最新机械设计基础总结

合集下载

机械设计基础课程设计小结范文(三篇)

机械设计基础课程设计小结范文(三篇)

机械设计基础课程设计小结范文(三篇)全文共四篇示例,供读者参考第一篇示例:机械设计基础课程设计小结一、小结机械设计基础是机械工程专业的核心课程,是培养学生机械设计基本素养的重要环节。

在本学期的学习中,通过对机械设计基础课程的系统学习和实践操作,使我们掌握了相应的理论知识和实际技能。

在设计小结中,主要总结了机械设计基础课程的三个重要方面:零件图绘制、装配图绘制、工程图规范。

二、零件图绘制零件图绘制是机械设计的基础,我们首先学习了零件图的绘制方法和基本规范,包括了线条的粗细、线型的选择以及标注的设置等。

通过课堂上的实例操作和作业练习,我们掌握了零件图的基本绘制技能。

对于常见的零件图标注,如公差标注、尺寸标注等,我们也进行了系统的学习和实践,提高了实际操作的能力。

在设计过程中,我们还学习了零件图的设计原则和规范,使我们能够根据实际情况合理设计和绘制零件图。

在实际操作中,我们独立完成了几个不同类型的零件图绘制设计,综合应用了所学的绘制技能和规范要求。

三、装配图绘制在实际设计中,我们还学习了装配图设计的一些特殊技巧和实用方法,如轴依赖关系的处理、公差要求的设置等。

这些技能和方法使我们在设计过程中更加熟练和高效,提高了工作效率和设计质量。

四、工程图规范在机械设计基础课程中,我们还学习了工程图的规范要求。

通过学习工程图的相关知识和规范要求,我们清楚了工程图的标准化要求和设计原则。

在课堂作业和实践操作中,我们着重学习了工程图的标准符号、尺寸标注、公差标注等规范要求。

在实际设计过程中,我们十分注重工程图的规范要求,确保设计的合理性和可读性。

通过对工程图规范的学习和实践,我们在实际操作过程中做到了合理设置视图、标注尺寸和标注公差,使得设计图纸更加规范和便于操作。

第二篇示例:机械设计基础课程设计小结机械设计基础是机械工程专业的重要基础课程,旨在为学生打下坚实的机械设计理论基础和实践操作技能。

通过此课程的学习,学生将掌握机械设计的基本原理、方法和技能,能够运用相关知识解决实际机械设计问题。

机械设计基础总结

机械设计基础总结

机械设计基础总结机械设计是机械工程领域的一项重要技术,其目的是通过合理的设计来满足各种机械设备的性能和功能要求。

机械设计基础是机械设计的基本原理和方法,包括机械工程基础知识、机械零件设计、机械系统设计等内容。

下面是对机械设计基础的总结。

机械工程基础知识是进行机械设计的基础,包括力学、材料力学、机械工艺学、机械制图等知识。

力学是研究物体静力学和动力学行为的科学,它是机械设计的基石,能够帮助设计师分析和计算力学问题。

材料力学则是研究材料的力学行为和性能的学科,通过了解材料的性质和特点,设计师可以选择合适的材料来设计机械零件。

机械工艺学是研究制造和加工机械零件的方法和过程,设计师需要了解不同加工工艺的优缺点,以便选择最合适的工艺来制造零件。

机械制图则是机械设计中必不可少的一环,通过绘制各种工程图纸,设计师能够清晰地表达设计意图,为制造提供准确的图纸依据。

