【CN110129828A】一种矿山含铜酸性废水综合利用方法【专利】

【CN110129828A】一种矿山含铜酸性废水综合利用方法【专利】
【CN110129828A】一种矿山含铜酸性废水综合利用方法【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910317508.7

(22)申请日 2019.04.19

(71)申请人 紫金矿业集团股份有限公司

地址 364200 福建省龙岩市上杭县紫金路1

号紫金大楼

(72)发明人 陈景河 蓝碧波 江城 黄怀国 

范红春 张玲文 熊明 熊明瑜 

谭希发 彭钦华 黄中省 罗增鑫 

沈镇馨 丘晓斌 刘晓英 

(74)专利代理机构 厦门市首创君合专利事务所

有限公司 35204

代理人 李钦海

(51)Int.Cl.

C25C 1/12(2006.01)

C22B 3/26(2006.01)

C22B 7/00(2006.01)C22B 15/00(2006.01)C01G 3/12(2006.01)C02F 9/04(2006.01)C02F 103/16(2006.01)C02F 101/20(2006.01)

(54)发明名称一种矿山含铜酸性废水综合利用方法(57)摘要本发明涉及一种矿山含铜酸性废水综合利用方法,它先进行分类贮存:根据矿山含铜酸性废水性质对矿山含铜酸性废水分成A、B、C三类并分别贮存;接着将A类酸性废水与铜矿生物堆浸浸出液混合后进行萃取-电积,得萃余液和产品阴极铜;调配喷淋液:将B类废水一部分用于调配铜矿生物堆浸的喷淋液,控制氧化还原电位、铁浓度、硫酸浓度后入生物堆浸喷淋,得浸出液,浸出液入萃取-电积;硫化沉淀:将B类废水剩余部分入硫化沉淀,控制硫化沉淀反应终点电位,得硫化沉铜后液和产品硫化铜渣;中和:将C类酸性废水与硫化沉铜后液和萃余液一道入中和工艺处理后达标外排,它具有对废水区门别类差异化、铜回收最大化、处理成本低、变废为宝、经济社会效益显著等优点,

适于矿冶行业应用。权利要求书1页 说明书4页 附图1页CN 110129828 A 2019.08.16

C N 110129828

A

权 利 要 求 书1/1页CN 110129828 A

1.一种矿山含铜酸性废水综合利用方法,依次按如下步骤和条件进行:

(1)分类贮存:根据矿山含铜酸性废水性质对矿山含铜酸性废水分成高铜浓度酸性废水、中低铜酸性废水和低铜、高铁、高浓度硫酸的酸性废水三类,并分别引流到不同的溶液池贮存;

(2=1)萃取-电积:将高铜浓度酸性废水与铜矿生物堆浸浸出液混合后进入公知萃取-电积工序,得萃余液和产品阴极铜;

(2=2)调配喷淋液:将中低铜酸性废水一部分用于调配铜矿生物堆浸的喷淋液,控制喷淋液氧化还原电位670~770mV(Vs.SHE),铁浓度5~10g/L,硫酸浓度5~10g/L进行公知生物堆浸喷淋处理,得浸出液,浸出液至步骤(2=1)萃取-电积;

(2-3)硫化沉淀:将中低铜酸性废水剩余部分采用公知硫化沉淀工艺处理,加入硫化沉淀剂,控制硫化沉淀反应终点电位200~450mV(Vs.SHE),得硫化沉铜后液和产品硫化铜渣;

