2018考研线性代数框架图公式、李永乐经典结论题型建议汇总.pdf

合集下载

李永乐.线性代数

李永乐.线性代数

线性代数李永乐辅导笔记【例题1】B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡50030021a ,A 2-2AB = E ,r(AB -2BA +3A ) =( ) (A )1 (B )2 (C )3 (D )与a 有关 【解】 ∵ A (A -2B ) = E ∴ A 可逆,且A -1= A -2B⇒ A (A -2B ) = (A -2B ) A (A A-1= A -1A )⇒ AB = BA那么,AB -2BA +3A = 3A -AB = A (3E -B )又,A 可逆,知r(AB -2BA +3A ) = r(A (3E -B )) = r(3E -B )∀a 有|3E -B |=0,又3E -B 有二阶子式不得零,从而r(3E -B ) = 2.【例题2】A m ×n ,ε1,ε2,…,εt 是Ax = 0的基础解系,α是Ax = b 的一个解. (I)证明α,α+ε1,α+ε2,…,α+εt 线性无关.(II)证明Ax = b 的任意一个解都可以由α,α+ε1,α+ε2,…,α+εt 线性表出.【分析】ε1,ε2,…,εt 是Ax =0的基础解系,那么ε1,ε2,…,εt 必定线性无关,从而证明α,α+ε1,α+ε2,…,α+εt 线性无关可以用定义法。

【证】(I)(用定义,重组,同乘)设 k 0α+k 1 (α+ε1)+k 2(α+ε2)+…+ k T (α+εt )=0 (1) 即 (k 0+k 1+k 2+…+k T )α+k 1ε1+k 2ε2+…+k T εt =0(2)由A α=b , A εi =0(i =1,…,t ),用A 左乘(2),有(k 0+k 1+k 2+…+k t )A α+k 1A ε1+k 2A ε2+…+k t A εt =0即 (k 0 +k 1+k 2 +…+k t )b =0 又b ≠0,有k 0+k 1+k 2+…+k T =0(3)带入(2)有 k 1ε1+k 2ε2+…+k t εt =0,而ε1,ε2,…,εt 是Ax =0的基础解系,那么ε1,ε2,…,εt 必定线性无关, 从而k 1 =k 2 =…=k t =0,带入(3)有k 0=0.所以 k 0=k 1=k 2=…=k t =0⇒α,α+ε1,α+ε2,…,α+εt 线性无关. (或用秩)∵ε1,ε2,…,εt 线性无关,α是Ax =b 的解⇒α不能由ε1,ε2,…,εt 线性表出.⇒x 1ε1+x 2ε2+…+x t εt =α无解⇒r(ε1,ε2,…,εt )≠r(ε1,ε2,…,εt ,α)∵r(ε1,ε2,…,εt ) =t ⇒r(ε1,ε2,…,εT ,α)=t +1⇒r(α,α+ε1,α+ε2,…,α+εt )=t +1⇒α,α+ε1,α+ε2,…,α+εt 线性无关.(II)设β是Ax =b 的任意一个解,则β-α是Ax =0的解. 从而 β-α=l 1ε1+l 2ε2+…+l t εt .⇒β=α+l 1ε1+l 2ε2+…+l t εt⇒β=(1-l1-l 2 -…-l t )α+l 1ε1+l 2ε2+…+l t εt即β可由α,α+ε1,α+ε2,…,α+εt 表出.【评注】本题考查矩阵逆的概念以及矩阵的乘法.设矩阵A -n 阶,B -n 阶,若AB = BA =E ,则称矩阵A 可逆,且B 为A 的逆矩阵.由此有A A -1= A -1A .【例题3】A m ×n ,r(A )=n ,α1,α2,…,αs 是n 维列向量.证明:α1,α2,…,αs 线性无关的充分必要条件是A α1,A α2,…,A αs 线性无关.【证】必要性(用定义)设k 1A α1+k 2A α2+…+k s A αs =0,即A (k 1α1+k 2α2+… +k s αs )=0. 由A m ×n ,r(A )=n ⇒Ax =0只有零解.故k 1α1+k 2α2+…+k s αs =0,又α1,α2,…,αs 线性无关⇒k 0=k 1=k 2=…=k s =0. 从而A α1,A α2,…,A αs 线性无关. 充分性(用秩)因为A α1,A α2,…,A αs =A (α1,α2,…,αs ),所以r(A α1,A α2,…,A αs )=r(A (α1,α2,…,αs ))≤r(α1,α2,…,αs )由A α1,A α2,…,A αs 线性无关知r(A α1,A α2,…,A αs )=s.而r(α1,α2,…,αs )≤s ,从而r(α1,α2,…,αs )=s ⇒α1,α2,…,αs 线性无关.【例题4】设A =[α1,α2,α3,α4],Ax =β的通解是[1,-2,1,-1] T+k[1,3,2,0]T,B =[α3,α2,α1,β+α4],γ=α1-3α2+5α3,(I) α1能否由α2,α3线性表出? (II) α4能否由α1,α2,α3线性表出? (III) Bx =γ求的通解.【分析】由非齐次方程组解的结构知道对应的齐次方程组的解的结构.并且由于系数矩阵没有明确给出,所以要从解的结构抽象地求解方程组.用观察法得到基础解系,注意基础解系是线性无关的. 【证】(I) Ax =β解的结构知r(A )=3.由A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0231=0 ⇒α1+3α2+2α3=0⇒α1能由α2,α3线性表出.(II) 设x 1α1+x 2α2+x 3α 3 =α4由(I)知r(α1,α2,α3)<3,而r(α1,α2,α3,α4)=4,知方程组无解,故α4不能由α1,α2,α3线性表出.(III)由A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--1121=β⇒α 1-2α 2 +α3-α4=β,那么B =[α3,α2,α1,β+α4]=[α3,α2,α1,α1-2α2+α3-α4]⇒ r(B )=4.从而n -r(B )=2.【评注】本题考查向量小组的线性相关的证明和线性表出的证明.考查了方程组基础解系的概念:设有向量小组η1,η2,…,ηt 满足: (1) A ηi = 0(i =1,…,t ),即ηi 是Ax = 0的解. (2) Ax = 0的任意一个解都可以由η1,η2,…,ηt 表出. (3) η1,η2,…,ηt 线性无关.那么称η1,η2,…,ηt 为Ax = 0的基础解系.也就是说若η1,η2,…,ηt 是Ax = 0的基础解系,那么η1,η2,…,ηt 必满足上述3条。