机械零件设计是机械设计的核心内容,它是根据机械设备的功能和性能要求,设计并选择合适的零件来组成机械系统。

机械零件设计要考虑的因素包括机械零件的功能、强度和刚度、制造工艺和成本等。

在机械零件设计中,设计师需要根据机械设备的功能要求和负荷条件,选择合适的材料和参数,并通过力学分析,确定零件的尺寸和形状。

在考虑到制造工艺和成本的情况下,设计师还需要对零件进行结构优化,提高该零件的质量和效率。

机械系统设计是将机械零件组装为完整的机械系统的过程。

机械系统设计要考虑的因素包括机械系统的结构、运动传动和控制等。

在机械系统设计中,设计师需要根据机械设备的功能要求,确定机械系统的结构,包括选择合适的零件和组装方式。

同时,设计师还需要考虑机械系统的运动传动方式,包括传动比、速度比和转矩比等,以满足机械设备的运动需求。

此外,设计师还需要设计合适的控制系统,以便对机械设备进行控制和调节。

总之,机械设计基础是进行机械设计的前提和基础。

通过掌握机械工程基础知识、机械零件设计和机械系统设计等内容,可以帮助设计师提高机械设备的性能和质量,满足各种机械设备的功能需求。

机械设计基础复习总结

机械设计基础复习总结

自由度计算小结自由度计算公式:F =3n -2Pl -Ph机构自由度=3×活动构件数-(2×低副数+1×高副数)计算步骤:(1)确定活动构件数目(2)确定运动副种类和数目(3)确定特殊结构: 局部自由度、虚约束、复合铰链(4)计算、验证自由度例 计算图所示机构的自由度 (若存在局部自由度、复合铰链、虚约束请标出)。

键联接和花键联接键联接的主要类型有: 平键联接、半圆键联接、楔键联接和切向键联接等。

1.平键联接键工作原理:两侧面是工作面, 靠两侧面挤压传递转矩。

成对使用:承载能力不够时采用, 按 180°布置两个键。

一对平键按1.5 个键计算。

2.半圆键联接工作原理: 两侧面是工作面, 侧面挤压传递转矩。

4、3.楔键联接5、工作原理: 上下表面为工作面, 靠摩擦力传递转矩。

6、切向键联接● 工作原理:键的窄面是工作面, 靠工作面上的挤压力和轴与轮毂间的摩擦力来传递转矩。

● 一个切向键只能传递单向力矩, 双向力矩时, 需要采用两个切向键, 两键的夹角为 。

● 花键联接是有外花键和内花键组成。

花键联接可用于静联接或动联接。

按齿形不同可以分为矩形花键和渐开线花键两类, 两种花键均已标准化。

矩形花键定心方式为小径定心, 特点是定心精度高, 定心稳定性好。

渐开线花键定心方式为齿形定心, 具有自动定心作用, 有利于各齿间的均匀承载。

螺纹联接1.螺栓联接按其受力状况不同, 分为普通螺栓联接和铰制孔用螺栓联接。

2.普通螺栓, 其主要失效形式为螺栓杆和螺纹部分发生断裂(受拉);铰制孔用螺栓联接, 其主要失效形式为螺栓杆和孔壁见压溃或螺栓杆被剪断(受剪)。

3.防松的根本问题是防止螺旋副的相对转动。

(1)摩擦防松 对顶螺母、弹簧垫圈、自锁螺母(2)机械防松 槽型螺母和开口销、圆螺母和带翘垫圈、止动垫圈、串联钢丝4.螺纹联接的预紧目的: 在于增强联接的可靠性和紧密性, 以防止受载后被连接件间出现缝隙或发生相对滑移。