(2-4)中和:将低铜、高铁、高浓度硫酸的酸性废水与硫化沉铜后液和萃余液一道采用公知中和工艺无害化处理至pH6~9后达标外排。

2.根据权利要求1所述的方法,其特征是所述步骤(1)高铜浓度酸性废水的铜浓度≥0.50g/L。

3.根据权利要求2所述的方法,其特征是所述步骤(1)中低铜酸性废水的铜浓度<0.50g/L。

4.根据权利要求1所述的方法,其特征是所述步骤(1)低铜、高铁、高浓度硫酸的酸性废水的铜浓度<100mg/L,铁浓度>3g/L,硫酸浓度>3g/L。

5.根据权利要求1所述的方法,其特征是所述步骤(2-3)硫化沉淀剂采用工业副产品硫氢化钠溶液。

2

治理酸性矿山废水的方法

治理酸性矿山废水的方法 1 引言 煤矿或各种有色金属矿在开采与废矿石堆放过程中,常使与矿层伴生的硫铁矿暴露于空气中与地下水或地表水中,通过系列化学与生物氧化过程,使得近中性的地下水转变为低pH、高Fe、SO2-4,且多种重(类)金属离子(Cd、Pb、Cu、Zn、As等)并存的酸性矿山废水(acid mine drainage,AMD).此类废水若不经有效处理而任意排放,将严重污染地表水及土地资源,威胁农作物、水生生物与人体健康. 石灰中和法是世界上最常用的AMD治理方法.然而,大多数AMD体系中含有较大量的 Fe2+,由于Fe(OH)2 离子浓度积(1.6×10-14,18 ℃)远大于Fe(OH)3的离子浓度积(1.1×10-36,18 ℃),所以为了在近中性条件下使得Fe离子完全沉淀,在工程应用中,常常在化学中和前段完成Fe2+氧化过程.以AMD为介质,利用氧化亚铁硫杆菌(A. ferrooxidans)生物氧化Fe2+进而合成次生铁矿物(施氏矿物、黄铁矾类物质)不仅可以有效去除AMD中存在一定量的Fe与SO2-4,且此类次生铁矿物在合成过程中亦可通过吸附与共沉淀方式大幅度去除体系中的Cu、Cd、Hg、Pb、As等有毒有害元素.另需要强调的是对于石灰中和法得到的Fe(OH)3絮状凝胶而言,施氏矿物与黄铁矾类物质沉降性能良好,易于沉淀,可以极大降低后续固液分离成本.因此,前期氧化亚铁硫杆菌(A. ferrooxidans)生物氧化Fe2+产生次生铁矿物与后期化学中和相结合的工艺在AMD的治理领域表现出一定的应用潜力. 由于煤矿及其它有色金属矿中常有含镁矿物(白云石富镁碳酸盐矿物、蛇纹石与绿泥石等富镁硅酸盐矿物等)的存在,使得产生的AMD中含有一定量的Mg2+.研究证实,A. ferrooxidans菌体及其胞外多聚物可以作为次生铁矿物合成的晶种.而Mg2+可以在微生物胞外多聚物之间形成架桥使得微生物菌体团聚.那么,这一团聚过程是否会使得矿物较易在反应器壁粘附,进而影响次生铁矿物合成体系总Fe沉淀率及矿物的形貌?另外,高的转速对应高的剪切力.那么,高转速是否会减缓矿物在反应器壁的粘附行为?为了探究此类科研问题,本研究分别在不同培养转速条件下,考察了Mg2+浓度不同对A.ferrooxidans催化合成次生铁矿物体系Fe2+氧化率、总Fe沉淀率、次生铁矿物反应器壁粘附状况及矿物形貌的影响.以期为生物合成次生铁矿物工艺的优化及其在酸性矿山废水治理领域的成功应用提供一些必要的参数. 2 材料与方法 2.1 嗜酸性氧化亚铁硫杆菌(A. ferrooxidans)接种液的制备 在150 mL改进型9K液态培养基(FeSO4 · 7H2O 44.24 g、(NH4)2SO4 3.0 g、KCl 0.10 g、K2HPO4 0.50 g、Ca(NO3)2 · 4H2O 0.01 g、MgSO4 · 7H2O 0.50 g,去离子水1 L)中接种A. ferrooxidans LX5(CGMCC No.0727),体系用H2SO4调节pH至2.5后,置于180 r · min-1往复式振荡器(ZD-85A恒温振荡器)中在28 ℃培养2~3 d至体系Fe2+完全氧化.培养液经定性滤纸过滤以除去沉淀,过滤所得的液体即为嗜酸性氧化亚铁硫杆菌菌液.将所得菌液15 mL接种于135 mL改进型9K液态培养基中重复上述过程.所获菌液即为本研究后续次生铁矿物合成所需的微生物接种菌液,菌密度约为107 cells · mL-1.

金属矿山酸性废水处理工艺

金属矿山酸性废水处理工艺 矿产资源是人类社会发展进步必不可少的自然资源。人类对金属矿山的大面积开采会破坏周围区域的生态环境,而AMD是全球矿山面临的最严重的环境问题。AMD是硫化矿物在空气、水和微生物的共同作用下发生溶蚀、氧化、水解等一系列物化反应而形成的低pH、高重金属离子浓度的一类难处理废水。而我国金属矿山大部分是原生硫化物矿床,极易形成AMD,例如江西德兴铜矿、武山铜矿、江苏梅山铁矿、浙江遂昌金矿、安徽南山矿、向山铁矿、湖南七宝山铜锌矿等。因此,如何高效、经济地治理AMD显得尤为重要。 1、AMD来源 AMD指在矿山开采活动中经过复杂的物理化学反应作用产生的呈酸性且SO42-和重金属含量超标的有害水体。矿山酸性废水有以下特点: ①呈酸性、金属离子浓度高,例如含Fe3+的矿山废水因水解生成的氢氧化铁呈红褐色,被称为“红龙之灾”; ②废水产生量大且水流持续时间长,常常矿山开采结束后,废水仍继续流出; ③水质、水量不稳定,波动较大。 AMD进入自然水体后使水体酸化,导致水生生物死亡;进入土壤后使土壤板结,毒化土壤,造成功能退化。在1947年,Colmer等首次提出细菌是AMD形成的重要原因。在后续的研究和实际治理过程也进一步的证实了这种论断。如黄铁矿,在有菌存在和无菌存在时,氧化速度相差较大。 黄铁矿氧化产酸过程如下: Fe3+被黄铁矿还原生成Fe2+,而Fe2+很快又被微生物或O2氧化成Fe3+再与黄铁矿反应,如此循环反应,形成了大量的AMD。 2、AMD的治理 AMD现已严重危害到生态环境乃至人类的生存安全,其治理技术也日新月异。目前,效果显著的治理技术主要有中和法、沉淀法、人工湿地、吸附法及生物法等。 2.1 中和法 面对大量的酸性废水,中和法成为了人类在治理AMD时的首要选择。中和法又称为氢氧化物沉淀法,中和法就是在废水中投加大量的碱性物质,如石灰乳、氢氧化钠、石灰石等,来提高废水酸碱度,从而沉淀废水中的金属离子。该方法因原理简单,成本低、效果明显,在实际矿山酸性废水的治理中得到了广泛的应用。如钱士湖等报道的HDS(高浓度泥浆)在安徽某公司酸性废水的实践运用。对实际运行效果进行了分析总结,表明HDS工艺在调节废水pH值和去除Al3+、SO42-离子效果显著。与传统的石灰中和法(LDS)相比,HDS延缓了设备和管道的结垢现象,克服了LDS法的很多缺点,高浓度泥浆法与低浓度泥浆法相比有以下优点:一是降低了石灰用量,减少了处理成本;二是出水水质稳定,符合排放标准。高浓度泥浆法相对于低浓度泥浆法突破性进展是底泥按比例回流,可用于废水处理。但始终无法根除设备和管道结垢、中和渣易造成二次污染的弊端。

