九年级上《一元二次方程定义配方法》练习题含答案
(完整版)配方法解一元二次方程练习题及答案

配方法解一元二次方程练习题及答案1.用适当的数填空:①、x22;③、x2=2;④、x2-9x+ =22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为2的形式,则ab=_______. 4.将一元二次方程x2-2x-4=0用配方法化成2=b的形式为_______,_________.5.若x2+6x+m2是一个完全平方式,则m的值是A. B.- C.±3D.以上都不对6.用配方法将二次三项式a2-4a+5变形,结果是A.2+1B.2-1C.2+1D.2-17.把方程x+3=4x配方,得A.2=7B.2=21 C.2=1D.2=28.用配方法解方程x2+4x=10的根为A.2± B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值 A.总不小于B.总不小于7C.可为任何实数 D.可能为负数10.用配方法解下列方程:3x2-5x=2. x2+8x=9x2+12x-15=01x2-x-4=0所以方程的根为?11.用配方法求解下列问题求2x2-7x+2的最小值;求-3x2+5x+1的最大值。
一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。
21、4x?1?0、?、?x?1??、81?x?2??1622二、用配方法解下列一元二次方程。
1、.y2?6y?6?0、3x2?2?4x、x2?4x?964、x2?4x?5?05、2x2?3x?1?0 、3x2?2x?7?07、?4x2?8x?1?0 、x2?2mx?n2?09、x2?2mx?m2?0?m?0?三、用公式解法解下列方程。
32y、3y2?1?2y1、x2?2x?8?0 、4y?1?4、2x2?5x?1?0、?4x2?8x??16、2x2?3x?2?0四、用因式分解法解下列一元二次方程。
1、x2?2x 、2?2?0 、x2?6x?8?04、42?2525、x2?x?0、?2?0五、用适当的方法解下列一元二次方程。
九年级数学上册《解一元二次方程(因式分解法)》练习题

九年级数学上册《解一元二次方程(因式分解法)》练习题(含答案解析)学校:___________姓名:___________班级:______________一、单选题1.方程x 2﹣x =0的解是( )A .x =0B .x =1C .x 1=0,x 2=﹣1D .x 1=0,x 2=12.关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( )A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=33.如图,在Rt △ABC 中,∠C =90°,放置边长分别为3,4,x 的三个正方形,则x 的值为( )A .12B .7C .6D .54.若m ,n 是方程x 2-x -2 022=0的两个根,则代数式(m 2-2m -2 022)(-n 2+2n +2 022)的值为()A .2 023B .2 022C .2 021D .2 0205.下列关于x 的一元二次方程()200++=≠ax bx c a 的命题中,真命题有( )∠若0a b c -+=,则240b ac -≥;∠若方程()200++=≠ax bx c a 两根为1和-2,则0a b -=;∠若方程()200++=≠ax bx c a 有一个根是()0c c -≠,则1b ac =+A .∠∠∠B .∠∠C .∠∠D .∠∠6.若函数y =m 22m m x +++4是二次函数,则m 的值为( )A .0或﹣1B .0或1C .﹣1D .17.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或158.下列式子运算正确的是( )A .(2a+b )(2a ﹣b )=2a 2﹣b 2B .(a+2)(b ﹣1)=ab ﹣2C .(a+1)2=a 2+1D .(x ﹣1)(x ﹣2)=x 2﹣3x+29.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣6 10.下列解方程变形:∠由3x +4=4x -5,得3x +4x =4-5;∠由1132x x +-=,去分母得2x -3x +3=6; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;∠由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个二、填空题11.一元二次方程()()120x x --=可化为两个一次方程为______________,方程的根是_________.12.方程2x 2+1=3x 的解为________.13.已知()()212x kx x a x b ++=++,()()215x kx x c x d ++=++,其中a b c d ,,,均为整数,则k =____________ 14.已知()()2222142x y x y ++-=,则22x y +的值是___________.15.若a ,b 是一元二次方程2220220x x +-=的两个实数根,则242a a b ++的值是_________.三、解答题16.已知关于x 的方程()()2222130k k x k x +-++-=(k 为常数).(1)该方程一定是一元二次方程吗?如果一定是,请说明理由;如果不一定是,请求出当方程不是一元二次方程时k 的值;(2)求1k =时方程的解;(3)求出一个()1k k ≠的值,使这个k 的值代人原方程后,所得的方程中有一个解与(2)中方程的一个解相同.(本小题只需求一个k 的值即可)17.为解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则原方程可化为y 2﹣5y +4=0,解此方程得y 1=1,y 2=4.当y =1时,x 2﹣1=1,所以x =当y =4时,x 2﹣1=4,所以x =所以原方程的根为1x =,2x =3x =4x =.以上解方程的方法叫做换元法,利用换元法达到了降次的目的,体现了数学的转化思想.运用上述方法解下列方程:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4;(2)x 4+x 2﹣12=0.参考答案与解析:1.D【分析】因式分解后求解即可.【详解】x 2﹣x =0,x (x -1)=0,x =0,或x -1=0,解得x 1=0,x 2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:∠移项,使方程的右边化为零;∠将方程的左边分解为两个一次因式的乘积;∠令每个因式分别为零,得到两个一元一次方程;∠解这两个一元一次方程,它们的解就都是原方程的解.2.D【分析】利用因式分解法求解可得.