价下滑了4m%,防寒服销量和售价都维持不变,结果销售总收入下降为16.04万元,求m的值.5、黄冈百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?6、青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.7、受房贷收紧、对政策预期不确定等因素影响,今年前两个月,全国商品住宅市场销售出现销售量和销售价齐跌态势,数据显示,2014年前两个月,某房地产开发公司的销售面积一共8300平方米,其中2月份比1月份少销售300平方米.(1)求2014年1、2月份各销售了多少平方米;(2)该公司2月份每平方米的售价为8000元,3月份开始,决定以降价促销的方式应对当前的形势,据调查,与2月份相比较,每平方米销售单价下调a%,则销售面积将增加(a+10)%,结果3月份总销售额为3456万元,求a的值.8、某县2013年公共事业投入经费40000万元,其中教育经费占15%,2015年教育经费实际投入7260万元,若该县这两年教育经费的年平均增长率相同.(1)求该县这两年教育经费平均增长率;(2)若该县这两年教育经费平均增长率保持不变,那么2016年教育经费会达到8000万元吗?9、某厂家生产甲乙两种型号的显示器,随着电子行业的竞争越来越激烈,厂家为了促销,将乙型号的显示器价格经过两次降价,由400元/台降到225元/台,某公司决定从该厂家购进甲乙两种不同型号的显示器共50台,且购进甲种显示器的台数至少为23台;(1)求乙型号显示器连续两次降价的百分率(两次降价的百分率相同);(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?10、每年暑假,都有许多驴友为实现自己的一个梦想,骑自行车丈量中国最美公路川藏线.A、B两个驴友团队于同一天出发前往目的地拉萨.A队走317国道,结果30天到达.B队走318国道,总路程比A队少200千米,且路况更好,平均每天比A队多骑行20千米,结果B队比A队提前8天到达拉萨.(1)求318国道全程为多少千米?(2)骑行过程中,B队每人每天平均花费150元.A队开始有3个人同行,计划每人每天花费110元,后来又有几个人加入队伍,实际每增加1人,每人每天的平均花费就减少5元.若最终A、B两队骑行的人数相同(均不超过10人),两队共花费36900元,求两驴友团各有多少人?11、某商场销售一种品牌羽绒服和防寒服,其中羽绒服的售价是防寒服售价的5倍还多100元,2014年1月份(春节前期)共销售500件,羽绒服与防寒服销量之比是4:1,销售总收入为58.6万元.(1)求羽绒服和防寒服的售价;(2)春节后销售进入淡季,售价不变,2014年2、3月份羽绒服销量比上一个月都下滑了m%,结果3月份羽绒服的销售总收入为14万元,求m的值.12、某超市销售一种饮料,平均每天可售出100箱,每箱利润120元。

(完整)一元二次方程(含答案),推荐文档

(完整)一元二次方程(含答案),推荐文档

(1)求实数 m 的取值范围;
(2)当 x12 x22 0 时,求 m 的值.
(友情提示:若 x1 , x2 是一元二次方程 ax2 bx c 0(a 0) 两根,则有
x1
x2
b a

x1
x2
c a

2.当
m
为何值时,关于
x
的一元二次方程
x2
4x
m
1 2
0
有两个相等的实数根?此
时这两个实数根是多少?
知识点 3:一元二次方程的应用
例 1:某商品经过两次连续降价,每件售价由原来的 55 元降到了 35 元.设平均
每次降价的百分率为 x,则下列方程中正确的是( )
A.55 (1+x)2=35
B.35(1+x)2=55
C.55 (1-x)2=35
D.35(1-x)2=55
思路点拨: 列一元二次方程解决实际问题是一个难点,但在中考试题中经常出现,所