机械设计基础心得体会共6篇

机械设计基础心得体会共6篇

机械设计基础心得体会篇一机械设计基础是机械工程专业中非常重要的课程,对于学习机械设计和提高设计能力有着重要的影响。

在学习机械设计基础的过程中,我获得了一些宝贵的经验和体会。

首先,机械设计基础需要掌握的知识点非常多。

在学习这门课程时,我们需要掌握各种机械元件的构造特点、基本工作原理和使用要求,以及机械设计的基本方法和步骤。

此外,还需要了解机械设计涉及的一些基本的力学知识,如静力学、动力学等等。

机械设计基础是机械工程专业的基石,对于后续的学习和研究都有着非常重要的作用。

其次,机械设计基础注重实践动手能力的培养。

在课程中,我们经常需要进行一些机械元件的手工制作和装配实验,这些实验能够锻炼我们的实际操作能力和动手能力。

通过实际动手操作,我们能够更加深入地理解机械元件的构造和工作原理,从而更好地运用到设计中。

同时,实验过程中还能够培养我们的团队合作和沟通能力,因为我们往往需要和同学合作完成实验任务。

此外,机械设计基础强调设计思维和创新能力的培养。

在课程中,我们不仅需要学习机械元件的基本知识,还需要用所学知识解决一些综合性的设计问题。

这些设计问题往往需要我们进行创新思考和合理的方案选择,从而提高我们的设计思维和创新能力。

而且,机械设计基础也要求我们进行一些设计项目,并且需要我们编制设计报告和进行设计方案的评审和演示,这些都对我们的表达能力和沟通能力有一定的要求。

此外,机械设计基础还加强了对工程伦理和知识产权的培养。

在课程中,我们要求严守学术规范和学术道德,不得抄袭和剽窃他人的作品。

同时,在设计时我们也要考虑到知识产权的问题,尊重他人的知识产权,遵守相关的法规和规定。

这些伦理和知识产权的培养对于我们的职业素养和社会责任感的形成具有重要的意义。

最后,机械设计基础需要进行大量的练习和实践。

在学习这门课程时,我们需要进行大量的练习题和设计项目,以加强对所学知识的理解和应用能力。

同时,我们还需要进行一些实践操作和装配实验,加强自己的动手能力和实际操作能力。

机械设计基础 总结

机械设计基础 总结

机械设计基础总结第1章机构自由度1、掌握运动副概念、分类及运动副的自由度。

2、计算自由度及应注意的事项,机构有确定相对运动的条件。

3、绘制机构简图。

第2章平面连杆机构1、铰链四杆机构三种基本形式,曲柄存在条件,极位夹角,摆角,急回作用,死点,传动角,压力角等概念。

2、含一个移动副四杆机构的四种形式,(注意极位夹角,摆角,急回作用,死点,传动角,压力角等概念)3、连杆机构演化方法4、平面连杆机构设计,以k设计为主第3章凸轮机构1、了解凸轮机构优缺点及分类。

2、一些概念(升程、回程、停程、工作行程、基圆、理论廓线、实际廓线、压力角等)。

3、运动规律的动力特点及曲线画法。

什么是刚性冲击,什么是柔性冲击?4、凸轮轮廓的设计的图解法(相对运动原理或反转法)。

5、设计凸轮注意事项(基圆半径、结构尺寸、压力角、受力、廓线变尖交叉运动失真之间关系)。

第4章齿轮机构1、直齿圆柱齿轮五圆两角一中心矩五个基本参数;斜齿圆柱齿轮五圆两角一中心矩计算(在端面上的公式形式与直齿圆柱齿轮一样)。

2、概念:(1)啮合基本定律;(2)渐开线的5条特性;(3)渐开线齿轮传动中心距可分性;(4)各种齿轮传动的正确啮合条件;(5)各种齿轮中哪个面内的模数和压力角为标准值;(6)重合度的含义(连续运动的条件);(7)根切的原因、危害、避免方法、变位目的;(8)当量齿轮含义及当量齿数(最小根切齿数)。