高浓度酸性废水处理

高浓度酸性废水处理技术 常治辉原创 | 2015-04-15 06:45 | 收藏 | 投票 关键字:污水处理絮凝剂破乳剂药剂COD去除剂 济南某公司在利用米糠、棉壳、玉米心等农副产品与稀硫酸共热, 多糖发生水解、重排、脱水等反应生产某产品时, 排放出的污水成分复杂, 呈较强的酸性、有机污染负荷高、水温及色度较高。废水中的污染物均属于低碳有机醛、糖、醇、有机酸等, 还含有硫酸以及多种难生物降解的有机物。其中COD 平均浓度达20000 mg/ l 以上, pH 值为2. 5~ 3. 0。本研究采用了比湿式氧化学、吸附法以及萃取法等其它方法更为经济可行的生化学[ 1, 2] , 并辅以必要的物理、化学前置预处理措施, 以降低废水的毒性, 进一步提高废水的可生化性, 降低废水中的有机物的含量, 使处理后的出水量终达标排放。 1 废水的来源及水质参数 本研究中试阶段在济南某公司污水处理站现场,原水取自企业生产所排放的废水,其污染物的水质情况见表1。 2 工艺路线的选择及流程的确定 2.1 主体工艺路线及流程 生产废水本身含有机质较多,浓度较高,CODcr最高为23520mg/l,而且酸度大、毒性高,不能直接进行生化处理。因此,中试试验采用物化与生化相结合的工艺,即电腐蚀-中和反应-内电解-混凝沉淀-厌氧-好氧工艺(见图1)。 本工艺的选择主要是基于以下几点来考虑的: (1)电腐蚀池是利用电化学腐蚀原理,酸性废水中的H+与铁屑反应,使废水的pH 值升高,提高废渣的沉降性能,同时废水中的COD也可降低。而且Fe(OH)2,也是良好的絮凝剂,在后续单元可节省大量的药剂,降低处理成本。

含铜废水处理工艺

含铜废水处理工艺 电镀含铜废液主要来自氰化镀铜,酸性镀铜以及铜件酸洗等工序。含铜废水的处理方法较多,有化学沉淀法、金属置换法、离子交换法和电解法等。 1、酸盐镀铜废水的处理 (1)化学沉淀法 这种方法适用于含铜量在800,1000mg/L以下的废水,是用碱提高废水PH至生 成氢氧化铜沉淀.这种方法可以取得良好效果,一般采用碱性废水去沉淀.但沉淀中杂质分离麻烦,平时处理费用较高. (2)置换法 在酸性条件下,用铁屑等较活泼金属将铜置换出来.这种方法可以达到治理要求,但沉淀中杂质分离困难,污泥量多 (3)离子交换法 这种方法适用业含铜浓度在50,200mg/L的废水.浓度过高,废水PH势必较低, 若用弱酸性阳离子交换树脂,很难吸附铜离子;若用强酸性阳离子交换树脂交换容量则较小,再生时要用较多的酸.用阳树脂处理含铜量较低废水,铁离子也会被树脂吸附,洗脱后难以分离. (4)电解法 1 电解法在处理硫酸盐镀铜废水中得到了广泛使用,特别是电解法—离子交换法 组合,或是使用电解法----化学沉淀法组合. 2、氰化含铜废水处理 氰化镀铜废液中含氰化物浓度高,大多数工厂采用含氰废水处理相同的氯碱法。这种方法需要消耗大量的药剂。除此之外还可采用离子交换法进行处理,但其含氰量不应大于100mg/L。

3、焦磷酸铜废水处理 ,4焦磷酸盐镀铜漂洗废水中主要含有PO、Cu(PO)2424,,+2+2+2+62+、HPO、K、NH、Fe、Ca、Mg等离子。可用碱244 性阴离子交换树脂回收焦磷酸铜离子。用亚铁共沉淀法也可有效的处理焦磷酸盐镀铜废水。焦磷酸盐镀铜镀液中主要成分是焦磷酸铜和焦磷酸钾,它们相互作用生成焦磷酸铜钾螯合物,在pH为8,9时,铜的主要存在形式为,Cu(PO)24 ,6,,铜处于比较稳定的螯合状态,加入硫酸亚铁,将铜还2 原为CuO,而铁以二价或三价氢氧化物形式存在,利用铁2 的氢氧化物的凝聚作用,将CuO吸附,发生共沉淀,从而2 达到除铜的目的。该工艺简单,操作方便。此外还可用漂白粉破坏络合物,使铜离子解离出来生成氢氧化铜,再进行固液分离。在操作中应注意漂白粉的加入量以及pH值的调节等问题。 2

【CN110129828A】一种矿山含铜酸性废水综合利用方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910317508.7 (22)申请日 2019.04.19 (71)申请人 紫金矿业集团股份有限公司 地址 364200 福建省龙岩市上杭县紫金路1 号紫金大楼 (72)发明人 陈景河 蓝碧波 江城 黄怀国  范红春 张玲文 熊明 熊明瑜  谭希发 彭钦华 黄中省 罗增鑫  沈镇馨 丘晓斌 刘晓英  (74)专利代理机构 厦门市首创君合专利事务所 有限公司 35204 代理人 李钦海 (51)Int.Cl. C25C 1/12(2006.01) C22B 3/26(2006.01) C22B 7/00(2006.01)C22B 15/00(2006.01)C01G 3/12(2006.01)C02F 9/04(2006.01)C02F 103/16(2006.01)C02F 101/20(2006.01) (54)发明名称一种矿山含铜酸性废水综合利用方法(57)摘要本发明涉及一种矿山含铜酸性废水综合利用方法,它先进行分类贮存:根据矿山含铜酸性废水性质对矿山含铜酸性废水分成A、B、C三类并分别贮存;接着将A类酸性废水与铜矿生物堆浸浸出液混合后进行萃取-电积,得萃余液和产品阴极铜;调配喷淋液:将B类废水一部分用于调配铜矿生物堆浸的喷淋液,控制氧化还原电位、铁浓度、硫酸浓度后入生物堆浸喷淋,得浸出液,浸出液入萃取-电积;硫化沉淀:将B类废水剩余部分入硫化沉淀,控制硫化沉淀反应终点电位,得硫化沉铜后液和产品硫化铜渣;中和:将C类酸性废水与硫化沉铜后液和萃余液一道入中和工艺处理后达标外排,它具有对废水区门别类差异化、铜回收最大化、处理成本低、变废为宝、经济社会效益显著等优点, 适于矿冶行业应用。权利要求书1页 说明书4页 附图1页CN 110129828 A 2019.08.16 C N 110129828 A