【详解】解:∠x (x ﹣5)﹣3(x ﹣5)=0,∠(x ﹣5)(x ﹣3)=0,则x ﹣5=0或x ﹣3=0,解得x =5或x =3,故选:D .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.B【分析】根据已知条件可以推出△CEF∠∠OME∠∠PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【详解】解:∠在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∠OM∠AB∠PN∠EF,EO∠FP,∠C=∠EOM=∠NPF=90°,∠∠CEF∠∠OME∠∠PFN,∠OE:PN=OM:PF,∠EF=x,MO=3,PN=4,∠OE=x-3,PF=x-4,∠(x-3):4=3:(x-4),∠(x-3)(x-4)=12,即x2-4x-3x+12=12,∠x=0(不符合题意,舍去)或x=7.故选:B.【点睛】本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x 的表达式表示出对应边.4.B【详解】解:∠m、n是方程x2-x-2022=0的两个根,∠m2-m-2022=0,n2-n-2022=0,mn=-2022,∠m2-m=2022,n2-n=2022,∠(m2-2m-2 022)(-n2+2n+2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【点睛】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m 2-m -2022=0,n 2-n -2022=0,mn =-2022是解此题的关键.5.A【分析】把b =a +c 代入判别式中得到24b ac -=(a -c )2≥0,则可对∠进行判断;利用根与系数的关系得到2c a=-,根据根的定义可得0a b c ++=,于是可对∠进行判断;由方程的根的定义可得20ac bc c -+=,即可对∠进行判断.【详解】解:a -b +c =0,则b =a +c ,24b ac -=(a +c )2-4ac =(a -c )2≥0,所以∠正确;∠方程ax 2+bx +c =0两根为1和-2, ∠2c a=-,则2c a =-,0a b c ++= 20a b a ∴+-=∠0a b -=,所以∠正确;∠方程()200++=≠ax bx c a 有一个根是()0c c -≠,∠20ac bc c -+=0c ≠∠10ac b -+=∠1b ac =+所以∠正确.故选:A .【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,掌握以上知识是解题的关键.6.C【分析】利用二次函数定义可得m 2+m +2=2,且m ≠0,再解即可.【详解】解:由题意得:m 2+m +2=2,且m ≠0,解得:m =﹣1,故C 正确.故选:C .【点睛】本题主要考查了二次函数定义,关键是掌握形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.7.C【分析】利用因式分解法求出x 的值,再根据等腰三角形的性质分情况讨论求解【详解】解:∠ x 2﹣9x +18=0,∠(x﹣3)(x﹣6)=0,则x﹣3=0或x﹣6=0,解得x=3或x=6,当3是腰时,三角形的三边分别为3、3、6,不能组成三角形;当6是腰时,三角形的三边分别为3、6、6,能组成三角形,周长为3+6+6=15.故选:C.【点睛】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论.8.D【分析】A、原式利用平方差公式计算即可得到结果;B、原式利用多项式乘以多项式法则计算得到结果,即可做出判断;C、原式利用完全平方公式计算得到结果,即可做出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可做出判断.【详解】解:A、原式=4a2-b2,错误;B、原式=ab-a+2b-2,错误;C、原式=a2+2a+1,错误;D、原式=x2-3x+2,正确.故选D.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.9.D【分析】根据已知方程的解得出x+3=1,x+3=﹣3,求出两个方程的解即可.【详解】解:∠方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∠方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.【点睛】本题考查了解一元二次方程,换元法解一元二次方程,能根据方程的解得出x+3=1,x+3=﹣3,是解此题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:∠由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;∠由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;∠由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是∠,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11. x ﹣1=0,x ﹣2=0 11x =,22x =【分析】两个因式的积为0,这两个因式都可以为0,得到两个一次方程,然后求出方程的根.【详解】解:(x ﹣1)(x ﹣2)=0∠x ﹣1=0或x ﹣2=0∠11x =,22x =.故答案分别是:x ﹣1=0,x ﹣2=0;11x =,22x =. 【点睛】本题考查的是用因式分解法解一元二次方程,因式分解得到两个因式的积为0,这两个因式分别为0,得到两个一次方程,然后求出方程的根.12.1211,2x x == 【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∠()()2110x x --=,∠210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.13.8±.【分析】根据等式两边对应相等的关系,可得到ab 和cd 的值,以及a+b 和c+d 的关系,再根据a 、b 、c 、d 是整数,即可得到结果.【详解】解:由题可得()()()2x a x b x a b x ab ++=+++,()()()2x c x d x c d x cd ++=+++12ab ∴=,15cd =,a b c d k +=+=又a b c d ,,,均为整数,∠2a =,6b =,3c =,5d =或2a =-,6b =-,3c =-,5d =-即8k =±.故答案为:±8.【点睛】本题考查多项式乘多项式,属基础知识.14.7【分析】换元法,令22x y t +=,将原方程化为t (t -1)=42(t 0≥), 求解一次方程即可.