一元一次方程的应用 追击问题

合集下载

一元一次方程应用题十大题型

一元一次方程应用题十大题型

有关“一元一次方程应用题”的十大题型有关“一元一次方程应用题”的十大题型如下:1.追及问题:这类问题通常涉及到两个物体或人在不同地点出发,以不同的速度移动,最终在某一点相遇。

求解这类问题需要建立一元一次方程来找出相遇的时间和地点。

2.相遇问题:与追及问题相反,相遇问题涉及到两个物体或人在同一地点出发,以不同的速度移动,最终在某一点相遇。

同样需要建立一元一次方程来找出相遇的时间和地点。

3.比例问题:这类问题涉及到比例关系,如两个量之间的增长或减少的比例。

求解这类问题需要建立一元一次方程来找出未知量。

4.利润与折扣问题:这类问题涉及到商业中的利润和折扣,需要建立一元一次方程来求解未知的利润或折扣。

5.工作与效率问题:这类问题涉及到工作量和效率之间的关系,通常需要建立一元一次方程来求解未知的工作量或效率。

6.行程问题:这类问题涉及到物体或人的运动路程、速度和时间之间的关系。

常见的问题有相遇和追及、环形跑道、过桥等。

需要建立一元一次方程来求解未知的速度或时间。

7.溶液与浓度问题:这类问题涉及到溶液和其中的溶质浓度,通常需要建立一元一次方程来求解未知的浓度或溶质质量。

8.工程与工作量问题:这类问题涉及到工程项目和工作量之间的关系,通常需要建立一元一次方程来求解未知的工作量或完成时间。

9.几何图形问题:这类问题涉及到几何图形的面积、周长、体积等,通常需要建立一元一次方程来求解未知的几何量。

10.生产与利润问题:这类问题涉及到企业的生产和利润之间的关系,通常需要建立一元一次方程来求解未知的生产成本、销售价格或利润。

一元一次方程解题方法和技巧应用题

一元一次方程解题方法和技巧应用题

一元一次方程应用题解题方法和技巧一元一次方程应用题解题方法和技巧如下:方法:(1)和差倍分问题:①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长,公率......”来体现。

②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。

(2)行程问题:基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间。

路程=速度×时间。

①相遇问题:快行距+慢行距=原距。

②追及问题:快行距-慢行距=原距。

③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度。

逆水(风)速度=静水(风)速度-水流(风)速度。

技巧:1、注意语言与解析式的互化:如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”等。

2、注意从语言叙述中写出相等关系:如,x比y大3,则x-y=3或x=y+3或x-3=y。

3、注意单位换算:如,“小时”、“分钟”的换算;s、v、t单位的一致等。

一元一次方程:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。

一元一次方程只有一个根。

一元一次方程最早见于约公元前1600年的古埃及时期。

公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。

16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。

1859年,数学家李善兰正式将这类等式译为一元一次方程。

一元一次方程常见应用题型及解法

一元一次方程常见应用题型及解法

一元一次方程常见应用题:
一、行程问题:路程=速度×时间
1:相遇问题:甲路程+乙路程=总路程
2:追及问题:a、不同时同地出发:快者(追者)走的路程=慢者(前者)走的路程
b、同时不同地出发:慢者走的路程+两者距离=快者走的路程
3、水流问题:顺水行的路程=逆水行的路程
提前写出:顺水速度=静水速度+水流速度
逆水速度=静水速度-水流速度
二、工程问题:工作总量=工作效率×工作时间工作效率与单独工作的时间互为倒数
各部分工作量之和=1
三、利润率、销售问题:
商品利润=商品售价-商品进价=商品进价×商品利润率
商品利润率=商品利润/商品进价×100%
售价=进价×(1+利润率)
注:进价
售价=实际销售价格
标价=定价=原价=预计售价=原销售价
四、数字问题:
设一个两位数的十位上的数字和个位上的数字分别为a、b,则这个两位数表示为10a+b 五、按比例分配问题:
甲:乙:丙=a:b:c 全部数量=各种成分的数量之和(设一份为χ)
六、配套问题
“加工的两种物品成比例”
七、分配问题
“总量不变”
八、积分问题
比赛总场数=胜场总数+平场总数+负场总数
比赛总积分=胜场总积分+平场总积分+负场总积分九、规律问题
●3个规律数字:设中间的数为χ
●月历中的问题
月历中每一行上相邻的两数,右边的数比左边的数大1;
月历中的每一列上相邻的两数,下边的数比上边的数大7 十、方案决策问题
选择最优的方案就要把每种方案的结果算出来,进行比较。