2018年考研数学大纲解析:线性代数与概率论复习建议

2018年考研数学大纲解析:线性代数与概率论复习建议

2018年考研数学大纲解析:线性代数与概率论复习建议的更新!2018年考研数学大纲解析:线性代数与概率论复习建议2018考研大纲已公布,第一时间收录并整理了最新的考研大纲,为考生全方位解读2018考研大纲的最新变动并指导后续备考。

今年考研数学大纲并无变化,对考试并无影响。

下面老师将带领大家对大纲进行解读,并对线性代数与概率论提出一些复习上的建议。

今年大纲知识点无论数学一、数学二还是数学三都没有变化。

这样的话从知识本身来说同学们可以按照原计划进行。

成建军老师在全年复习规划时讲过,数学科目稳定,希望大家一定要稳定扎实按复习规划进行。

大家知道考研数学历来是整个考研所有学科当中最为稳定的一门,考研数学的知识经过多年考察已经达到了非常稳定的命题结构、知识,不会有巨大的变化。

尤其在考前一百多天时间里。

考研数学有三个科目构成,高等数学、线性代数与概率论与数理统计,高等数学占比很大,她是考研数学的半壁江山,因此复习周期很长,且需要将基础打牢。

许多考生在复习数学时,对高数的复习都很重视。

但不少考生却对线代与概率的复习重视不够。

事实上相比高数来看,线代与概率更容易拿分。

但从历年考试数据来看,线代与概率得分率偏低,平均分通常在十几分。

这个原因,一方面由于高数在考试中花费时间太多,后面的线代与概率大题没时间作答,而更重要在于,概率与线代复习不到位,题目不会做。

根据历年考生概率与线代复习中存在的问题,成建军老师将带领大家对线性代数与概率论的相关考点进行解读,并对线性代数与概率论提出一些复习上的建议。

我相信有许多同学在刚一开始学习线性代数和概率论与数理统计时有难处,认为看书举步维艰,对此我想谈一下我的看法,希望对那些还在这两门课上迷茫的同学能有一些启发。

首先谈一下我的看法:事实上线性代数应该是考研数学三门课中最好拿分的,但是这门课有一个特点,就是入门难,但是一旦入门就一通百通,这门课由于思维上与高数大不相同,所以一上来会很不适应,总体而言6章内容环环相扣,所以很多同学一上来看第一章发现内容涉及到第五章,看到第二章发现竟有第4章的知识点,无法形成完整的知识网络,自然无法入门,总的来说线代6章内容可分为三个部分逐个攻破,首先行列式和矩阵,这是基础,第二向量与方程组,第三特征值与特征向量,这三个内容联系得相当紧密,必须逐个攻破,这样以两章为单位,每个单位中出现的知识点定理罗列出来,找到他们彼此的关系,构建属于你的知识网络,这一部分有哪些板块,每个板块有哪些定义知识点,比如行列式的定义,矩阵的定义各是什么,你是怎么理解的,向量与方程组有什么联系与区别,这些最基础的一定要搞清。

2018年考研数学(高数、线代、概率论)最全公式手册

2018年考研数学(高数、线代、概率论)最全公式手册

dy (ln x) 1 x
1 dx x ln a d (ln x) 1 dx x
特例 y ln x (5) y sin x (6) y cos x (7) y tan x (8) y cot x (9) y sec x (10) y csc x
y cos x y sin x
x x0
f ( x) f ( x0 ) x x0
(2)
2 函数 f ( x) 在 x0 处的左、右导数分别定义为: 左导数:
f ( x0 ) lim
x 0
f ( x0 x) f ( x0 ) f ( x) f ( x0 ) lim , ( x x0 x) x x0 x x x0
x 的复合函数.例如
1 , y 2 , ln y , e y 等均是 x 的复合函数. y
F ( x, y) dy ,其中, Fx( x, y) , x dx Fy( x, y )
对 x 求导应按复合函数连锁法则做. (2)公式法.由 F ( x, y) 0 知
Fy( x, y) 分别表示 F ( x, y) 对 x 和 y 的偏导数
常用的等阶无穷小:当x 0时 sin x arcsin x tan x x, arctan x ln(1 x) ex 1
1 cos x
1 2 x 2 1 1 (1 x) n 1 x n
无穷小的性质 (1) 有限个无穷小的代数和为无穷小 (2) 有限个无穷小的乘积为无穷小 (3) 无穷小乘以有界变量为无穷小 Th 在同一变化趋势下,无穷大的倒数为无穷小;非零的 无穷小的倒数为无穷大
设函数f ( x)在x x0处可导,则f ( x)在M ( x0 , y0 )处的

(word完整版)线性代数重要知识点及典型例题答案,推荐文档

(word完整版)线性代数重要知识点及典型例题答案,推荐文档

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

(转置行列式TD D =) ②行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。

化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 初等变换不改变矩阵的可逆性 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。

考研数学《线性代数》考点知识点总结

考研数学《线性代数》考点知识点总结

记作: ri rj ( ci cj ) D D 0 .
3.行列式乘以 k 等于某行(列)所有元素都乘以 k. 推论:某一行(列)所有元素公因子可提到行列式的外面.
记作: kD ri k ( kD ci k ).
记作: kD ri k ( kD ci k ).
行列式的 性质:
a2i a2n
a21
a22
a2i a2n
an1 an2 (ani ani ) ann
an1 an2 ani ann an1 an2 ani ann
上式为列变换,行变换同样成立.
6.把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.
记作: ci ci kcj ( ri ri krj ), D 不变.
n
aki Akj
k 1
Dij
D, 0,
当i 当i
j, n
j;

k 1
aik
Ajk
Dij
D, 0,
当i 当i
j, j; 其中ij
1, 0,
当i j, 当i j.
1 1 11
范德蒙德 行列式:
x1 Dn x12
x2 x22
x3 xn
x32 xn2 = (xi x j ) .证明用数学归纳法.
定理 2:
n 阶行列式可定义为 D (1)ta a p11 p2 2 apnn = (1)ta1p1a2 p2 anpn .
1.D=DT,DT 为 D 转置行列式.(沿副对角线翻转,行列式同样不变)
2.互换行列式的两行(列),行列式变号.
推论:两行(列)完全相同的行列式等于零.
记作: ri rj ( ci c j ) D D .