第5章轮系1、定轴轮系:固轮轮系及混合轮系的传动比及转速计算第6章间歇运动机构1、棘轮机构、槽轮机构、不完全齿轮机构的动力特性。

2、槽轮机构的运动特性系数;及其与运动时间及停歇时间的关系。

3、间歇机构应用场合4、能够变连续运动为间歇运动的机构举例;各种运动之间变换所用机构举例。

第7章机械的调速1、周期性和非周期性速度波动调节方法。

2、飞轮的转动惯量、最大盈亏功、平均角速度,不均匀系数之间关系及分析(7-6式讨论的三点)。

3、飞轮的作用。

第8章机械的平衡1、静平衡和动平衡的条件及应用场合,及平衡质量和其所在向径的确定。

《机械设计基础》重点总结

《机械设计基础》重点总结

《机械设计基础》重点总结机械设计基础是一门研究机械中常用机构和通用零部件工作原理、结构特点、设计方法以及机械传动系统设计的学科。

它是机械工程类专业的重要基础课程,对于我们理解和掌握机械系统的设计与应用具有重要意义。

下面我将为大家总结这门课程的重点内容。

一、平面机构的结构分析1、运动副及其分类运动副是指两构件直接接触并能产生相对运动的活动连接。

根据接触形式的不同,运动副分为低副和高副。

低副包括转动副和移动副,高副则包括齿轮副、凸轮副等。

2、平面机构的运动简图用简单的线条和符号来表示机构的组成和运动情况的图形称为机构运动简图。

绘制机构运动简图时,要准确表示出各构件之间的相对运动关系和运动副的类型。

3、平面机构的自由度计算自由度是指机构具有独立运动的数目。

平面机构的自由度计算公式为:F = 3n 2PL PH,其中 n 为活动构件的数目,PL 为低副的数目,PH 为高副的数目。

机构具有确定运动的条件是自由度等于原动件的数目。

二、平面连杆机构1、铰链四杆机构的基本类型铰链四杆机构包括曲柄摇杆机构、双曲柄机构和双摇杆机构。

其类型取决于各杆的长度关系和机架的选择。

2、铰链四杆机构的演化形式通过改变构件的形状、相对长度以及运动副的尺寸等,可以将铰链四杆机构演化成曲柄滑块机构、导杆机构、摇块机构和定块机构等。

3、平面连杆机构的运动特性包括急回特性、压力角和传动角等。

急回特性可以提高工作效率,压力角越小、传动角越大,机构的传动性能越好。

三、凸轮机构1、凸轮机构的类型按凸轮的形状可分为盘形凸轮、移动凸轮和圆柱凸轮;按从动件的端部形状可分为尖顶从动件、滚子从动件和平底从动件。

2、凸轮机构的运动规律常用的运动规律有等速运动规律、等加速等减速运动规律、余弦加速度运动规律和正弦加速度运动规律等。

不同的运动规律适用于不同的工作场合。

3、凸轮机构的设计设计凸轮机构时,需要根据工作要求确定凸轮的基圆半径、滚子半径、从动件的行程和运动规律等参数。

机械设计基础课程总结

机械设计基础课程总结

机械设计基础课程总结机械设计基础是一门涉及机械原理、机械零件设计以及机械系统设计等多个方面的重要课程。

通过这门课程的学习,我对机械设计领域有了更深入的了解和认识。

在课程的开始阶段,我们学习了机械原理的相关知识。

这部分内容包括了机构的组成、运动副的类型、平面机构的自由度计算等。

其中,机构的组成是基础中的基础,我们了解到了各种常见的构件,如连杆、凸轮、齿轮等,以及它们在机构中的作用。

而运动副的类型,如转动副、移动副、高副等,决定了机构的运动方式和自由度。

在计算平面机构的自由度时,需要准确判断活动构件的数量、运动副的类型以及是否存在虚约束和局部自由度,这需要我们具备细致的观察力和严谨的逻辑思维。

接着,我们深入学习了机械零件的设计。

齿轮传动是其中的重点之一。

齿轮的设计需要考虑很多因素,如模数、齿数、压力角、齿宽等。

模数和齿数决定了齿轮的尺寸和传动比,压力角影响着齿轮的承载能力和传动效率,而齿宽则需要在保证强度的前提下,尽量减小以减轻重量和节省材料。