【详解】令22x y t +=(t 0≥),∠原方程化为t (t -1)=42,解得t =7,或t =-6(舍),∠227x y +=,故答案为:7.【点睛】本题考查用换元法求解方程.解题关键是要注意换元之后一定要考虑新未知数的取值范围,换元法的实际应用,是解题关键.15.2018【分析】先根据一元二次方程的解的定义得到222022a a +=,再根据根与系数的关系得到2a b +=-,然后利用整体代入的方法计算.【详解】解:∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2220220a a +-=∠222022a a +=∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2a b +=-,∠242a a b ++2222a a a b =+++()222a a a b=+++()202222=+⨯-2018=故答案为:2018.【点睛】本题考查的是一元二次方程的解的定义和根与系数的关系,还有整体的思想,熟练掌握一元二次方程的解的定义和根与系数的关系是解本题的关键.16.(1)不一定是,1k=-(2)x1=1,x2=-3;(3)4-或8 3 -【分析】(1)不一定,当2220k k+-=时该方程为一元一次方程,解得k的值即可;(2)把k=1代入方程计算即可;(3)把(2)中解得的x的值代入原方程解得k的值即可.(1)解:不一定是.当2220k k+-=时该方程为一元一次方程,解得:1k=-±答:方程不一定是一元二次方程,当方程不是一元二次方程时k的值为1-(2)解:当k=1代入得:2230x x+-=解得:x1=1,x2=-3;(3)解:x=1代入得k=-4,或x=-3代入得k=83 -,答:k的值为4-或83 -.【点睛】本题考查了一元二次方程的定义、一元二次方程的解以及解一元二次方程,掌握定义与解法是解题的关键.17.(1)x 1=2,x 2=﹣1;(2)12x x ==【分析】(1)设x 2﹣x =a ,原方程可化为a 2﹣4a +4=0,求出a 的值,再代入x 2﹣x =a 求出x 即可;(2)设x 2=y ,原方程化为y 2+y ﹣12=0,求出y ,再把y 的值代入x 2=y 求出x 即可.【详解】解:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4,设x 2﹣x =a ,则原方程可化为a 2﹣4a +4=0,解此方程得:a 1=a 2=2,当a =2时,x 2﹣x =2,即x 2﹣x ﹣2=0,因式分解得:(x ﹣2)(x +1)=0,解得:x 1=2,x 2=﹣1,所以原方程的解是x 1=2,x 2=﹣1;(2)x 4+x 2﹣12=0,设x 2=y ,则原方程化为y 2+y ﹣12=0,因式分解,得(y ﹣3)(y +4)=0,解得:y 1=3,y 2=﹣4,当y =3时,x 2=3,解得:x =当y =﹣4时,x 2=﹣4,无实数根,所以原方程的解是1x 2x =【点睛】本题考查了用换元法解一元二次方程和用因式分解法解一元二次方程,能正确换元是解此题的关键.。
___版九年级上册一元二次方程练习题(含答案)

___版九年级上册一元二次方程练习题(含答案)一元二次方程及其解法——直接开平方法巩固练】一、选择题1.(2015·泰安模拟)方程$x^2+ax+1=0$和$x^2-x-a=0$有一个公共根,则$a$的值是().A.0.B.1.C.2.D.32.若$ax^2-5ax+3=0$是一元二次方程,则不等式$3a+6>0$的解集应是(。
).A.$a>2$。
B.$a-2$。
D.$a>-2$且$a\neq 0$3.(2016·重庆校级三模)若关于$x$的一元二次方程$ax^2+bx+6=0$的一个根为$x=-2$,则代数式$6a-3b+6$的值为()A.9B.3C.0D.-34.已知方程$x+bx+a=0$有一个根是$-a(a\neq 0)$,则下列代数式的值恒为常数的是(。
).A.ab。
B.$\frac{a}{b}$。
C.$a+b$。
D.$a-b$5.若$\frac{x-9}{x-3}=\frac{1}{2}$,则$x^2-5x+6$的值为().A.1.B.-5.C.1或-5.D.66.对于形如$x$的方程$(x+m)=n$,它的解的正确表达式是().A.用直接开平方法解得$x=\pm n$B.当$n\geq m$时,$x=m\pm n$C.当$n>m$时,$x=\pm(n-m)$D.当$n\geq m$时,$x=\pm(n-m)$二、填空题7.如果关于$x$的一元二次方程$x^2+px+q=0$的两根分别为$x_1=2$,$x_2=1$,那么$p$,$q$的值分别是.8.(2014秋·东胜区校级期中)若关于$x$的一元二次方程$(m-2)x^2+3x+m^2-4=0$的常数项为$-8$,则$m$的值等于.9.已知$x=1$是一元二次方程$x+mx+n=0$的一个根,则$m+2mn+n$的值为________.10.(1)当$k=\frac{1}{2}$时,关于$x$的方程$(k-1)x^2-(k-1)x+1=0$是一元二次方程;(2)当$k\neq \frac{1}{2}$时,上述方程是一元一次方程.11.已知$a$是方程$x^2+ax-5=0$的根,则$\frac{1}{a^3}-\frac{1}{a}$的值为.12.已知$a$是关于$x$的一元二次方程$x-2012x+1=0$的一个根,则$a-2011a+\frac{22}{2012a^2+1}$的值为.三、解答题13.(2016·乌鲁木齐校级月考)一元二次方程$a(x-1)^2+b(x-1)+c=0$化为一般形式后为$2x^2-3x-1=0$,试求$a$,$b$,$c$的值.14.用直接开平方法解下列方程:1)$x^2-6x+5=0$;2)$2x^2-5x+2=0$;3)$3x^2+4x+1=0$;4)$5x^2-6x+1=0$;5)$x^2-8\sqrt{2}x+16=0$;6)$4x^2-4x+1=0$;7)$3x^2-4\sqrt{2}x+2=0$;8)$5x^2-4\sqrt{5}x+1=0$;9)$x^2-(2+\sqrt{3})x+1=0$;10)$2x^2-(2+\sqrt{2})x+\sqrt{2}=0$.1.题目中的符号应该用正确的数学符号代替,即“=”应该为“=”。