【2018最新】2018考研数学线代复习指导-范文模板 (3页)

【2018最新】2018考研数学线代复习指导-范文模板 (3页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==2018考研数学线代复习指导在考研数学中线代既难又简单,那么在进行线代的复习时都有哪些方法呢?下面就和小编一起来看看吧。

2018考研数学线代复习指导线性代数总共分为六章。

第一章行列式本章的考试重点是行列式的计算,考查形式有两种:一是数值型行列式的计算,二是抽象型行列式的计算。

另外数值型行列式的计算不会单独的考大题,考选择填空题较多,有时出现在大题当中的一问或者是在大题的处理其他问题需要计算行列式,题目难度不是很大。

主要方法是利用行列式的性质或者展开定理即可。

而抽象型行列式的计算主要:利用行列式的性质、利用矩阵乘法、利用特征值、直接利用公式、利用单位阵进行变形、利用相似关系。

06、08、10、12年、13年的填空题均是抽象型的行列式计算问题,14年选择考了一个数值型的矩阵行列式,15、16年的数一、三的填空题考查的是一个n行列式的计算,。

今年数一、数二、数三这块都没有涉及。

第二章矩阵本章的概念和运算较多,而且结论比较多,但是主要以填空题、选择题为主,另外也会结合其他章节的知识点考大题。

本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。

其中06、09、11、12年均考查的是初等变换与矩阵乘法之间的相互转化,10年考查的是矩阵的秩,08年考的则是抽象矩阵求逆的问题,这几年考查的形式为小题,而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题则用到了矩阵的秩的相关性质。