轴的设计也是关键内容,轴的类型有转轴、传动轴和心轴,其设计需要考虑轴的受力情况、轴径的计算、轴的结构设计以及轴的强度和刚度校核。

此外,还有带传动、链传动、螺纹连接、键连接等零件的设计,每种零件都有其独特的特点和设计要求。

在机械系统设计方面,我们学习了如何将各种机械零件组合成一个完整的机械系统,以实现特定的功能。

这需要综合考虑各个零件的性能、相互之间的配合以及整个系统的稳定性和可靠性。

例如,在设计一个简单的减速器时,需要合理选择齿轮的参数、轴的结构、轴承的类型以及箱体的形状和尺寸等,以确保减速器能够平稳、高效地工作。

在学习过程中,我深刻体会到了理论与实践相结合的重要性。

课程中安排的实验和课程设计环节,让我有机会将所学的理论知识应用到实际的设计中。

通过实验,我们能够直观地观察到机构的运动情况,验证理论计算的结果,加深对机械原理的理解。

而课程设计则是对我们综合设计能力的一次考验,从方案的选择、参数的计算到图纸的绘制,每一个环节都需要我们认真对待,严谨细致地完成。

机械设计基础总结(五篇范文)

机械设计基础总结(五篇范文)

机械设计基础总结(五篇范文)第一篇:机械设计基础总结平面机构的自由度F=3n-2PL-PH 机构具有确定运动的条件(原动件数>F,机构破坏)平面四杆机构在此机构中,AD固定不动,称为机架;AB、CD两构件与机架组成转动副,称为连架杆;BC称为连杆。

在连架杆中,能作整周回转的构件称为曲柄,而只能在一定角度范围内摆动的构件称为摇杆。

四杆机构存在曲柄的条件1)连架杆和机架中必有一杆是最短杆;2)最短杆与最长杆长度之和小于或等于其它两杆长度之和。

(称为杆长条件)急回特性和行程速比系数当主动件曲柄等速转动时,从动件摇杆摆回的平均速度大于摆出的平均速度,摇杆的这种运动特性称为急回特性极位夹角θ:曲柄整周运动时,连杆的两个极限位置的夹角当机构存在极位夹角θ 时,机构便具有急回运动特性。

且θ角越大,K值越大,机构的急回性质也越显著压力角与传动角连杆BC与从动件CD之间所夹的锐角γ 称为四杆机构在此位置的传动角。

显然γ越大,有效分力Pt越大,Pn越小,对机构的传动就越有利。

所以,在连杆机构中也常用传动角的大小及变化情况来描述机构传动性能的优劣。

为了保证机构传力性能良好,应使γmin≥40 ~50°最小传动角的确定:对于曲柄摇杆机构,γmin出现在主动件曲柄与机架共线的两位置之一。

死点(传动角为0)当以摇杆CD为主动件,则当连杆与从动件曲柄共线时,机构的传动角γ=0°,这时主动件CD通过连杆作用于从动件AB上的力恰好通过其回转中心,出现了不能使构件AB转动的“顶死”现象,机构的这种位置称为“死点”凸轮轮廓曲线设计反转法.对心直动尖顶推杆盘形凸轮机构(1)选取适当的比例尺,取为半径作圆;(2)先作相应于推程的一段凸轮廓线。

为此,根据反转法原理,将凸轮机构按进行反转此时凸轮静止不动,而推杆绕凸轮顺时针转动。

按顺时针方向先量出推程运动角,再按一定的分度值(凸轮精度要求高时,分度值取小些,反之可以取小些)将此运动角分成若干等份,并依据推杆的运动规律算出各分点时推杆的位移值S。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械设计基础总结第一章平面机构的自由度和速度分析1.1 构件——独立的运动单元零件——独立的制造单元运动副——两个构件直接接触组成的仍能产生某些相对运动的连接。

机构——由两个或两个以上构件通过活动联接形成的构件系统。

机器——由零件组成的执行机械运动的装置。

机器和机构统称为机械。

构件是由一个或多个零件组成的。

机构与机器的区别:机构只是一个构件系统,而机器除构件系统之外还包含电气,液压等其他装置;机构只用于传递运动和力,而机器除传递运动和力之外,还具有变换或传递能量,物料,信息的功能。