人教版初中九年级数学上册第二十一章《一元二次方程》经典练习题(含答案解析)(2)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM 2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x +=D .2(1)3x += 3.用配方法解方程x 2﹣4x ﹣7=0,可变形为( ) A .(x+2)2=3 B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11 4.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-5.27742322x -±+⨯⨯=⨯是下列哪个一元二次方程的根( ) A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+=6.方程2240x x --=经过配方后,其结果正确的是( )A .()215x -=B .()217x -=C .()214x -=D .()215x += 7.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A 51-B 51+C 53+D 218.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4 B .-1或-4 C .-1或4D .1或-4 9.若整数a 使得关于x 的一元二次方程()222310a x a x -+++=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2 B .3C .4D .5 10.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确是( )A .(1)81x x x ++=B .2181x x ++=C .1(1)81x x x +++=D .(1)81x x += 11.一元二次方程20x x -=的根是( )A .10x =,21x =B .11x =,21x =-C .10x =,21x =-D .121x x == 12.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( )A .1B .-1C .1或-1D .0 13.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12- 14.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( )A .1B .0C .1-D .1或0 15.已知一元二次方程x 2﹣6x+c =0有一个根为2,则另一根及c 的值分别为( )A .2,8B .3,4C .4,3D .4,8 二、填空题16.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________. 17.方程230x -=的解为___________.18.已知方程2x 2+4x ﹣3=0的两根分别为出x 1和x 2,则x 1+x 2+x 1x 2=_____.19.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.20.若关于x 的一元二次方程()23x c -=有实根,则c 的值可以是_________________.(写出一个即可)21.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______. 22.已知关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是______.23.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.24.已知关于x 的方程2x m =有两个相等的实数根,则m =________.25.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________. 26.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题27.在国家的调控下.某市商品房成交价由今年8月份的50000元2/m 下降到10月份的40500元2/m .(1)同8~9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/2m ?请说明理由.28.某种品牌的衬衫,进货时的单价为50元.如果按每件60元销售,可销售800件;售价每提高1元,其销售量就减少20件.若要获得12000元的利润,则每件的售价为多少元? 29.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),若苗圃园的面积为72平方米.求这个苗圃园垂直于墙的一边长为多少米?30.(1)解方程290x (直接开平方法)(2)若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,求m 的值.。
2.2用配方法解一元二次方程同步练习含答案

九年级数学(上)第二章《一元二次方程》同步测试2.2用配方法解一元二次方程一、选择题1.用配方法解方程x2-4x-7=0时,原方程应变形为()A.(x-2)2=11 B.(x+2)2=11 C.(x-4)2=23 D.(x+4)2=232.将代数式x2+6x-3化为(x+p)2+q的形式,正确的是()A.(x+3)2+6 B.(x-3)2+6 C.(x+3)2-12 D.(x-3)2-123.用配方法解方程x2-4x+1=0时,配方后所得的方程是()A.(x-2)2=3 B.(x+2)2=3 C.(x-2)2=1 D.(x-2)2=-14.用配方法解方程2x2-4x+1=0时,配方后所得的方程为()A.(x-2)2=3 B.2(x-2)2=3 C.2(x-1)2=1 D.5.已知M=29a-1,N=a2-79a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定6.将代数式x2-10x+5配方后,发现它的最小值为()A.-30 B.-20 C.-5 D.07.用配方法解一元二次方程x2+4x-5=0,此方程可变形为()A.(x+2)2=9 B.(x-2)2=9 C.(x+2)2=1 D.(x-2)2=18.一元二次方程x2-6x-5=0配方可变形为()A.(x-3)2=14 B.(x-3)2=4 C.(x+3)2=14 D.(x+3)2=49.用配方法解一元二次方程x2+4x-3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=1910.对于代数式-x2+4x-5,通过配方能说明它的值一定是()A.非正数B.非负数C.正数 D.负数二、填空题1.将二次三项式x2+4x+5化成(x+p)2+q的形式应为.2.若x2-4x+5=(x-2)2+m,则m= .3.若a的最小值为.4.用配方法解方程3x2-6x+1=0,则方程可变形为(x- )2= .5.已知方程x2+4x+n=0可以配方成(x+m)2=3,则(m-n)2016= .6.设x,y为实数,代数式5x2+4y2-8xy+2x+4的最小值为.7.若实数a,b满足a+b2=1,则a2+b2的最小值是.8.将x2+6x+4进行配方变形后,可得该多项式的最小值为.9.将一元二次方程x2-6x+5=0化成(x-a)2=b的形式,则ab= .10.若代数式x2-6x+b可化为(x-a)2-3,则b-a= .三、解答题1.解方程:(1)x2+4x-1=0.