金属矿山废水处理新技术

金属矿山废水废渣处理新技术院系:城建给排水工程学号:111824224 :熊聪 摘要:随着经济建设的快速发展,我国金属矿山废水产生的环境问题日益严重,金属矿山废水的污染已成为制约矿业经济可持续发展的主要因素之一。概述了矿山酸性废水的形成及危害,重点介绍了几种常见的处理矿山酸性废水的处理技术如中和法、硫化物沉淀法、吸附法、离子交换法和人工湿地法,同时介绍了它们的原理、特点和存在的问题,在此基础上,对矿山酸性废水处理技术的研究,并介绍了几种金属矿山废水处理的新技术以及实例。 关键词:金属矿山废水废渣处理新技术 Abstract:With the rapid development of economic construction, the metal mine waste water environment problem is increasingly serious, metal mine waste water pollution has become one of the main factors restricting the sustainable development of mining economy. Formation and harm of the acidic mining waste water are summarized, mainly introduces several common treatment of acidic mining waste water treatment technologies such as neutralization, sulfide precipitation, adsorption, ion exchange method and the method of artificial wetland, and introduces the principle, characteristics and existing problems, and on this basis, the study of acidic mining waste water treatment technology, and introduces several kinds of metal mine wastewater treatment technology and examples. Keywords:Metal mine Waste water Conduct The new technology 一、金属矿山废水的形成及危害 1.1金属矿山废水的形成 在大部分金属矿物开采过程中会产生大量矿坑涌水。当矿石或围岩中含有的硫化物矿物与空气、水接触时,矿坑涌水就会被氧化成酸性矿坑废水。酸性矿坑水极易溶解矿石中的重金属,造成矿坑水中重金属浓度严重超标。同时在雨水的冲刷作用下废石堆和尾矿也产生大量含有高浓度重金属的酸性淋滤水。 1.2金属矿山废水的危害 金属矿山矿山酸性废水中含有大量的有害物质,一般不能直接循环利用,矿

含铜废水处理方法

含铜废水处理技术有哪些呢?含铜废水处理技术的特点有吗?含铜废水处理技术的工艺过程呢?含铜废水处理技术包括了化学沉淀法、电解法、离子交换法、重金属螯合剂、膜分离法和置换法等,不同的含铜废水处理技术有各自的特点。含铜废水中的铜含量很高,直接排放不仅对坏境造成污染,而且浪费资源,因此需要对含铜废水进行处理,通过技术手段对铜进行回收利用,水质达标后在进行排放。在说含铜废水处理技术之前,我们来介绍下含铜废水的来源: 1、化工、印染、电镀、有色冶炼、有色金属矿山开采、电子材料漂洗废水、染料生产等过程中常产生含有大量铜离子的废水。按铜离子的价态有二价态铜离子和一价态铜离子;按存在的形式有游离铜(如Cu2+)和络合铜(如铜氰配离子[Cu(CN)3]2-、铜氨络合[Cu(NH3)42+]等)。 2、在染料、电镀等行业含铜废水中,铜离子往往以络合形态存在,如铜氰配离子[Cu(CN)2]-、[Cu(CN)3]2-、[Cu(CN)4]3-,—般认为废水中铜氰配离子主要以[Cu(CN)3]2-存在。铜氯配离子被 分解为Cu+和Cl-,一价铜离子在水溶液中会自发地发生歧化反应,成为二价铜离子。以酸性镀铜废水为例,废水中主要存在Cu2+、H+、Fe2+、Fe3+等阳离子和SO42-、C1-等阴离子。氰化镀铜漂洗废水中含游离氰根离子300?450mg/L,含一价铜离子400?550mg/L。 含铜废水的成分:由于废水产生的过程不同,含铜废水中铜离子的存在状态、质量浓度以及 废水中的成份也不相同,其差异较大。电镀生产过程产生的含铜废水中的污染物,如硫酸铜、硫酸、焦磷酸铜等,其质量浓度在100mg/L 及50mg/L 以下;电路板生产过程产生的含铜废水有含铜蚀刻液与洗涤废水等,其质量浓度在130?150mg/L及20mg/L以下;染料生产含铜废水 的质量浓度为1291mg/L; 铜矿山含铜废水,其质量浓度在几十至几百毫克每升含铜废水处理技术:1 、化学沉淀法:化学沉淀法包括氢氧化物沉淀法和硫化沉淀法。 (1)氢氧化物沉淀法:氢氧化物沉淀法中石灰法使用较广,其机理主要是往废水中添加碱 (一般是氢氧化钙) ,提供废水的pH 值,使铜等重金属离子生成难容氢氧化物沉淀,从而降低废水中铜离子含量而达到排放标准。其处理工艺为:重金属酸性废水T沉砂池石灰乳混 合反应池T沉淀池T净化水T外排。该法处理后的净化水有较高的pH值及钙硬度,和严重 的结垢趋势,需采用合适的水质稳定措施进行阻垢后才能实现回用,而且不适于处理印刷电路板生产过程中的含铜络合物废水。 (2 )硫化沉淀法:硫化沉淀法是利用添加Na2S等能与重金属形成比较稳定的硫化沉淀物 的原理,其工艺为:含铜废水T硫化物沉淀处理T中和处理T外排。该法用于常规的中和沉 淀法无法处理的铜络合物的废水,但加入了大量的化学药剂,因此存在二次污染。 2、电解法:Cu2+向阴极迁移并在电极表面析出。电解法处理含铜废水不仅在理论上较为成熟,而且平板电极电解槽、流态化电解槽等处理装置均在生产实际中广泛应用。 3、离子交换法:该法能有效的去除矿山废水中的铜离子,而且具有处理容量大、出水水质好等特点,且占地少、不需对废水进行分类处理,费用相对较低,但存在投资大、对树脂要求高、不便于控制管理等缺点。 工艺为:混合废水T阳离子交换柱T阴离子交换柱T回用及排放。(如果原水pH值过低, 应先进行pH调整,废水的Cu2+浓度过高时,应进行除铜预处理,否则树脂再生会过于频繁)c用于去除废水中Cu2+的离子交换树脂有:AmberlitelRC-718整合树脂、Dowex50x8强酸性阳离子树脂、螯合树脂DowexXFS-4195螯合树脂DowexXFS-41196及国内的“争光”、“强酸1 号”和PK208树脂等。 4、重金属螯合剂:采用重金属螯合剂(EP110)对印制电路板含铜废水进行处理,在pH值为3~13、EP110投加量大于水中Cu2+质量7倍(质量比)、反应时间约为15min及投加少量 PAC/PFS的条件下,可以使处理水中Cu2+含量低于0.5mg/L的国家允许排放标准。采用该方法处理印制电路板低铜含量的含铜废水优于采用传统的化学处理法。 5、膜集成技术:膜集成技术(超滤、反渗透、离子交换等)对含胶体、重金属(Cu2+)工