1.2运动副——接触组成的仍能产生某些相对运动的联接。

运动副元素——直接接触的部分(点、线、面)运动副的分类:1)按引入的约束数分有:I级副(F=5)、II级副(F=4)、III级副(F=3)、IV级副(F=2)、V级副(F=1)。

2)按相对运动范围分有:平面运动副——平面运动空间运动副——空间运动平面机构——全部由平面运动副组成的机构。

空间机构——至少含有一个空间运动副的机构3)按运动副元素分有:高副()——点、线接触,应力高;低副()——面接触,应力低1.3机构:具有确定运动的运动链称为机构机构的组成:机构=机架+原动件+从动件保证机构具有确定运动时所必须给定的独立运动参数称为机构的自由度。

24y原动件<自由度数目:不具有确定的相对运动。

原动件>自由度数目:机构中最弱的构件将损坏。

1.5局部自由度:构件局部运动所产生的自由度。

出现在加装滚子的场合,计算时应去掉Fp。

复合铰链——两个以上的构件在同一处以转动副相联。

m个构件, 有m-1转动副虚约束对机构的运动实际不起作用的约束。

计算自由度时应去掉虚约束。

出现场合:1两构件联接前后,联接点的轨迹重合,2.两构件构成多个移动副,且导路平行。

3.两构件构成多个转动副,且同轴。

4运动时,两构件上的两点距离始终不变。

5.对运动不起作用的对称部分。

如多个行星轮。

6.两构件构成高副,两处接触,且法线重合。

1.6机构运动简图——用以说明机构中各构件之间的相对运动关系的简单图形。

作用——1.表示机构的结构和运动情况。

2.作为运动分析和动力分析的依据。

步骤:1)运转机械,搞清楚运动副的性质、数目和构件数目;2)测量各运动副之间的尺寸,选投影面(运动平面),绘制示意图。

3)按比例绘制运动简图。

简图比例尺:μl =实际尺寸m / 图上长度mm4)检验机构是否满足运动确定的条件。

1.7 F=3n-(2Pl +Ph )1.8速度瞬心两个作平面运动构件上速度相同的一对重合点,在某一瞬时两构件相对于该点作相对转动,该点称瞬时速度中心。

求法?若机构中有n个构件,则∵每两个构件就有一个瞬心∴根据排列组合有N=n(n-1)/2求法:1)直接观察法:适用于求通过运动副直接相联的两构件瞬心位置。

2)三心定律:三个彼此作平面运动的构件共有三个瞬心,且它们位于同一条直线上。

此法特别适用于两构件不直接相联的场合。

第二章平面连杆机构2.1何谓平面连杆机构?它有何特点?能够实现哪些运动转换?平面连杆机构是有若干构件用低副(转动副、移动副)连接组成的平面机构,又称平面低副机构。

①采用低副。

面接触、承载大、便于润滑、不易磨损形状简单、易加工、容易获得较高的制造精度。

②改变杆的相对长度,从动件运动规律不同。

③连杆曲线丰富。

可满足不同要求。

若组成转动副的两构件能作整周相对运动,则称该转动副为整转副,否则称为摆动副。

2.2铰链四杆机构的基本形式,特性,生产中有何作用?哪些特性对工作不利?如何消除其影响?曲柄摇杆机构、双曲柄机构和双摇杆机构1)曲柄摇杆机构特征:曲柄+摇杆作用:将曲柄的整周回转转变为摇杆的往复摆动。