(2)x2-2x=4.2. “a2=0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:因为x2-4x+6=(x )2+ ;所以当x= 时,代数式x2-4x+6有最(填“大”或“小”)值,这个最值为.(2)比较代数式x2-1与2x-3的大小.3.阅读材料:若m2-2mn+2n2-8n+16=0,求m、n的值.解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a-b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长;(3)已知x+y=2,xy-z2-4z=5,求xyz的值.4.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4-x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?参考答案一、选择题1.A2.C3.A4.C5.A6.B7.A8.A9.B 10.D二、填空题1.(x+2)2+1.2.1;3.3;4. 1;23;5.1;6.3;7.34.;8.-5;9.12;10.-3三、解答题1. 解:∵x2+4x-1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=-2∴x1x2(2)配方x2-2x+1=4+1∴(x-1)2=5∴x=1∴x1x22.解:(1)x2-4x+6=(x-2)2+2,所以当x=2时,代数式x2-4x+6有最小值,这个最值为2,故答案为:-2;2;2;小;2;(2)x2-1-(2x-3)=x2-2x+2;=(x-1)2+1>0,则x2-1>2x-3.3.解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=-1,a=3,则a-b=4;(2)∵2a2+b2-4a-6b+11=0,∴2a2-4a++2+b2-6b+9=0,∴2(a-1)2+(b-3)2=0,则a-1=0,b-3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(2)∵x+y=2,∴y=2-x,则x(2-x)-z2-4z=5,∴x2-2x+1+z2+4z+4=0,∴(x-1)2+(z+2)2=0,则x-1=0,z+2=0,解得x=1,y=1,z=-2,∴xyz=2.4.解:(1)m2+m+4=(m+12)2+154,∵(m+12)2≥0,∴(m+12)2+154≥154,则m2+m+4的最小值是154;(2)4-x2+2x=-(x-1)2+5,∵-(x-1)2≤0,∴-(x-1)2+5≤5,则4-x2+2x的最大值为5;(3)由题意,得花园的面积是x(20-2x)=-2x2+20x,∵-2x2+20x=-2(x-5)2+50=-2(x-5)2≤0,∴-2(x-5)2+50≤50,∴-2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.。
九年级数学上册 一元二次方程解法 配方法 专题练习含答案

学习好资料欢迎下载2017-2018学年九年级数学上册一元二次方程解法-配方法专题练习一、选择题:2﹣4x﹣1=0,配方后得到的方程是( 1、用配方法解一元二次方程x )﹣2) C.(x﹣2) D.(x=5 =1 B.(x﹣2) =4 A.(x﹣2)2)2222=31=0配方后可变形为( ﹣2、一元二次方程x8x﹣2222=15 ﹣4)=17 D.(x﹣4)A.(x+4)=17B.(x+4)=15C.(x2) ﹣4x=5时,此方程可变形为( 3、用配方法解一元二次方程x2222=9 2)=1B.(x﹣2)=1C.(x+2)=9D.(x﹣A.(x+2)2)4、将方程x +8x+9=0左边配方后,正确的是(﹣=7 A.(x+4) =﹣9 B.(x+4)=25 C.(x+4)22227 = D.(x+4)﹣6x+5=0,此方程可化为5、用配方法解一元二次方程x(2)C. A. B.D.6、用配方法解下列方程,其中应在两边都加上16的是( )﹣8x=2 ﹣8x+3=0 A.x C.x﹣4x+2=0 B.2x2222+4x=2 D.x( 2x-1=0时,方程变形正确的是7、用配方法解一元二次方程x-2222=7 1)=1 1) D.(x=4 C.(x2)-1)A.(x-1)-=2 B.(x-2)6x+1=0,则方程可变形为( 8、用配方法解方程3x﹣2222=1 1) C.(x ﹣1)= D.(3x﹣ A.(x﹣3)= B.3(x﹣1)=2)9、方程x+6x﹣5=0的左边配成完全平方后所得方程为(D.= A.(x+3) =14 B.(x﹣3)=14 C.(x+6)2) ( x﹣8x=9时,应当在222以上答案都不对方程的两边同时加上10、用配方法解一元二次方程4﹣ D.﹣A.16 B.16 C.42)( 11、用配方法解一元二次方程x6x+4=0﹣,下列变形正确的是2222=4+9 3)3)=﹣4+9 D.(x﹣﹣6)=A.(x﹣6)﹣4+36 B.(x﹣=4+36 C.(x2),经过配方,得到( 1=012、用配方法解方程x﹣2x﹣2222=5 ﹣=3 D.(x2)1)﹣A.(x+1) =3 B.(x1)=2 C.(x﹣2)时,原方程应变形为﹣2x﹣5=0( x13、用配方法解方程2222=92)﹣ D.(x =9 C.(x+2) =6 1)﹣ B.(x =6 A.(x+1).学习好资料欢迎下载4x﹣3=02x配方后所得的方程正确的是( )2﹣14、将方程2222=5 =1 D.2(x﹣1)﹣﹣1)=0 B.(2x1)=4 C.2(x﹣1)A.(2x2 ) x的方程x﹣4x﹣2=0进行配方,正确的是( 15、将关于2222=6 ﹣2) D.(x B.(x+2)A.(x﹣2)=2 =2 C.(x+2)=6-2=0配方后所得的方程是( 16、将一元二次方程x-2x2222=3 2)A.(x-2)1)=2 B.(x-2)D.(x=2 C.(x-1)-=3,变形后的结果正确的是( 17、用配方法解方程x+1=8x2222=17 4) D.(x--+4)=17 C.(x4)=15 4)A.(x+=15 B.(x2 )、用配方法解一元二次方程x-6x-4=0,下列变开征确的是( 182222=4+9 D.(x-3)A.(x-6)=-4+36B.(x-6)=4+36C.(x-3)=-4+9)19、用配方法解下列方程,配方正确的是(2222=8 1)9=0﹣可化为(x﹣4y﹣4=0可化为(y1)﹣=4 B.x﹣A.2y2x﹣2222=4 D.x﹣(x2)﹣4x=0可化为(x+4)+8xC.x﹣9=0可化为=162) ,下列变形正确的是+6x+4=0( 、用配方法解方程20x2222 D.(x+3)=5 3)=4C.(x+3) =±﹣﹣A.(x+3)=4 B.(x:二、计算题2 ) 、解方程:21x﹣4x+1=0(用配方法2)、解方程:﹣223x用配方法+4x+1=0(2 23、解方程: ) 用配方法1=0(+6xx﹣学习好资料欢迎下载2﹣6y+2=0 (3y、解方程:配方法). 