数学教案-一元一次方程的应用之追及问题

数学教案-一元一次方程的应用之追及问题

数学教案-一元一次方程的应用之追及问题一、教学目标1.理解追及问题的基本概念,掌握追及问题的解题方法。

2.能够运用一元一次方程解决追及问题,提高解决问题的能力。

3.培养学生分析问题、解决问题的思维能力和团队协作精神。

二、教学内容1.追及问题的基本概念和类型2.一元一次方程在追及问题中的应用3.追及问题的解题方法和步骤三、教学过程1.导入新课(1)引导学生回顾一元一次方程的应用,如年龄问题、行程问题等。

(2)提出追及问题,让学生思考如何解决。

2.知识讲解(1)介绍追及问题的基本概念:追及问题是指两个物体在相对运动过程中,一个物体从后面追赶另一个物体,直到追上为止的问题。

(2)讲解追及问题的类型:直线追及和圆周追及。

(3)分析追及问题的解题思路:找出等量关系,列出方程。

3.案例分析(1)案例一:甲车从A地出发,以每小时60公里的速度行驶,乙车从A地出发1小时后以每小时80公里的速度追赶甲车,求乙车追上甲车需要多少时间?(2)引导学生分析案例,找出等量关系:甲车行驶的距离+1小时行驶的距离=乙车行驶的距离。

(3)列出方程:60x+60=80(x-1)。

(4)解方程:60x+60=80x-80,20x=140,x=7。

(5)得出结论:乙车追上甲车需要7小时。

4.练习巩固1.甲、乙两辆火车从相距600公里的两个车站同时出发,相向而行,甲车速度为每小时80公里,乙车速度为每小时100公里。

求两车相遇需要多少时间?2.一辆汽车从甲地出发,以每小时60公里的速度行驶,一辆自行车从甲地出发1小时后以每小时20公里的速度追赶汽车。

求自行车追上汽车需要多少时间?(2)学生展示解题过程,教师点评并给出正确答案。

(2)强调找等量关系、列方程的重要性。

(3)鼓励学生多练习,提高解决问题的能力。

四、课后作业1.完成课后练习题,巩固追及问题的解题方法。

2.收集生活中的追及问题,尝试用一元一次方程解决。

五、教学反思本节课通过讲解追及问题的基本概念、类型和解题方法,让学生掌握了运用一元一次方程解决追及问题的能力。

应用一元一次方程—追赶小明

应用一元一次方程—追赶小明
甲的行程=乙先走的行程+乙后走的行程。
3、相遇问题的相等关系:
甲的行程+乙的行程=两地的距离。
作业布置:
完成练习册本课时的习题
3、相遇后,当联络员再次追上七(1)学生时,用了 多长时间?此时联络员或七(1)班学生及七(2)班学生 离学校又有多远?或两个班的学生相距有多远?
4、当七(2)班学生追上了七(1)班学生时,用了多 长时间?此时他们离学校有多远?
谈谈这节课你有什么收获?
1、借助线段图理解题意。 2、追及问题的相等关系:
分析:1、应用题的类型:行程问题。 2、计算公式:路程=速度×时间。 3、相等关系:A、B两地的路程=小亮的行程+小明的行程。
x 4、若设小亮的速度为 千米/小时,可
x 解:若设小亮的速度为 千米/小时,根据题意,得
+
x 解方程,得 = 19
= 72
19 — 2 = 17
所以,小亮的速度为19千米/小时,小明的速度 为17 千米/小时。
分析:1、这是一道关于行程问题的应用题,在七(1)班学生、 七(2)班学生、联络员这三个对象中,他们的 速度 是已知的,而 他们的 行程和时间 是未知的,所以在提问时应从 行程和时间 两 方面来提。
2、在行程过程中,联络员先是追 七(1)班学生 ,后是与 七(2)学生 相遇,然后又去追 七(1)班学生 ,而七(2)班 学生一直都是在追 七(1)班学生 。
x 解方程,得 = 4
因此,爸爸追上小明用了4min。
(2)180×4=720(m)
1000 —720=280(m) 所以,追上小明时,距离学校还有280(m)。
小亮骑自行车
小亮骑自行车从A地到B地,小明骑自行车从B地到 A地,两人均匀速前进,2小时后,他们相遇。已知A、B 两地相距72千米,小亮的速度比小明的速度每小时快2千 米,求两人的速度。