如雷达天线。

2)双曲柄机构特征:两个曲柄)180/(21θω-︒=C C 2212t C C V =作用:将等速回转转变为等速或变速回转。

3)双摇杆机构特征:两个摇杆对工作不利的特性:极位,死点位置:施加外力,利用构件自身惯性可以解决。

运动不确定性:当四个铰链中心处于同一直线上将出现运动不确定性。

可以在主,从动曲柄上错开一定角度再安装一组平行四边形机构来消除运动不确定状态。

2.3四杆机构的演化形式有哪些?他们是通过什么途径演化而来的?在工程上有哪些实际应用?(1)改变构件的形状和运动尺寸曲柄摇杆机构,曲柄滑块机构,偏心曲柄滑块机构,对心曲柄滑块机构,双滑块机构,正弦机构。

(2)改变运动副的尺寸偏心轮机构(3)选不同的构件为机架曲柄滑块机构导杆机构2.4在铰链四杆机构中,转动副成为周转副的条件是什么?1最短杆与最长杆长度之和小于或等于其余两杆长度之和。

2整转副是由最短杆与其临边组成2.5铰链四杆机构的形式和尺寸之间关系如何?曲柄存在的条件:曲柄存在的条件1. 最长杆与最短杆的长度之和应≤其他两杆长度之和称为杆长条件。

2.连架杆或机架之一为最短杆。

2.6四杆机构的极位和死点有何异同在曲柄摇杆机构中,当曲柄与连杆两次共线时,摇杆位于两个极限位置,简称极位。

摇杆为主动件,且连杆与曲柄两次共线时,有:γ=0此时机构不能运动. 称此位置为:“死点”死点要求是摇杆为主动件曲柄为从动件时的极位才是死点2.7何谓行程速比系数K ?它描述了机构的什么特性?它与极位夹角有何关系?当曲柄以ω继续转过180°-θ时,摇杆从C2D,置摆到C1D ,所花时间为t2 ,平均速度为V2 ,那么有:显然t1>t2 v2>v1,摇杆的这种特性较急回运动。

称K 为行程速比系数,特性:K 值越大,急回性质越明显。

ωθ/)180(2-︒=t11180+-︒=K K θ121221t C C t C C =21t t =θθ-︒+︒=18018012V V K =于极位夹角的关系式:且θ越大,K 值越大,急回性质越明显2.8存在急回特性的装置?什么情况下没有急回特性?具有急回特性的四杆机构除曲柄摇杆机构外,还有偏置曲柄滑块机构和摆动导杆机构等。

当 =0°,k=1时,无急回特性.2.9曲柄摇杆机构中,当以曲柄为原动件时,是否存在死点?不存在。

2.10曲柄摇杆机构、双摇杆机构、双摇杆机构、曲柄滑块机构和摆动导杆机构等各在什么条件下会出现死点?机构在死点位置会出现什么后果?可采取哪些措施解决?摇杆为主动件的曲柄摇杆机构,当曲柄与连杆两次共线时,忽略连杆质量的情况下,连杆是二力杆,因此连杆对曲柄的作用力通过曲柄铰链中心A ,给曲柄的驱动力矩为0,机构就会出现卡死或运动不确定的现象。

死点通常有害,应设法消除。

消除方法有:② 对从动曲柄施加附加力矩。

② 利用构件自身或飞轮的惯性。

③ 多组相同机构错开一定角度布置。

2.11机构的压力角和传动角?对传动性能的影响?设计四杆机构时,对传动角有何要求?压力角:从动件驱动力F 与力作用点绝对速度之间所夹锐角。

传动角(γ)=90度-压力角(α)γ↑F’→对传动有利。

又可用γ的大小来表示机构传动力性能的好坏,设计时要求: γmin ≥50°2.12曲柄摇杆机构都得最大和最小传动角出现在什么位置?当摇杆主动时,其传动角又如何?在曲柄摇杆机构中,若以曲柄为原动件时,最小传动角出现在曲柄与机架的两个共线位置之一处。

2.13导杆机构的传动角是多少?摆动导杆机构的传动角始终等于90°。

2.14曲柄滑块机构的最大和最小传动角出现在什么位置?当滑块主动时,其传动角又如何?第三章 凸轮机构3.1凸轮机构有哪些类型?特点如何?1)按凸轮形状分:盘形、 移动、 圆柱凸轮 ( 端面 ) 。