14的第一道大题的第二问延续了13年第一道大题的思路,考查的仍然是矩阵乘法与线性方程组结合的知识,但是除了这些还涉及到了矩阵的分块。

16年只有数二了矩阵等价的判断确定参数。

第三章向量本章是线代里面的重点也是难点,抽象、概念与性质结论比较多。

考研数学线性代数常用公式

考研数学线性代数常用公式

考研数学线性代数常用公式数学考研考前必背常考公式集锦。

希望对考生在暑期的复习中有所帮助。

本文内容为线性代数的常考公式汇总。

1、行列式的展开定理行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之和,即A= a i1 A i1+ a i2 A i2+...+ a in A in( i =1, 2,..., n)= a1j A1j+ a 2j A2j+...+ a nj A nj( j =1, 2,..., n)推论:行列式的一行(或列)所有元素与另一行(或列)对应元素的代数余子式的乘积之和为零,即n∑a ij A kj= a i1 A k1+ a i2 A k2+...+ a in A kn=0,(i≠k )j=1n∑a ji A jk= a1i A1k+ a2i A2k+...+ a ni A nk=0(i≠k )j=12、设 A =(a ij)m⨯n,B =(b ij)n⨯k(注意 A 的列数和 B 的行数相等),定义矩阵nC =(c ij)m⨯k,其中c ij=a i1b1j+a i2b2j+...+a in b nj=∑a ik b kj,称为矩阵 A 与矩阵 B 的k =1的乘积,记作 C = AB .如果矩阵A为方阵,则定义An=A⋅A...A为矩阵 A 的 n 次幂.n个A不成立的运算法则AB≠BAAB=O≠>A =O或B=O3、设 A 为n阶方阵,A*为它的伴随矩阵则有 AA *= A * A = A E .设 A 为n阶方阵,那么当 AB = E 或 BA = E 时,有 B -1 = A4、对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种:第一种:交换单位矩阵的第 i 行和第 j 行得到的初等矩阵记作E ij,该矩阵也⎛ 0 0 1 ⎫ 可以看做交换单位矩阵的第 i 列和第 j 列得到的.如 E 1,3 0 1 0 ⎪= ⎪ .1 0 0 ⎪⎝ ⎭第二种:将一个非零数 k 乘到单位矩阵的第 i 行得到的初等矩阵记作 E i ( k ) ;该矩 阵 也 可 以 看 做 将 单 位 矩 阵 第 i 列 乘 以 非 零 数 k 得 到 的 . 如⎛ 1 0 0 ⎫E 2 (-5) 0 -5 0 ⎪ = ⎪ .0 0 1 ⎪⎝ ⎭第三种:将单位矩阵的第 i 行的 k 倍加到第 j 行上得到的初等矩阵记作 E ij ( k ) ;该矩阵也可以看做将单位矩阵的第 j 列的 k 倍加到第 i 列上得到的.如⎛ 1 0 0 ⎫ E 3,2 (-2) 0 1 -2 ⎪= ⎪ .0 0 1 ⎪⎝ ⎭注:1)初等矩阵都只能是单位矩阵一次初等变换之后得到的.2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵 E ij ( k ) 看做列变换是将单位矩阵第 j 列的k 倍加到第 i 列,这一点考生比较容易犯错.5、矩阵 A 最高阶非零子式的阶数称之为矩阵 A 的秩,记为 r ( A ) .1) r ( A ) = r ( A T ) = r ( k A ), k ≠ 0 ;2) A ≠ O ⇔ r (A ) ≥ 1;3) r ( A ) = 1 ⇔ A ≠ O 且 A 各行元素成比例;4)设 A 为 n 阶矩阵,则 r ( A ) = n ⇔ A ≠ 0 . 6、线性表出设 α1 , α 2 ,...,αm 是 m 个 n 维 向 量 , k 1 , k 2 ,...k m 是 m 个 常 数 , 则 称k 1α1 + k 2α 2 + ... + k m αm 为向量组α1 , α 2 ,...,αm 的一个线性组合.设 α1,α2 ,...,αm 是 m 个 n 维向量, β 是一个 n 维向量,如果 β 为向量组α1 , α2 ,...,αm的一个线性组合,则称向量β可以由向量组α1 , α2 ,...,αm线性表出.线性相关设α1 , α2 ,...,αm是m个n维向量,如果存在不全为零的实数k1 , k2 ,..., k m,使得k1α1+ k 2α2+...+ k mαm=0,则称向量组α1,α2,...,αm线性相关.如果向量组α1 , α2 ,...,αm不是线性相关的,则称该向量组线性无关.与线性表出与线性相关性有关的基本定理定理1:向量组α1 , α2 ,...αm线性相关当且仅当α1 , α2 ,...αm中至少有一个是其余m-1 个向量的线性组合.定理2:若向量组α1 , α2 ,...αm线性相关,则向量组α1 , α2 ,..., αm ,αm+1也线性相关.