242+3x﹣4=0;(25、解方程:x用配方法)2)用配方法﹣1=0(26、解方程:2x+3x2 (5x+127、解方程:x﹣=0;用配方法)用配方法;+28、解方程:x3x+2=02) (、解方程:+-配方法2) 399=0.(2xx29学习好资料欢迎下载﹣7=0.(用配方法) 30、解方程:x2+6x5x+2=0(配方法) 、解方程:312x2﹣6x+2=0;(用配方法) 32、解方程:3x2-3x﹣1=0(用配方法) 33、解方程:x2﹣6x﹣16=0(用配方法) 、解方程:34x2﹣6x+1=0(用配方法3x35、解方程:)2﹣学习好资料欢迎下载4x+1=0.(2x用配方法) 36、解方程:2﹣6x﹣9=0(配方法) 37、解方程:x 2﹣用配方法3x) 38、解方程:﹣2+4x+1=0.(用配方法、解方程:x+x﹣392) 1=0.(用配方法) 1)(x﹣3)=8.(40、解方程:(x﹣学习好资料欢迎下载参考答案1、C.2、C3、D.4、C5、A6、C.7、A8、C.9、A.10、A.11、C.12、B.13、B.14、D.15、D.16、C17、C18、D19、D.20、C.﹣; x,=2+x=221、答案为:21;,x、答案为:x ==2221﹣23、答案为:3+﹣3,x=;x=﹣21=y=.,y24、答案为:2125、答案为:x=﹣4,x=1;21、答案为:.26、答案为: 27=-2. =-1,x28、答案为:x21 21,x=19 x29、答案为:=-21=1. 或x730、答案为:x=﹣21=0.5. x=231、答案为:x,21.x=x32、答案为:,=21x=;、答案为: 33;=1+、答案为:34xx,﹣=121.学习好资料欢迎下载﹣;=1 x35、答案为:,=1+x21. ,36、答案为:x=1+x=1﹣21;3 ,x37、答案为:x=3+3=3﹣21.,xx38、答案为:==21.,x=x39、答案为:=2140、答案为:x=5,x=﹣1.21。
(完整版)配方法解一元二次方程练习题及答案

配方法解一元二次方程练习题及答案1 .用适当的数填空:①、x22;③、x2=2;④、x2-9x+ =22 .将二次三项式2x2-3x-5 进行配方,其结果为3 .已知4x2-ax+1 可变为 2 的形式,则ab= ______________ .4 .将一元二次方程x2-2x-4=0 用配方法化成2=b 的形式为,5 .若x2+6x+m2 是一个完全平方式,则m的值是A .B.- C .±3D.以上都不对6 .用配方法将二次三项式a2-4a+5 变形,结果是A .2+1B.2-1C.2+1D.2-17 .把方程x+3=4x 配方,得A .2=7B.2=21 C.2=1D.2=28 .用配方法解方程x2+4x=10 的根为A . 2± B.-2C.D.9 .不论x、y 为什么实数,代数式x2+y2+2x-4y+7 的值A .总不小于B.总不小于7 C .可为任何实数 D .可能为负数10 .用配方法解下列方程:3x2-5x=2 .x2+8x=9 x2+12x-15=01x2-x-4=0 所以方程的根为?11. 用配方法求解下列问题求2x2-7x+2 的最小值;求-3x2+5x+1 的最大值。
一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。
21 、4x?1?0、?、?x?1??、81?x?2??1622二、用配方法解下列一元二次方程。
1 、.y2?6y?6?0 、3x2?2?4x 、x2?4x?964 、x2?4x?5?05 、2x2?3x?1?0 、3x2?2x?7?07 、?4x2?8x?1?0 、x2?2mx?n2?09、x2?2mx?m2?0?m?0?三、用公式解法解下列方程。
32y 、3y2?1?2y1 、x2?2x?8?0 、4y?1?4 、2x2?5x?1?0 、?4x2?8x??16、2x2?3x?2?08εθeεe×∂2×' Ze9 •乙U乙乙9乙X乙X ' 17C"乙乙乙说"、Le 0=9+2×ε'82OdLdXZ∂2×9' 920∂0C∂×2∂2×2 P o=2k×l7+×'£ 0乙乙陀乙q乙X陀乙乙X ' 乙况LL0∂2e×6∂2×ε ' L OaC×cZ× '00乙q乙X乙乙Xe ^IZCaCKCCZCKC^ZLOd2θeθe×∂2× '和乙q乙陀乙X£2乙乙q<iZx' PIoCQZCZac×Zc ' 2L 乙比X乙£乙乙乂X乙X17 '0∂θC∂×∂2×ε '6L9C∂×εLC∂2× ' 9L乙帥乙乙q乙X%乙乙X、CL兀乙比心乙说心' OL 0∂0C∂×Z∂2×、60“%"£ '0乙说乙比X* ' LOCCzC×c×ccZc×cP ccZc×ccZc×c ' OdOLd×Ze2× ' 陀0乙9〃乙乙X ε×9eεe×2 Zc9c×c×ccU×c×Z ' 比o SW~3r-≡±⅛IW≡⅛^宙、荘OCZC Oc×cZ× 9凸说乙17 ' P0∂8e×9∂2× ' OCZCZ ' X乙乙乙X ' Lo畐卑盪二卫一陋丄搦滚搦岳芒厘宙'H26 、5x2?8x??1 7、x2?2mx?3nx?3m2?mn?2n2?、0 ?22x30 、3x2?4x?1 、x2?4?5x3 、2x2?5x?4?0 、2x2?2x?30?06 、x2+4x-12=0 、x2?x?139 、3y2?1?2y 解一元二次方程配方法练习题1 .用适当的数填空:①、x2=2;③、x22;④、x2-9x+ =22 .将二次三项式2x2-3x-5 进行配方,其结果为3 .已知4x2-ax+1 可变为 2 的形式,则ab= _______________ .4 .将一元二次方程x2-2x-4=0 用配方法化成2=b 的形式为,以方程的根为 ____________ .5 .若x2+6x+m2 是一个完全平方式,则m的值是A .B.- C .±3D.以上都不对6 .用配方法将二次三项式a2-4a+5 变形,结果是A .2+1B.2-1C.2+1D.2-17 .把方程x+3=4x 配方,得A .2=7B.2=21 C.2=1D.2=28 .用配方法解方程x2+4x=10 的根为A . 2± B.-2D .9 .不论x、y 为什么实数,代数式x2+y2+2x-4y+7 的值A .总不小于B.总不小于7C .可为任何实数D .可能为负数10 .用配方法解下列方程:3x2-5x=2 .x2+8x=9x2+12x-15=0 1x2-x-4=0所?11. 用配方法求解下列问题求2x2-7x+2 的最小值;求-3x2+5x+1 的最大值。
九年级数学: 解一元二次方程配方法练习题