2)按推杆形状分:尖顶、滚子、平底从动件。

3)按推杆运动分:直动(对心、偏置)、摆动4)按保持接触方式分:力封闭(重力、弹簧等)几何形状封闭(凹槽,等宽,等径,主回凸轮)特点:尖顶——构造简单、易磨损、用于仪表机构;滚子——磨损小,应用广;平底——受力好、润滑好,用于高速传动。

3.2凸轮机构从动件常用运动规律有哪几种?有何特点?适用于哪些场合?一、多项式运动规律1.等速运动(一次多项式)运动规律。

刚性冲击2.等加等减速(二次多项式)运动规律:位移曲线为一抛物线。

加、减速各占一半。

柔性冲击3.五次多项式运动规律:无冲击,适用于高速凸轮二、三角函数运动规律1.余弦加速度(简谐)运动规律:在起始和终止处理论上a2为有限值,产生柔性冲击。

2.正弦加速度(摆线)运动规律:无冲击三、改进型运动规律:将几种运动规律组合,以改善运动特性。

正弦改进等速3.3何谓刚性冲击和柔性冲击?它们出现在哪几种常用运动规律中?(网上找的)等加速和等减速运动的推杆在运动的起讫处加速度数值较大变化以及中部加速度方向发生反向而对凸轮产生柔性冲击;余弦加速度运动的推杆在起讫处也由于其加速度数值的较大变化而对凸轮产生柔性冲击。

这些是PPT上的,和书上的有些不一样3.5理论轮廓曲线,实际轮廓曲线?作图时是否可以不画理论轮廓曲线直接画实际轮廓曲线?实际轮廓是只凸轮的实际外形,滚子的中心走过的轨迹才是理论的轮廓曲线不能(P47)3.6 设计凸轮轮廓曲线时,采用了反转法,其理论依据是什么。

给整个凸轮机构施以-ω1时,不影响各构件之间的相对运动,此时,凸轮将静止,而从动件尖顶复合运动的轨迹即凸轮的轮廓曲线。

3.7压力角,对工作的影响?为什么回程压力角可以选得大些?(1)作用在从动件上的驱动力与该力作用点绝对速度之间所夹的锐角称为压力角。

(2)驱动从件的有用分力F’一定时,压力角ɑ越大,则有害分力F’’越大,机构的效率越低。

当ɑ增大到一定程度,以致F’’在导路中所引起的摩擦阻力大于有用分力F’时,无论凸轮加给从动件的作用力多大,从动件都不能动,这种现象称为自锁。

为了保证凸轮机构正常工作并具有一定的传动效率,必须对压力角加以限制。

(3)常见的依靠外力使从动件与凸轮维持接触的凸轮机构,其从动件是在弹簧或重力作用下返回的,回程不会出现自锁。

因此,对于这类凸轮机构,通常只需要校核推程压力角。

3.8将对心从动件改为偏置后,对凸轮压力角有何影响?用偏置法可减小推程压力角,但同时增大了回程压力角,故偏距 e 不能太大。

第四章齿轮机构4.1渐开线形成:―条直线在圆上作纯滚动时,直线上任一点的轨迹特性:①AB = BK;(见书P55页及PPT)②渐开线上任意点的法线切于基圆纯滚动时,B为瞬心,速度沿t-t线,是渐开线的切线,故BK为法线③B点为曲率中心,BK为曲率半径。

渐开线起始点A处曲率半径为0。

④渐开线的形状取决于基圆的大小⑤基圆之内无渐开线4.3齿廓在基圆上的压力角和曲率半径如何?在无穷远处的压力角和曲率半径又如何?(P55)压力角αk,基圆半径rb,k点离轮心的距离rb=rk cosαk―条直线在圆上作纯滚动时,直线上任一点的轨迹叫渐开线。

相关文档
最新文档