矿山酸性废水的环境危害性

矿山酸性废水的环境危害性 所谓酸性废水就是含较低浓度的硫酸、硝酸、盐酸、磷酸、有机酸等酸性物质的废水。酸性废水排放尤其是矿山业酸性废水的排放是环境污染的严重问题之一,具有污染面广、污染持续时间长、危害程度严重等特点。如何有效处理酸性废水,是水污染面临的重要问题。 随着我国矿山建设的迅速发展,矿山环境的污染和破坏越来越严重,而其中矿山废水是矿山环境的主要污染源之一。据统计,我国矿山每年因采矿、选矿而排放的废水量达12~15亿t,占有色金属工业废水总量的30%左右,其中有很大部分是未经处理直接排放的,不仅造成严重的环境污染,而且是一种巨大的水资源浪费。因此,寻求经济实用的矿山废水治理方法,对保护矿山环境和节约水资源有重要意义。 矿山酸性废水的危害 (1)腐蚀管道、水泵、钢轨等设备设施,同时直接威胁拦污、蓄污设施(如污水坝等)的安全与稳定。 (2)含重金属离子的矿山废水排入农田,对大多数植物都具有毒负作用,导致大部分植物枯萎,死亡,严重影响农作物的产量和质量。少部分植物吸收重金属后,通过食物链危害人类健康。 矿山废水直接排入河流、湖泊或渗入地下,导致水质恶化,对鱼类、藻类和人类构成极大威胁。 清污分流,从源头减少酸性水 针对矿区地处多雨区,雨季降雨量大而且集中,以及雨水流经废石即转变为酸性水的特点,采用清污分流措施,将清水河污水分离,清水直接排入河流,避免受污染,污水则进入酸性水库进行处理。以废治废,变废为宝’的方针,走资源开发与生态环境可持续发展之路,按照循环经济理论,回收矿石与酸性水中的铜矿资源。所谓回收,就是在排土(废石)场上建立堆浸厂,将含铜品位0.05%~0.25%的剥离废石集中堆存在一起,形成喷淋场,再利用细菌浸出——萃取——电积新工艺,每年可以从废石中回收电解铜1300多吨,从而减轻了工业废水的处理压力。 创新手段治水,解决多项难题 2004年,德兴铜矿利用电石渣替代石灰处理酸性废水的试验取得成功,从而降低了废水的处理成本,克服了废水处理与选矿生产争石灰的矛盾,确保了酸性水处理的连续稳定运行。 从2007年开始,德兴铜矿利用尾矿库处理酸性水。采矿过程中产生的酸性废水传送到尾矿库,与选矿过程中产生的碱性尾矿混合,并在尾矿库沉淀。这样不但处理了酸性水,还可以把上清液回用于选矿生产。据了解,2011年,德兴铜矿选矿回水复用率达82%以上。

酸性煤矿废水处理工艺

酸性煤矿废水处理工艺 煤矿酸性废水是我国煤矿废水污染中对生态环境破坏最大的污染源之一,其对煤矿的排水设施、钢轨及其他机电设备均具有很强的腐蚀性,严重时危害矿工安全,影响井下采煤生产。若直接排放,将污染地表水和地下水资源及土地资源,危害农作物、水生生物和人类健康,还会使矿区地下水资源大面积疏干,造成地下水的浪费。综上所述,煤矿酸性废水因其量大、面广、污染严重、治理程度低而成为制约煤矿可持续发展的一大障碍。 煤矿酸性废水的形成过程非常复杂,是煤层中夹杂的硫铁矿经过一系列氧化、水解等反应后生成的,是一系列物理、化学和生物过程相互作用的结果。其形成机制为:①在氧和水存在的条件下,煤层或岩层中硫铁矿被氧化,生成硫酸和亚铁离子;②在酸性条件下,亚铁离子被进一步氧化为铁离子;③由于铁和锰离子的水解,增加了矿井水的酸度。 1 试验材料和方法 1.1 试验材料 仪器:ZR4—4混凝试验搅拌机,增氧泵(山本8000),电感耦合等离子光谱发生仪(ICP-OES PE2100DV)。 药品:多糖生物絮凝剂,工业用石灰,水样:贵州某酸性矿井废水,水体透明呈淡黄色,长时间暴露空气中后呈红褐色,其水质指标见表1。 1.2 试验方法 铁锰去除率的测定方法:向500mL烧杯中加入200mL待测水样,调节pH,向水样中滴加石灰乳直至水样不再出现绿色,同时曝气。加入多糖生物絮凝剂(15g

/L,下同),用ZR4—4混凝试验搅拌机以150r/min的转速搅拌30s后,静置1min,取水样的上清液,用电感耦合等离子光谱发生仪测定其中的铁和锰含量,其去除率(%)计算式分别见式(1)、式(2)。 铁去除率=[(AFe-BFe)/AFe]×100%(1) AFe——原水水样中的铁含量,mg/L; BFe——处理后上清液中的铁含量,mg/L。 锰去除率=[(AMn-BMn)/AMn]×100%(2) AMn——原水水样中的锰含量,mg/L; BMn——处理后上清液中的锰含量,mg/L。 2 试验结果与讨论 2.1 pH 对铁、锰去除率的影响 取200mL原水,向水样中滴加石灰乳直至水样不再出现绿色,继续添加石灰乳,分别调节pH 为6、7、8、9、10、11、12,水气比1∶15,曝气10min后,加入0.4mL 15g/L多糖生物絮凝剂,以150r/min的转速搅拌30s,静置沉淀1min 后取上清液测定金属含量,并计算出铁、锰的去除率,相关试验结果见图1。 由图1可知,pH 对铁、锰去除率有较大影响,随着pH 的升高,铁、锰去除率逐渐增大,这是由于pH 的增高促进了氢氧化铁、氢氧化锰沉淀的生成及絮凝剂分子链上-OH 和-COO-的水解,使分子链伸展,并通过改变絮凝剂分子和胶体颗粒的表面电荷,从而有效的对氢氧化铁、氢氧化锰颗粒进行吸附架桥。当pH 达到8时,铁的去除率达到最大,为99.99%,此时锰的去除率为87.65%。可