解一元二次方程配方法练习题1.用适当的数填空:①、x 2+6x+ =(x+ )2;②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2;④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x -5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x -b )2的形式,则ab=_______.4.将一元二次方程x 2-2x -4=0用配方法化成(x+a )2=b 的形式为_______,所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a -2)2+1B .(a+2)2-1C .(a+2)2+1D .(a -2)2-17.把方程x+3=4x 配方,得( )A .(x -2)2=7B .(x+2)2=21C .(x -2)2=1D .(x+2)2=28.用配方法解方程x 2+4x=10的根为( )A .2±B .-2C .- D .29.不论x 、y 为什么实数,代数式x 2+y 2+2x -4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x -15=0 (4)41x 2-x -4=011.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ;(2)求-3x2+5x+1的最大值。
12. 用配方法证明:(1)的值恒为正; (2)的值恒小于0.13. 某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长百分率.21a a -+2982x x -+-解一元二次方程公式法练习题一、双基整合 步步为营1.一般地,对于一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac ≥0时,它的根是_____,当b -4ac<0时,方程_________.2.方程ax 2+bx+c=0(a ≠0)有两个相等的实数根,则有________, 若有两个不相等的实数根,则有_________,若方程无解,则有__________.3.若方程3x 2+bx+1=0无解,则b 应满足的条件是________.4.关于x 的一元二次方程x 2+2x+c=0的两根为________.(c ≤1)5.用公式法解方程x 2=-8x -15,其中b 2-4ac=_______,x 1=_____,x 2=________.6.已知一个矩形的长比宽多2cm ,其面积为8cm 2,则此长方形的周长为________.7.一元二次方程x 2-2x -m=0可以用公式法解,则m=( ).A .0B .1C .-1D .±184y 2=12y+3)A .y=B .y= C .y= D .y=9.已知a 、b 、c 是△ABC 的三边长,且方程a (1+x 2)+2bx -c (1-x 2)=0的两根相等, 则△ABC 为( )A .等腰三角形B .等边三角形C .直角三角形D .任意三角形10.不解方程,判断所给方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x -1=0中,有实数根的方程有( )A .0个B .1个C .2个D .3个11.解下列方程;(1)2x 2-3x -5=0 (2)2t 2+3=7t (3)x 2+x -=0(4)x 2-x+1=0 (5)0.4x 2-0.8x=1 (6)y 2+y -2=0 32-±32±32±32-±16132313二、拓广探索:12.当x=_______时,代数式与的值互为相反数. 13.若方程x -4x+a=0的两根之差为0,则a 的值为________.14.如图,是一个正方体的展开图,标注了字母A 的面是正方体的正面, 如果正方体的左面与右面所标注代数式的值相等,求x 的值.三、智能升级:15.小明在一块长18m 宽14m 的空地上为班级建造一个花园,所建花园占空地面积的,请你求出图中的x .16.要建一个面积为150m 2的长方形养鸡场,为了节约材料, 鸡场的一边靠着原有的一堵墙,墙长为am ,另三边用竹篱笆围成,如果篱笆的长为35m .(1)求鸡场的长与宽各是多少? (2)题中墙的长度a 对解题有什么作用.13x +2214x x +-12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上《一元二次方程定义配方法》练习题含答案1. 一元二次方程的定义:方程两边差不多上整式,只含有一个未知数,同时未知数的最高次数为2的方程叫做一元二次方程。
举例:2230x x +-=;20x x -=;22x =。
2. 一元二次方程的一样形式:()200ax bx c a ++=≠,其中2ax 叫做二次项,a 叫做二次项系数,bx 叫做一次项,b 叫做一次项系数,c 叫做常数项。
举例:2230x x +-=。
3. 一元二次方程的解:能使一元二次方程的左右两边相等的未知数的值叫做一元二次方程的解,一元二次方程的解也能够叫做一元二次方程的根。
例题1 (1)下列方程中,是一元二次方程的有 。
(填序号)①25x =;②30x y +-=; ③253302x x +-=; ④2(5)2x x x x +=-; ⑤23580x x-+=;⑥204y y -=。
(2)若关于x 的方程(a -5)3a x -+2x -1=0是一元二次方程,则a 的值是_______。
思路分析:(1)按照一元二次方程的定义进行判定:①③⑥是一元二次方程;②是二元一次方程;④通过化简二次项系数为0,不是一元二次方程;⑤分母中含有未知数,方程左边是分式而不是整式;(2)由一元二次方程的定义可得32a -=,因此5a =±;然而当5a =时,原方程二次项系数为0,不是一元二次方程,故5a =应舍去;当5a =-时,原方程为210210x x -+-=,因此5a =-。
答案:(1)①③⑥;(2)5-点评:做概念辨析题要紧扣定义,关于一元二次方程要把握如此几个关键点:①方程两边差不多上整式;②只含有一个未知数;③未知数的最高次数为2。
例题2 把方程x (2x -1)=5(x +3)化成一样形式是___________,其中二次项是_________, 一次项系数是_________,常数项是_________。
思路分析:将方程左右展开,然后移项(把所有的项都移到等号的左边),合并同类项即可:由()()2153x x x -=+得22515x x x -=+,移项得225150x x x ---=,合并同类项得226150x x --=。
答案:226150x x --=;22x ;6-;15-点评:任何一个一元二次方程通过化简都能够得到()200ax bx c a ++=≠的形式,方程左边是含有未知数的二次式,项数有可能为三项、两项或一项,方程的右边一定为0。
例题3 一元二次方程()01122=-+++m x x m 有一个解为x =0,试求12-m 的值。
思路分析:方程的解确实是使方程左右两边相等的未知数的值,因此把x =0代入原方程得到一个关于m 的方程,解此方程可得m 的值。
答案:解:把x =0代入()01122=-+++m x x m 得()2210010m m +++-=; 即210m -=∴1m =±当1m =-时,原方程的二次项系数为0,与题意不符,故舍去;当1m =时,原方程为220x x +=,符合题意;故1m =,现在211m -=。
点评:利用一元二次方程的解的定义,把问题转化成关于m 的方程,解得m 之后要注意检验m 的值是否符合题意,注意合理取舍。