一元一次方程的应用之追及问题

一元一次方程的应用之追及问题

一元一次方程的应用之追及问题问题描述追及问题是数学中一个常见的应用问题,也是一元一次方程的经典应用之一。

考虑如下情境:A 、B 两人从同一地点出发,A 的速度为 v1 m/s ,B 的速度为 v2m/s 。

如果 A 比 B 先出发 t 秒,那么 B 多久能追上 A ?构建方程为了解决这个追及问题,我们需要先构建一个一元一次方程来代表 A 和 B 的位置关系。

首先,我们根据题意可以得到 A 和 B 的距离和时间之间的关系:•A 的距离 = (A 的速度) * (时间 + t),即 d1 = v1 * (t + t)•B 的距离 = B 的速度 * 时间,即 d2 = v2 * t其中,d1 和 d2 分别表示 A 和 B 的距离,t 表示 A 比 B 先出发的时间差。

根据题意,当 A、B 两人相遇时,他们的距离相等。

因此,我们可以得到以下方程:v1 * (t + t) = v2 * t将上述方程变换一下,得到一元一次方程的标准形式:v1 * t + v1 * t = v2 * t再进一步整理得到:(v1 - v2) * t = 0根据一元一次方程的定义,我们可以推断出 t = 0 或 v1 - v2 = 0。

由于 t 表示 A比 B 先出发的时间差,而实际问题中 A 必然比 B 先出发,所以 t 不能等于 0。

因此,我们只需考虑 v1 - v2 = 0 的情况。

当 v1 - v2 = 0 时,即 A 和 B 的速度相等,这时无论谁先出发,B 都无法追上 A。

因此,追及问题存在的条件是v1 ≠ v2。

判断追及问题是否有解在解追及问题之前,我们需要先判断问题是否有解。

根据一元一次方程的定义,我们知道如果方程的系数一致,方程有解。

因此,当v1 ≠ v2 时,追及问题有解;当 v1 = v2 时,追及问题无解。

解追及问题当追及问题有解时,我们可以利用一元一次方程的求解方法来计算出相遇的时间 t。

将 v1 和 v2 带入 t 的方程中,求解得到 t 的值。

一元一次方程的应用之追及问题

一元一次方程的应用之追及问题

一元一次方程的应用之追及问题追及问题是一种经典的一元一次方程应用问题,常常出现在物理学、运动学以及交通领域中。

它描述的是两个物体相互追赶、追及的情况,通过建立一元一次方程来求解物体的速度、距离和时间等相关问题。

例如,假设有两个人A和B,他们在同一条直线上同时从不同的位置出发,A的速度是5米/秒,B的速度是4米/秒。

问题1:如果A和B同时出发后,多久之后他们能够相遇?问题2:相遇时,A和B分别走了多少米?首先,可以设定A和B同时出发的时间为t,那么A和B在t时间内分别走过的距离可以用速度乘以时间来表示。

根据题目中给出的数据,A 和B的速度分别是5米/秒和4米/秒,那么他们走过的距离可以表示为:A的距离=5tB的距离=4t问题1:他们相遇的时间是多久?由于他们在相遇时走过的距离是相等的,所以我们可以将A的距离和B的距离相等,即5t=4t。

解这个方程可以得到t=0,表示他们在出发后立即相遇。

但根据题意可知,他们是同时出发的,所以这个解是不符合实际情况的。

因此,我们可以设定他们相遇的时间为t,即5t=4t。

解这个方程可以得到t=0。

这个解同样不符合实际情况,所以可以排除。

问题2:相遇时,A和B分别走了多少米?我们可以将相遇时的距离设为d,即A和B相遇时的距离是d,那么根据上面的分析,A和B分别走过的距离分别是5d和4d。

根据题意,A 和B相遇时的距离是相等的,所以可以写出5d=4d,从而解得d=0。

同样不符合实际情况。

通过上面的分析可以看出,在这个问题中,A和B根本无法相遇。

这是因为在他们的出发速度中,A的速度5米/秒大于B的速度4米/秒,A 始终能够保持在B的前方,无论经过多久都不可能相遇。

通过这个例子,我们可以看到追及问题中一元一次方程的应用。

尽管上述问题中我们没有得到实际的解,但这并不妨碍追及问题在实际情况中的应用。

例如,在交通运输领域中,追及问题可以用于计算不同车辆之间的距离,以及不同车辆的相对速度和时间。

一元一次方程的应用之追及问题——初中数学第一册教案

一元一次方程的应用之追及问题——初中数学第一册教案

一元一次方程的应用之追及问题——初中数学第一册教案第16课4。

4一元一次方程的应用之追及问题教学目的一、使学生会分析相向而行的同时与不同时动身的相遇问题中的相等关系,列出一元一次方程解简单的应用题。

二、使学生增强了解列一元一次方程解应用题的方式步骤。

教学分析重点:利用路程、速度、时间的关系,按照相遇问题中的相等关系,列出一元一次方程。

难点:寻觅相遇问题中的相等关系。

冲破:同时动身到相遇时,所历时间相等。

注重审题,从而找到相等关系。

教学进程一、温习一、列方程解应用题的一般步骤是什么?二、路程、速度、时间的关系是什么?3、慢车每小时行驶48千米,x小时行驶千米,快车每小时行驶72千米,若是快车先开0。