外文翻译---利用冶金渣副产物去除酸性矿山废水中的污染物

Removal of pollutants from acid mine wastewater using metallurgical by-product slags D. Feng a,?, J.S.J. van Deventer a, C. Aldrich b a Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, Vic., 3010, Australia b Department of Chemical Engineering, University of Stellenbosch, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa Received in revised form 8 January 2004; accepted 12 January 2004 Abstract Theremoval of pollutants from acid mine drainage using metallurgicalby-product slags was studied in laboratory scale. Metallurgicalby-product furnace slags were used as sorbents for metal ions and dispersed air column flotation was employed for the solid/liquid separationof the loaded slags. Batch sorption/pH/kinetic studies were conducted using simulated Cu and Pb bearing wastewater. The calcium glasstype of slags had high surface area and porosity. Promising result was succeeded from the combined process of slag sorption/flotation on thetreatment of an acid mine drainage from a South African gold mine. ? 2004 Elsevier B.V. All rights reserved. Keywords: Furnace slag; Sorption; Flotation; Wastewater treatment; Acid mine drainage 1. Introduction Various methods exist for the removal of toxic metalions from aqueous solution, viz. ion exchange, reverse osmosis,precipitation and adsorption, among others. Adsorptionis by far the most versatile and widely used process.Activated carbon has been the standard adsorbent for thereclamation of municipal and industrial wastewaters. Owingto the high-cost of activated carbon, production of itslow-cost alternatives has been the focus of research in thisarea for years. These sorbents for the heavy metals sorptionranged from natural materials to industrial and agriculturalby-products, such as fly ash, carbonaceous material, metaloxides, zeolites, moss, hydroxides, lignin, clays, biomass,peanut hulls, pyrite fines, goethite and coral sand.Furnace slags as metallurgical by-products are beingused as fillers or in the production of slag cement. It hasbeen reported that granulated furnace slag can be convertedinto an effective adsorbent and used for the removal ofdyes [1,2] and metal ions [3,4]. Alkaline-based slags asnon-conventional sorbents for various heavy metal ionscombine ion-exchange and sorption properties with anacid-neutralising ability. Acid mine water is an unavoidableby-product of the mining and mineral industry, especiallyas far as the oxidation of sulphide minerals is concerned.Acid mine waters typically contain high concentrations ofdissolved heavy metals and sulphate and can have a highturbidity and pH values as low as 2. These conditions mayprohibit discharge of untreated acid mine waters into publicstreams, as they have a detrimental effect on aquatic plantand fish life. Similarly, ground water pollution caused by thedrainage of acid mine water is an equally serious problem.Traditionally, acid mine water is neutralised by treatmentwith lime, resulting in concomitant precipitation of iron,aluminium and other metal hydroxides. However, since theminimum solubilities for the different metals usually

高浓度酸性废水处理技术

收稿日期:2001-12-16 作者简介:张成志,(1964-),男,济南市人,大学本科,济南市环境工程设计院高级工程师。 高浓度酸性废水处理技术 张成志,任 伟,邵东煜 (济南市环境工程设计院,山东济南 250001) 摘要: 采用电腐蚀- 中和反应-内电解-混凝沉淀-厌氧-好氧组合工艺,对某企业排放的高浓度酸 性生产废水进行了中试研究。研究结果表明,废水经本工艺处理后,COD 、BOD 的总去除率达到99%以上,出水 p H7~8,符合国家《污水综合排放标准》 (8978-1996)中二级排放标准的要求。关键词: 内电解;混凝沉淀;厌氧;好氧 中图分类号:TQ085 文献标识码:A 文章编号:1004- 4280(2002)02-47-05 济南某公司在利用米糠、棉壳、玉米心等农副产品与稀硫酸共热,多糖发生水解、重排、脱水等反应生产某产品时,排放出的污水成分复杂,呈较强的酸性、有机污染负荷高、水温及色度较高。废水中的污染物均属于低碳有机醛、糖、醇、有机酸等,还含有硫酸以及多种难生物降解的有机物。其中COD 平均浓度达20000mg/l 以上,p H 值为2.5~3.0。本研究采用了比湿式氧化学、吸附法以及萃取法等其它方法更为经济可行的生化学[1,2],并辅以必要的物理、化学前置预处理措施,以降低废水的毒性,进一步提高废水的可生化性,降低废水中的有机物的含量,使处理后的出水量终达标排放。 1 废水的来源及水质参数 本研究中试阶段在济南某公司污水处理站现场,原水取自企业生产所排放的废水,其污染 物的水质情况见表1。 表1 废水水质监测数据 项目 生产车间水质数据 最小最大平均 p H 1.80 2.81CODcr (mg/l )188902352021205BODs (mg/l )783294088620SS (mg/l ) 45 105 75 注:车间排水水温约100℃。 2 工艺路线的选择及流程的确定 211 主体工艺路线及流程 生产废水本身含有机质较多,浓度较高,COD cr 最高为23520mg/l ,而且酸度大、毒性高, 不能直接进行生化处理。因此,中试试验采用物化与生化相结合的工艺,即电腐蚀—中和反应—内电解—混凝沉淀—厌氧—好氧工艺(见图1)。 第16卷第2期2002年6月山 东 轻 工 业 学 院 学 报 JOURNAL OF SHANDON G INSTITU TE OF L IGHT INDUSTRY Vol.16No.2 J un.2002