注:本定理也可以概括为“部分相关⇒整体相关”或等价地“整体无关⇒部分无关”.定理3:若向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm的延伸组⎛α⎫ ⎛α⎫⎛α⎫也线性无关.1⎪ , 2⎪,..., m⎪⎝β1⎭ ⎝β2 ⎭⎝βm ⎭定理4:已知向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm , β线性相关当且仅当β可以由向量组α1,α2 ,...αm线性表出.定理 5:阶梯型向量组线性无关.定理6:若向量组α1 , α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且α1 , α2 ,...,αs线性无关,则有s≤t.注:本定理在理论上有很重要的意义,是讨论秩和极大线性无关组的基础.定理内容也可以等价的描述为:若向量组α1 ,α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且 s > t ,则α1,α2,...,αs线性相关.对于这种描述方式,我们可以把定理内容简单地记为:“多数被少数线性表出,则必相关.”定理7:n +1个n维向量必然线性相关.7、线性方程组解的存在性设 A =(α1,α2,...,αn),其中α1,α2,...,αn为 A 的列向量,则线性方程组 Ax = b 有解⇔向量 b 能由向量组α1,α2,...,αn线性表出;⇔r (α1,α2,...,αn)= r (α1,α2,...,αn,b );⇔r ( A )= r ( A, b)线性方程组解的唯一性当线性方程组 Ax = b 有解时, Ax = b 的解不唯一(有无穷多解)⇔线性方程组的导出组 Ax =0有非零解;⇔向量组α1 , α2 ,...,αn线性相关;⇔r (α1,α2,...,αn)< n ;⇔r ( A )< n .注:1)注意该定理成立的前提条件是线性方程组有解;也就是说,仅告知r (A )< n 是不能得到 Ax = b 有无穷多解的,也有可能无解.2)定理 2是按照 Ax = b 有无穷多解的等价条件来总结的,请考生据此自行写出 Ax = b 有唯一解的条件.8、特征值和特征向量:设 A 为 n 阶矩阵,λ是一个数,若存在一个 n 维的非零列向量α使得关系式 Aα = λα成立.则称λ是矩阵 A 的特征值,α是属于特征值λ的特征向量.称为矩阵 A 的特征多项式.设 E 为 n 阶单位矩阵,则行列式λE - A注:1)要注意:特征向量必须是非零向量;2)等式 Aα = λα也可以写成(A - λE)α =0,因此α是齐次线性方程组( A - λE ) x =0的解,由于α ≠0,可知( A - λE ) x =0是有非零解的,故A - λE =0;反之,若 A - λE =0,那么齐次线性方程组( A - λE ) x =0有非零解,可知存在α ≠ 0 使得(A-λE)α = 0,也即Aα = λα.由上述讨论过程可知:λ是矩阵 A 的特征值的充要条件是 A - λE =0(或λE- A =0),而特征值λ的特征向量都是齐次线性方程组( A - λE ) x =0的非零 解.3)由于λE - A 是 n 次多项式,可知 A - λE =0有 n 个根(包括虚根),也即 n 阶矩阵有 n 个特征值;任一特征值都有无穷多特征向量9、矩阵的相似对角化定理1: n 阶矩阵 A 可相似对角化的充要条件是矩阵 A 存在 n 个线性无关的特征向量.同时,在等式 A = P ΛP-1中,对角矩阵Λ的元素为 A 的 n 个特征值,可逆矩阵 P 的列向量为矩阵 A 的 n 个线性无关的特征向量,并且 P 中特征向量的排列顺序与Λ中特征值的排列顺序一致.推论:设矩阵 A 有 n 个互不相同的特征值,则矩阵 A 可相似对角化.定理2: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,λ线性无关的特征向量个数都等于λ的重数.推论: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,n - r (λE - A)=λ的重数.10、设 A 为实对称矩阵( A T= A ),则关于 A 的特征值与特征向量,我们有如下的结论:定理1: A 的所有特征值均为实数,且 A 的的所有特征向量均为实数.定理2: A 属于不同特征值的特征向量必正交.定理3:A 一定有 n 个线性无关的特征向量,即 A 可以对角化.且存在正交矩阵 Q ,使得 Q -1 AQ = Q T AQ = diag (λ1,λ2,...,λn),其中λ1,λ2,...,λn为矩阵 A 的特征值.我们称实对称矩阵可以正交相似于对角矩阵.n n11、如果二次型∑∑a i j x i x j中,只含有平方项,所有混合项 x i x j(i ≠ j)的系i=1j =1数全为零,也即形如 d1 x12+ d 2 x22+...+ d n x n2,则称该二次型为标准形。