【综合拓展】注意对“元”和“次”的明白得:“元”是指未知数,一元确实是指一个未知数,二元确实是指两个未知数,以此类推;“次”确实是指次数,因为只有整式才有次数的概念,因此不论是一元一次方程依旧现现在所学的一元二次方程均要求方程两边均为整式,因此一元一次方程确实是指只含有一个未知数同时未知数的次数是1的整式方程;一元二次方程是指只含有一个未知数同时未知数的次数为2的整式方程。
【高频疑点】一元二次方程的一样形式是()200ax bx c a ++=≠,注意a ≠0这一条件。
1. 若方程()231a x -=是关于x 的一元二次方程,则a 的取值范畴是___________;2. 关于x 的方程()21150a a x x +++-=是一元二次方程,则a 的值是___________。
解一元二次方程:配方法1. 解一元二次方程的思路:降次,即把二次降为一次,把一元二次方程转化为一元一次方程,化未知为已知,化繁为简,这是转化思想的表达。
2. 配方法:利用配方法将一个一元二次方程的左边配成完全平方形式,而右边是一个非负数,即把一个方程转化成()2x n p +=(p ≥0)的形式,如此解方程的方法叫做配方法。
3. 配方法具体操作:(1)关于一个二次三项式,当二次项系数为1时,配上一次项系数一半的平方就能够将其配成一个完全平方式,举例:解方程2230x x +-=,(2)当二次项系数不为1时,第一把二次项系数化为1,方程两边除以二次项系数,然后再利用(1)的步骤完成配方。
举例:解方程22230x x +-=。
4. ()2x n p +=(p ≥0)的解法:关于方程()2x n p +=(p ≥0),它的左边是一个完全平方式,右边是非负数,利用平方根的定义,能够将那个方程进行降次,降为两个一元一次方程,即x n +=和x n +=,解两个一元一次方程即可。
例题1 (1)用配方法解方程2250x x --=时,原方程应变形为( )A. ()216x +=B. ()216x -=C. ()229x +=D. ()229x -= (2)下列方程中,一定有实数解的是( )A. 210x +=B. 22x a a ⎛⎫-= ⎪⎝⎭C. ()22130x ++=D. ()2210x +=思路分析:(1)能够采纳验证法:将四个选项逐一化成一样形式,然后与原题中的方程进行对比;也能够直截了当配方,由2250x x --=得225x x -=,方程两边分别加上1,得22151x x -+=+,即()216x -=,故选B ;(2)任何一个数的平方均为非负数,即关于方程()2x n p +=当p ≥0时才有实数解。
故选D 。
答案:(1)B ;(2)D点评:配方法是一种代数式的恒等变形。
例题2 利用配方法解一元二次方程:(1)276x x -=-;(2)2310x x -+=。
思路分析:关于二次项系数为1的一元二次方程,直截了当进行配方。
答案:(1)276x x -=-解:移项得267x x +=,两边分别加9,得26979x x ++=+,即()2316x +=∴34x +=或34x +=-∴11x =,27x =-(2)2310x x -+=解:移项得231x x -=-, 两边分别加94,2993144x x -+=-+, 即23524x ⎛⎫-= ⎪⎝⎭∴32x -=或32x -=∴1322x =+,2322x =-+ 点评:关于二次项系数为1的一元二次方程,第一将常数项移到方程的一边(通常移到右边);然后在方程两边分别加上一次项系数的一半的平方,便可将方程的左边配成完全平方式,再利用平方根的定义将二次降为一次,求解。
例题3 利用配方法解一元二次方程:(1)02522=+-x x ;(2)23410x x -++=思路分析:关于二次项系数不为1的一元二次方程,只要将二次项系数化为1,即在方程两边同时除以二次项系数,把方程转化成二次项系数为1的一元二次方程,从而求解。
答案:解:(1)02522=+-x x移项,得2252x x -=-, 二次项系数化为1,得2512x x -=-, 配方,得252525121616x x -+=-+, 即259416x ⎛⎫-= ⎪⎝⎭∴5344x -=或5344x -=-, ∴135244x =+=,2351442x =-+=; (2)23410x x -++=移项,得2341x x -+=-, 二次项系数化为1,得24133x x -=, 配方,得244143939x x -+=+, 即22739x ⎛⎫-= ⎪⎝⎭,∴23x -=或23x -=,∴1233x =+,2233x =-+ 点评:感悟转化的数学思想:当一元二次方程的二次项系数不为1时,只要将二次项系数化为1,就能够把方程转化成二次项系数为1的一元二次方程,从而求解。
【方法提炼】1. 配方法的依据是完全平方公式:()2222a ab b a b ±+=±; 2. 利用配方法解一元二次方程的一样步骤为:(1)化二次项系数为1:方程两边分别除以二次项系数;(2)移项:把二次项和一次项放在等号的一边(通常为左边),把常数项放在等号的一边(通常为右边),(3)配方:方程两边分别加上一次项系数的一半的平方;(4)把方程左边写成完全平方的形式,右边为一非负数;(5)利用平方根的定义,把二次方程降为两个一次方程;(6)分别解两个一元一次方程即可。
【综合拓展】一元二次方程()2x n p +=,当p >0时,原方程有两个不相等的实数根,当p =0时,原方程有两个相等的实数根,当p <0时,原方程没有实数根。
配方法在解数学题中的应用将一个代数式或一个代数式的某一部分通过恒等变形化为完全平方式,这种方法称之为配方法。
这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。
配方法广泛应用于代数证明、求最值(最大值或最小值)、解方程、因式分解、代数式的求值、二次函数等。
我们那个地点所讲的配方法要紧是指配常数项,当二次项系数为1时,为了把一个二次式配成一个完全平方的形式,只要加上一次项系数的一半的平方即可,值得注意的是由于配方法是一种恒等变形,因此加上一个数则需要再减去那个数,以保持恒等关系。
例如,将代数式223x x -+进行配方:()22223211312x x x x x -+=-+-+=-+。
因此那个地点也能够将3拆为1+2。
例题1 证明:代数式221220x x -+的值恒大于0。
思路分析:对此代数式进行配方,将其化成2a b +(b >0)的形式。
答案:证明: ()()()()222222122026202699202691820232x x x x x x x x x -+=-+=-+-+=-+-+=-+∵不论x 为何值, ()230x -≥,因此()22322x -+≥,即221220x x -+的值恒大于0。
点评:若要证明一个代数式的值是一个正数,则设法将其化成2a b +(b >0)的形式,同时代数式2a b +有最小值,最小值为b ,现在a=0,关于这道题,()2221220232x x x -+=-+,∴此代数式有最小值2,现在x =3。
若要证明一个代数式的值是一个负数,则设法将其化成2a b --(b >0)的形式。
例如:不管x 为何实数,代数式-x 2+4x -8的值恒小于-4。