含铜电镀废水处理技术

含铜电镀废水处理技术 在电镀行业,除了镀件要求的电镀铜之外,镀铜层常作为镀镍、镀锡、镀铬、镀银、镀金的底层,以提高基体金属与表面镀层的结合力和镀层的防腐蚀性能,因此,含铜电镀废水在电镀行业中十分普遍,而该种废水通常含有多种重金属和络合剂,这给铜以及其它金属的去除和回收带来了麻烦,安全而有效地处理含铜混合电镀废水仍是电镀废水处理的一项艰巨任务。 目前,对于含铜电镀废水的处理主要采用化学法、离子交换法、膜分离法、吸附法、生物法等,这些方法也是处理其它重金属废水常用的方法,本文主要介绍在含铜电镀废水中的具体应用。 1 化学法处理含铜电镀废水 1.1中和沉淀法 目前国内常采用化学中和法、混凝沉淀法处理含铜综合电镀废水,在对废水中的酸、碱进行中和的同时,铜离子形成氢氧化铜沉淀,然后再经固液分离装置去除沉淀物。 单一含铜废水在pH值为6.92时,就能使铜离子沉淀去除而达标,一般电镀废水中的铜与铁共存时,控制pH值在8——9,也能使其达到排放标准。然而对既含铜又含其它重金属及络合物的混合电镀废水,铜的去除效果不好,往往达不到排放标准,主要是因为此方法的处理实质是调节废水pH值,而各种金属最佳沉淀的pH值不同,使得去除效果不好;再者如果废水中含有氰、铵等络合离子,与铜离子形成络合物,铜离子不易离解,使得铜离子不能达标排放。特别是对含有氰的含铜混合废水经处理后,铜离子的浓度和CN-的浓度几乎成正比,只要废水中的CN-存在,出水中的铜离子浓度就不会达标。这就使得利用中和沉淀法处理含铜混合废水的出水效果不好,特别是对于铜的去除效果不佳。 1.2硫化物沉淀法

硫化物沉淀法处理重金属废水具有很大的优势,可以解决一些弱络合态重金属不达标的问题,硫化铜的溶解度比氢氧化铜的溶解度低得多,而且反应的pH值范围较宽,硫化物还能沉淀部分铜离子络合物,所以不需要分流处理。然而,由于硫化物沉淀细小,不易沉降,限制了它的应用,另外氰根离子的存在影响硫化物的沉淀,会溶解部分硫化物沉淀。 沉淀法处理电镀废水应用最为广泛,除了以上两种常见的方法之外,很多研究者把研究的重点放到了重金属沉淀剂的开发上。用淀粉黄原酸酯(ISX)处理含铜电镀废水,铜脱除率大于99%。YijiuLi等利用二乙基氨基二硫代甲酸钠(DDTC)作为重金属捕获剂,当DDTC 与铜的质量比为0.8——1.2时,铜的去除率可以达到99.6%,该捕获剂巳经工业应用。重金属沉淀剂的研究将更有利于化学沉淀法的发展。 1.3电化学法 电化学方法处理重金属废水具有高效、可自动控制、污泥量少等优点,且处理含铜电镀废水能直接回收金属铜,处理时对废水含铜浓度的范围适应较广,尤其对浓度较高(铜的质量浓度大于1g/L时)的废水有一定的经济效益,但低浓度时电流效率较低。该方法主要用于硫酸铜镀铜废水等酸性介质的含铜废水,是较为成熟的处理含铜电镀废水的方法之一,国内有商品设备供应。目前,常用的除平板电极电解槽外,还有含非导体颗粒的平板电极电解槽和流化床电解槽等多种形式的电解槽。 近年来的试验研究该方法也能用于氰化铜、焦磷酸镀铜等电镀废水处理。 L.Szpyrkowicz等利用不锈钢电极在pH值为13时直接氧化氰化铜废水,在1.5h内使得含铜废水中铜的质量浓度由470mg/L降到0.25mg/L,回收金属铜335.3mg,同时指出不锈钢电极的表面状态对氧化铜氰化合物具有重要的影响,特别是水力条件对电化学反应器破铜氰络合物的影响,并提出了新的反应器的动力和电流效率的精确数值。研究者又不断地改进