2018考研线性代数真题解析_毙考题

2018考研线性代数真题解析_毙考题

2018考研线性代数真题解析2018年的考研线性代数一共是5道考题,两个选择题,一个填空题,两个解答题。

今年一共考了7道题,但今年数学一、二、三的选择题和解答题考得完全一样,区别仅在于填空题各不相同,下面对今年的线代考试做如下分析。

第一个选择题,即数一、三的第5题,数二的第7题,相似矩阵判定,2016,2017都以选择题考相似矩阵的判定,2014考证明矩阵相似,本题的难点在于题干所给矩阵不能对角化,所以做题时有两个思路,一个是排除法利用相似时的四相同排除掉不相似的,但这个题还要用到相似时,矩阵多项式也相似,即用到了四相似,所以有的同学可能想不到。

另一思路是利用相似的矩阵相同的特征值应该有相同个数的无关特征向量。

第二个选择题是考矩阵的秩,最简单的方法是利用向量组表示判定的三转化,考虑矩阵方程,利用矩阵方程有解马上得出系数矩阵的秩等于广义增广矩阵的秩。

填空题数一是利用向量的关系得出对应的特征值,然后求行列式;数二、数三是同一类题,利用向量组的线性表示建立相似的背景,然后求特征值。

两道大题数一、数二、数三完全一模一样,第一道大题的第一问和2000年数三的那道题极为类似,2005年数一也考过求类似方程的解,其本质是求解带参数的齐次方程组,第二问是根据参数讨论求规范形,有两种思路,配方法或者求特征值。

第二道大题的难点在于有的同学可能没懂题目说的是什么意思,其实题目就是告诉你这两个矩阵等价,即可化为已知秩求参数,第二问和2014年的一模一样,求解系数矩阵不可逆的矩阵方程。

综上所述,相对于前几年的线性代数题目来说,今年的线性代数题目难度相比去年有所提高,表现为以下特点:1.命题角度新颖。

同一个知识点从不同的角度来考,线代很大的特点之一就是知识点纵横交错,前后联系紧密,同一个点有很多不同的说法。

2.综合性提高。

实际上这次题很多都以前考过,或者干脆把以前的几个真题综合一下形成新的考题。

3.注重基础,考查全面。

基本上线代六章的内容全部都考到了,而且大部分都是考基本的计算,计算量也不算很大,但对同学们的计算能力要求较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档