A. x 12 6 B. x 12 6 C. x 22 9
D. x 22 9
答案:1.1; 2.答案不唯一,如 x2 1 3. B
知识点 2:一元二次方程的根与系数的关系
例 1:如果 x1, x2 是方程 x 2 2x 1 0 的两个根,那么 x1 x2 的值为:
(A)-1
(B)2
由此可得 x-1=± 3 ,
x 1 =1+ 3 ,x 2 =1- 3 .
最新考题
1.(2009 威海)若关于 x 的一元二次方程 x2 (k 3)x k 0 的一个根是 2 ,则另
一个根是______.
2.(2009 年山西省)请你写出一个有一根为 1 的一元二次方程:

专题2.1 一元二次方程(能力提升)(解析版)

专题2.1 一元二次方程(能力提升)(解析版)

专题2.1 一元二次方程(能力提升)(解析版)一、选择题。

1.(2021秋•龙沙区期末)若m是方程x2﹣x﹣1=0的一个根,则m2﹣m+2020的值为( )A.2019B.2020C.2021D.2022【答案】C。

【解答】解:∵m是方程x2﹣x﹣1=0的一个根,∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2020=1+2020=2021.故选:C.2.(2022春•霍邱县期末)将一元二次方程5x2﹣1=4x化成一般形式后,二次项的系数和一次项系数分别是( )A.5,﹣1B.5,4C.5,﹣4D.5,1【答案】C。

【解答】解:5x2﹣1=4x,5x2﹣4x﹣1=0,二次项的系数和一次项系数分别是5、﹣4,故选:C.3.(2021秋•揭阳期末)若一元二次方程ax2+bx+c=0有一个根为﹣1,则下列等式成立的是( )A.a+b+c=1B.a﹣b+c=0C.a+b+c=0D.a﹣b+c=1【答案】B。

【解答】解:把x=﹣1代入ax2+bx+c=0得a﹣b+c=0.故选:B.4.(2022春•惠民县期末)若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2021﹣a﹣b的值是( )A.2016B.2020C.2025D.2026【答案】D。

【解答】解:把x=1代入方程ax2+bx+5=0得a+b+5=0,所以2021﹣a﹣b=2021﹣(a+b)=2021+5=2026.故选:D.5.(2021秋•长汀县校级月考)若m是方程x2﹣x﹣1=0的一个根,则2m2﹣2m+2020的值为( )A.2019B.2020C.2021D.2022【答案】D。

【解答】解:根据题意,将x=m代入方程,得:m2﹣m﹣1=0,则m2﹣m=1,∴2m2﹣6m+2020=2(m2﹣3m)+2020=2×1+2020=2022,故选:D.6.(2021•阳东区模拟)若方程x2﹣4x+c=0的一个实数根是3,则c的值是( )A.c=﹣3B.c=3C.c=5D.c=0【答案】B。

九年级数学上期期末复习专题:一元二次方程专题复习(Word版.含解析、点评和练习)

九年级数学上期期末复习专题:一元二次方程专题复习(Word版.含解析、点评和练习)

一元二次方程专题复习制卷:赵化中学 郑宗平专题一:一元二次方程及应用部分例析知识点:1、一元二次方程:①定义;②、一般形式:2ax bxca0,会求一般形式下的二次项系数 ,一次项系数及常数项;2、一元二次方程的四种解法:①、直接开平方法;②、配方法;③、公式法;④、因式分解法;选用适当方法解一元二次的方程同时特别注意用配方法解一元二次方程。

3、了解:①、换元法解特殊的(具有“倒数”和“平方”等特殊结构形式)的一元二次方程;②、可以化为一元二次方程的分式方程的解法和和步骤;③、绝对值方程的解法。

4、会利用方程的根进行整体代入求某些代数式的值;5、一元二次方程的应用:①列一元二次方程解应用题的六个基本步骤:审→设→列→解→验→答);②、常见类型:增长率、几何面积、数字数位、速度变化及动点,最大利润、方案的合理性问题等。