5小时,那么慢车开出x小时后,快车行驶了千米。

二、新授一、引入列方程解应用题,关键是寻觅相等关系,今天咱们通过一例来学习如何寻觅相等关系,和把相等关系表示成方程的方式。

例(讲义P216例3)题目见教材。

分析:(1)可以画出图形,明显有这样的相等关系:慢车行程+快车行程=两站路程设两车行了x小时相遇,则两车的行程的代数式别离为85x,65x,放入相等关系中,即可得出方程:85x+65x=450(2)再分析快车先开了30分两车相向而行的情形。

一样画出图形,并按讲义讲解,(见教材P217~218)由学生完成求解进程,并作出答案。

解:略说明:(1)本题是相向而行的相遇问题,一路点是有一个相同的相等关系,即慢车行程+快车行程=两站路程。

不同点是一个同时动身,一个不是同时动身,所以所历时间不必然相等。

(2)不是同时动身的,要注意时间的关系。

三、练习P220练习:1,2。

四、小结一、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。

二、相向而行的相遇问题中,要注意时间的关系。

五、作业一、P222 4。

4A:13,14,15。

二、基础训练:同步练习3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程的应用追击问题
【教学目标】
1. 能正确分析追及问题中已知数与未知数之间的相等关系,继续利用路程、时间和速度三量之间关系式,列一元一次方程解简单应用题。

2. 会根据题意区别行程问题中的追及和相遇问题。

【教学难点】
寻找二者的追及路程即相差路程。

【教学过程】
1. 准备题
观察线段图:
请说出图意:小红和小军家相距20千米,他们都从家去学校。

问题:如果他们同时出发,小红能追上小军吗?如果能需要具备什么条件?(可能小红速度>小军速度)
2. 导言
这个问题是我们今天要研究的追及问题,追及问题具备哪几个量?(快速、慢速、追时间、追及路程)
3. 例1. 一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个通知传给队长,通讯员从学校出发,骑自行车以14千米/时速度按原路追击,多少时间可以追上学生队伍?
图示:
相等关系:(1)通讯员行路程=学生先行路程+后行路程
解:设x小时通讯员追上队伍
由题意得:
解得:
(2)速度差×追及时间=相差路程
列方程得:
解得:
答:小时通讯员追上队伍。

例2. 一列慢车从某站开出,每小时行48km,过了一段时间,一列快车从同站出发与慢车同向而行,每小时行72km,又经过1.5小时追上慢车,快车开出前,慢车已行了多长时间?
分析:
相等关系:快车行路-慢车1.5小时行路程=相差路程
解:设快车开出前慢车行了x小时路
由题意得:
答:快车开出前慢车行了小时路。

4. 小结
求追及问题最关键的是找出追及者和被追及者的相差路程,然后可利用相等关系式、设未知数、列方程。

5. 练习
(1)一队学生去校外进行军事野营训练,他们以5千米/时速度行进,走了18分的时候学校派一名通讯员骑自行车从学校按原路追击,只用10分钟把通知传到队长那里,通讯员必须以怎样的速度行进?解:设通讯员以x千米/时速度行进
(2)甲、乙两人在400米环形跑道上练习长跑,甲每分钟160米,乙每分钟140米,若甲在乙前面100米,两人同时出发,甲经过多少分钟第一次和乙相遇?
解:设甲经x分钟追上乙
(3)※学生队伍从学校出发到营地,以5千米/时速度行进了1小时,这时一个学生以7千米/时速度返回学校办完事后(办事停留时间不计)立即追赶队伍,在距营地2千米地方追上,求学校到营地路程。

提示:
相等关系:学生队伍1小时行路+小时行路+x小时行路=学生从学校到追上路
[学生(快速)-队伍(慢速)]×追及时间=相差路程
间接设:设学生从学校x小时追上队伍,则学校到营地千米【作业】
243P ③。

相关文档
最新文档