酸性含铜电镀废水处理

酸性含铜电镀废水处理 葛丽颖, 刘定富, 曾祥钦, 李绍明 (贵州大学化学工程学院,贵州贵阳550003) 中图分类号:X 79 文献标识码:B 文章编号:100024742(2007)022******* 0 前言 据不完全统计,我国电镀厂每年排出的废水约40亿m 3[1] 。电镀废水不仅量大,而且对环境污染也 严重。由于含有自然界不能降解的重金属离子,因此,对电镀废水的处理历来受到各国政府的重视。对电镀废水处理主要有化学沉淀法、电解法、离子交换法和膜处理法[2] 等。化学法是目前国内外应用最广的。化学法处理电镀废水具有技术成熟、投资小、处理成本低、适应性强、管理方便、自动化程度高等诸多优点,加上砂滤能使出水水质澄清,达标排放,不失为既经济又有效的一种方法。本文研究了氢氧化钠中和沉淀酸性含铜电镀废水的影响因素,得到了重金属铜去除率较高的反应条件。 1 实验 1.1 仪器与试剂 721型可见分光光度计(上海欣茂仪器有限公 司),JJ 21型精密电动搅拌器(苏州威尔实验用品有 限公司),PHS 23C 型精密酸度计(上海大普仪器有限公司);氢氧化钠(分析纯),聚丙烯酸钠,聚丙烯酰胺,聚乙烯醇。1.2 实验水样 实验水样取自贵阳市083系统宇光分公司电镀车间酸性含铜废水。1.3 实验方法 移取400m L 实验水样于500m L 烧杯中,加入一定量的氢氧化钠溶液,搅拌一定时间后,加入一定量的絮凝剂,沉降,静置过滤。经分光光度法[3] 检测滤液中铜离子的质量浓度,计算废水中铜离子的去除率。 2 结果与讨论 2.1 pH 值对铜去除效果的影响 pH 值对铜去除效果有最直接的影响。实验水 样中Cu 2+ 的质量浓度为367mg ΠL ,搅拌时间4min , 在室温下进行。配制质量分数为20%的氢氧化钠。 改变氢氧化钠加入量,以调节废水pH 值,试验结果如图1所示。 图1 pH 值与滤液中铜的质量浓度的关系 图1是在实验过程中,用氢氧化钠溶液来调节废水pH 值,测得的pH 值与沉淀过滤后滤液中铜的 质量浓度的关系曲线。 从图1可以看出,刚开始反应时,随着溶液pH 值的增加,其滤液中铜的质量浓度变化较小;当溶液pH =5.6~8.5时,在此段pH 值范围内,滤液中铜的质量浓度变化很大。当溶液pH 值达到8.5左右时,滤液中铜的质量浓度小于1mg ΠL 。随着溶液pH 值的继续增加,当pH >11.3左右时,滤液中铜的质量浓度又逐渐增大,变化较小,同时沉淀颜色由浅蓝色变为深蓝色。当pH >13.5后,滤液中铜随pH 值的 增加继续增大,且变化较大。2.2 搅拌时间对铜去除率的影响 固定水样中的Cu 2+ 的质量浓度为367mg ΠL ,加 入氢氧化钠溶液,控制废水pH 值8.5,改变搅拌时间,结果如图2所示。 图2 搅拌时间对铜去除率的影响 从图2中可看出,氢氧化钠中和沉淀铜离子的 速率较快,在搅拌时间2min 以内,铜去除率高达99.78%。随着搅拌时间的增加,铜去除率随之有所增加,但变化较小。因此,搅拌时间对铜去除率影响不大,考虑到搅拌时间包括加碱及反应时间,故取搅 ?63? Mar.2007 E lectroplating &Pollution Control V ol.27N o.2

矿山酸性废水怎么处理

矿山酸性废水主要是由还原性的硫化矿物在开采、运输、选矿及废石排放和尾矿贮存等过程中经空气、降水和菌的氧化作用形成的。矿山酸性废水水量较大、pH值较低、含高浓度的硫酸盐和可溶性的重金属离子。 矿山酸性废水的处理方法主要分为中和法和微生物法2种。中和法是最常用的方法,即向酸性废水中投加碱性中和剂(碱石灰、消石灰、碳酸钙、高炉渣、白云石等),一方面使废水的pH值提高,另一方面废水中的重金属离子与中和剂发生化学反应形成氢氧化物沉淀、去除水体中的重金属离子。为了提高处理效果,中和法通常与氧化或曝气过程(如将Fe2+转变为Fe3+)相结合使用。王洪忠等人利用中和法对排入孝妇河的矿山酸性废水进行处理,出水pH值达到7.5,硫酸根和总铁含量为微量。陈喜红对江西万年银金矿矿山废水采用中和法处理,出水水质指标优于农灌用水标准。银山铜锌矿采用两段石灰中和法处理矿山酸性废水得到含锌量达40%的锌渣。栅原矿山和平水铜矿分别采用分段中和沉淀法处理酸性废水,有效地回收了有价金属。微生物法是利用自然界中的硫循环原理,利用硫酸盐还原菌通过异化硫酸盐的生物还原反应,将硫酸盐还原成H2S,并利用某些微生物将H2S氧化为单质硫,同时重金属离子在微生物体内“积累”起来。国外应用微生物法处理矿山酸性废水的实例较多,如美国蒙大拿州对某矿山酸性废水建立(硫化还原菌)处理系统,出水pH值达到7,Fe,Al,Cd和Cu的去除率也较高。随着科学的进步,矿山酸性废水的处理技术不断得到新的发展,如湿地处理法、生物膜吸附处理法和生化材料过滤法等。 对于含硫酸根的酸性废水,国内多采用以石灰乳为中和剂的一段中和法,但是如果酸性废水的pH值较低,采用石灰乳为中和剂的一段中和法,一方面治理每吨废水需要的石灰量较大、处理成本较高;另一方面将产生大量的废渣,给环境带来潜在的二次污染风险。因此,国内许多学者试图探索新的处理方法,以达到在环境保护目标的基础上,减少处理成本、节约处理费用。 尾矿库在使用过程中,尾矿坝会渗出一定数量的水,这些水中会含有一定数量的有害物质。这些水一方面可通过坝下的截渗回收设施扬送回尾矿库供回水利用;另一方面向下游排放,应建立尾矿水处理系统,使之达到排放标准后排放。国内在尾矿库管理中关于尾矿水净化处理的工程设计和实践尚少,适合尾矿水特点的净化方法很少,一般可采用自然净化和物理化学及化学净化方法,当尾矿水中有害物质的含量经自然净化后仍不能达到排放标准及卫生标准时,则需采用物理化学及化学方法进行净化,氧的侵蚀作用,使尾矿中硫化物发生氧化作用,并产生含有有毒金属的酸性矿坑外排水。用水或土壤覆盖尾矿堆能显著减少氧气对尾矿堆的侵蚀,从而减轻尾矿的氧化速率。 原生酸度能在尾矿中被中和,Cu和Pb以次生硫化矿物形式被保留在尾矿中。对硅铝酸盐矿物的吸附,将进一步强化对这些金属的保留。As和Fe2+是不会保留在尾矿中的,它们将会随同流出的水而离开尾矿。Fe2+携带与原生酸度相同数量的次生酸度,若与含有碱性的水流相混,次生酸度最终将被中和。水流中Fe3+以Fe(OH)3形式被沉淀。若水覆盖,尾矿中原生酸度不会被中和。Cu和Pb也不会被保留在尾矿中,可能会向上扩散而进入覆盖尾矿的水中。随坝内水的充分翻动,次生和原生酸度均能被中和。生成的三价铁的氢氧化物能被沉淀,并载带Cu和Pb。As和Zn将基本上不会保留于尾矿堆中,As与Fe(OH)3可能发生共沉淀。

相关文档
最新文档