例题解析及课堂练习:例1、k 为何值时,关于x 的方程2k1k1x k 1x 20是一元二次方程,并指出二次项系数 ,一次项系数及常数项.分析:本题的实质是对一元二次方程的概念考察,由于k 1x 不可能成为未知数项的二次项,所以希望只有在2k1k1x 上,只要满足,2k 10k 11+≠+=且就可以保证此方程是一元二次方程.k 的确定后,后面一切问题便解决了.练习:写出方程213x x 32x 1二次项系数 ,一次项系数及常数项。

例2、用配方法解:22x 4x 10分析:本题的关键是有两点:其一、含未知数项的系数化为1,;其二、方程两边同时加 含未知数项系数一半的平方. 略解:22x 4x 1 21x 2x 2 21x 2x 11221x 12-=x 1即 -x 1 或 -=x 1解得:=1x 1=2x 1练习:1、①、22x 4x5x;②、222a 3a 12a ;2、用配方法解:①、2x 4x 99960;②、23x 9x 20。

例3、解方程:⑴、26x 19x 1150;⑵、2m34m 33分析:本例的两道题用普通解法要困难些,若用换元法解虽然多一道程序,但更容易理解.略解:⑵、若设m 3A +=,则原方程可以换元为:2A 4A 30-+=;解得:12A 1A 3==, 即m 31m 33+=+=,,解得:,12m 2m 0=-=. 练习:1、22x 542x 530;2、222m 46m 4503、332xx 1;4、=2x 5x 60x 1x 1⎛⎫-+ ⎪--⎝⎭;5、---=2x 2x 110。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程(提升篇)(Word 版 含解析)
一、初三数学 一元二次方程易错题压轴题(难)
1.如图,在平面直角坐标系中, A4,0 , B0, 4 ,四边形 ABCO 为平行四边形,
D
4 3
,
0

x
轴上一定点,
P

x
轴上一动点,且点
P
从原点
O
出发,沿着
x
轴正半轴
方向以每秒 4 个单位长度运动,已知 P 点运动时间为 t . 3
解是解题的关键.
2.如图,在长方形 ABCD 中,边 AB、BC 的长(AB<BC)是方程 x2-7x+12=0 的两个根.点 P 从点 A 出发,以每秒 1 个单位的速度沿△ABC 边 A→B→C→A 的方向运动,运动时间为 t (秒). (1)求 AB 与 BC 的长;
(2)当点 P 运动到边 BC 上时,试求出使 AP 长为 10 时运动时间 t 的值;
∴AC=
32 42
=5,CP1=
1 AC=2.5 2
∴t= 3 4 2.5 =9.5(秒) 1
③当 PD=CD=3 时,作 DQ⊥AC 于 Q.
DQ
1 34 2
1 5
12 5

PQ
2
32
12 5
2
9 5
∴PC=2PQ= 18 5
∴t
3
4
18 5
53
(秒)
1
5
可知当 t 为 10 秒或 9.5 秒或 53 秒时,△CDP 是等 BDP
的值。
【详解】
1 DP BO 2
1 BP DF ,即可求出 OP 的长,利用路程公式可求得 t
2
解:(1)∵ A4,0 , B0, 4 ,四边形 ABCO为平行四边形,
∴ 点 C 坐标为(4,4),
又∵ P 为 x 轴上一动点,点 P 从原点 O 出发,沿着 x 轴正半轴方向以每秒 4 个单位长度运 3
(1)点 C 坐标为________, P 点坐标为________;(直接写出结果,可用 t 表示) (2)当 t 为何值时, BDP 为等腰三角形; (3) P 点在运动过程中,是否存在 t ,使得 ABD OBP ,若存在,请求出 t 的值,若不
存在,请说明理由!
【答案】(1)(4,4),( 4 t ,0);(2)1, 10 1 ,4; (3)存在, t 3
3 ∴ t 1
②如图所示,当 BD DP 时,
∵ DB 4 10 , OP DP OD 3
∴ OP 4 10 4 4 10 1 ,
3
33
∴ t 10 1
③如图所示,当 BP DP 时,
设 P 点坐标为:( x ,0)
则有: BP2 x2 42 , DP2
x
4
2

3
∴ x2 42
x 4 2 ,解之得: x 16
化简得: x2 6x 1 0 ,
解之得: x 3 10 (取正值),
即 3 10 4 t 3
∴ t 3 3 10 3 10 9 .
4
4
【点睛】
本题考查的是平行四边形的性质,等腰三角形的性质,勾股定理,三角形的面积公式,一
元二次方程得解等知识点,在(2)中懂得分类讨论,在(3)中能做出垂线,利用面积求
即有: ABO DBP 45 , 如图示,过 D 点作 DF BP 交 BP 于点 F,
∵ DB 4 10 , 3
∴ DF 4 5 , 3
设 OP x ,根据勾股定理有: BP
x2 42 ,
并且 DP 4 x , 3
则: S BDP
1 DP BO
2
1 BP DF
2
∴ 4 x4 3
x2 42 4 5 , 3
∴ x1 =3 或 x2 =4 .
则 AB=3,BC=4
(2)由题意得 32 t-32 ( 10)?
∴ t1 4 , t2 2 (舍去)
则 t=4 时,AP= 10 .
(3)存在点 P,使△CDP 是等腰三角形.
①当 PC=PD=3 时, t= 3 4 3 =10(秒). 1
②当 PD=PC(即 P 为对角线 AC 中点)时,AB=3,BC=4.
3
3
∴ P 点坐标为( 16 ,0), 3
∴ t4
综上所述,当 t 为 1, 10 1 ,4 时, BDP 为等腰三角形;
(3)答:存在 t ,使得 ABD OBP 。
证明:∵ A,B 两点坐标分别为: A4,0 , B0, 4 ,
∴ OA OB , ABO 45 , 又∵ ABD OBP ∴ ABD OBD OBP OBD
(3)当点 P 运动到边 AC 上时,是否存在点 P,使△CDP 是等腰三角形?若存在,请求出运 动时间 t 的值;若不存在,请说明理由.
【答案】(1) AB=3,BC=4;(2) t=4;(3) t 为 10 秒或 9.5 秒或 53 秒时,△CDP 是等腰 5
三角形. 【解析】 试题分析:(1)解一元二次方程即可求得边长; (2)结合图形,利用勾股定理求解即可; (3)根据题意,分为:PC=PD,PD=PC,PD=CD,三种情况分别可求解. 试题解析:(1)∵x2-7x+12=(x-3)(x-4)=0
动, P 点运动时间为 t ,
∴ P 点坐标为( 4 t ,0), 3
(2)∵
B,D
的坐标分别为:
B
0,
4

D
4 3
,
0

∴ OB 4 , OD 4 , 3
由勾股定理有: DB OB2 OD2
42 4 2 4 10 , 33
当 BDP 为等腰三角形时,
①如图所示,当 BD BP 时,
OD OP , ∴ P 点坐标为( 4 ,0),
3.“父母恩深重,恩怜无歇时”,每年 5 月的第二个星期日即为母亲节,节日前夕巴蜀中学 学生会计划采购一批鲜花礼盒赠送给妈妈们. (1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买 80 个礼盒最 多花费 7680 元,请求出每个礼盒在花店的最高标价;(用不等式解答) (2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基 础上降价 25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程
【解析】 【分析】
3 10 9 4
(1)利用平行四边形的性质和根据 P 点的运动速度,利用路程公式求解即可;
(2)分三种情况:①当 BD BP 时,②当 BD DP 时,③当 BP DP 时,分别讨论求
解,即可得出结果;
(3)过 D 点作 DF BP 交 BP 于点 F,设 OP x ,则可得 BP x2 42 , DP 4 x ,
相关文档
最新文档