传感器与检测技术5第五章
传感器与检测技术

传感器与检测技术山东省高等教育自学考试《传感器与检测技术》02202考试大纲第一部分学习过程评价部分考核大纲一、学习过程评价的课程性质及课程设置的目的、课程基本要求(一)课程性质与学习过程评价的设置目的传感器与检测技术是机电一体化工程专业的一门专业基础课。
本课程阐述如何利用传感器将机电一体化系统典型被测物理量转换成与之有确切对应关系并且容易检测、传输、处理的信号,通过计算机数据处理,得到有关被测系统的有用信息。
传感器与检测技术是机电一体化系统的关键技术之一。
“传感器与检测技术”是一门综合性、实践性很强的课程,在自学过程中必须做一定数量的基本实验,才能掌握课程的基本内容,培养考生分析问题和解决问题的能力。
考生应高度重视实验环节。
这是学习过程评价目的之一;另外,作一定数量的习题、思考题对学好本课程也非常必要,这是学习过程评价目的之二。
(二)学习过程评价基本要求考生在学习过程中进行必要的教学实验:(1)通过电阻应变式传感器实验,掌握电阻应变式传感器工作原理和输出特性。
(2)通过电感式传感器实验,掌握电感式传感器工作原理和输出特性 (3)通过电容式传感器实验,掌握电容式传感器工作原理和输出特性 (4)通过滤波器特性实验,了解无源滤波器和有源滤波器的类型、工作原理,掌握滤波器特性及其测试方法。
(5)通过压力传感器静态标定实验,掌握压力传感器静态标定方法,学习标定数据处理及传感器特性指标的计算。
(6)通过温度传感器校准实验,掌握温度传感器的使用方法和校准方法。
(7)通过振动测试实验,了解其固有频率、阻尼比及各阶振型的测试方法;了解非接触式和接触式测振传感器的特点;附加传感器质量对测试结果的影响;了解激振、测振系统的基本组成和选择。
(8)通过切削力测量实验,了解八角换车削测力仪的结构、应变片的粘贴和组桥方法以及测力仪工作原理掌握八角环测力仪的静态标定方法。
考生在学习过程中必须完成一定数量的习题、思考题。
二、学习过程评价的课程内容和考核要求(一) 实验内容与要求实验1 电阻应变式传感器实验。
《传感器与检测专业技术》第二版部分计算题解答

-《传感器与检测技术》第二版部分计算题解答————————————————————————————————作者:————————————————————————————————日期:第一章 传感器与检测技术概论作业与思考题1.某线性位移测量仪,当被测位移由4.5mm 变到5.0mm 时,位移测量仪的输出电压由3.5V 减至2.5V ,求该仪器的灵敏度。
依题意:已知X 1=4.5mm ; X 2=5.5mm ; Y 1=3.5V ; Y 2=2.5V求:S ;解:根据式(1-3) 有:15.45.55.35.21212-=--=--=∆∆=X X Y Y X Y S V/mm 答:该仪器的灵敏度为-1V/mm 。
2.某测温系统由以下四个环节组成,各自的灵敏度如下:铂电阻温度传感器:0.35Ω/℃;电桥:0.01V/Ω;放大器:100(放大倍数);笔式记录仪:0.1cm/V求:(1)测温系统的总灵敏度;(2)纪录仪笔尖位移4cm 时。
所对应的温度变化值。
依题意:已知S 1=0.35Ω/℃; S 2=0.01V/Ω; S 3=100; S 4=0.1cm/V ; ΔT=4cm求:S ;ΔT解:检测系统的方框图如下:ΔT ΔR ΔU 1 ΔU 2 ΔL(3分)(1)S=S 1×S 2×S 3×S 4=0.35×0.01×100×0.1=0.035(cm/℃) (2)因为:TL S ∆∆=所以:29.114035.04==∆=∆S L T (℃) 答:该测温系统总的灵敏度为0.035cm/℃;记录笔尖位移4cm 时,对应温度变化114.29℃。
3.有三台测温仪表,量程均为0_600℃,引用误差分别为2.5%、2.0%和1.5%,现要测量500℃的温度,要求相对误差不超过2.5%,选哪台仪表合理?依题意,已知:R=600℃; δ1=2.5%; δ2=2.0%; δ3=1.5%; L=500℃; γM =2.5% 求:γM1 γM2 γM3解:铂电电桥放大记录(1)根据公式(1-21)%100⨯∆=Rδ 这三台仪表的最大绝对误差为:0.15%5.26001=⨯=∆m ℃0.12%0.26002=⨯=∆m ℃0.9%5.16003=⨯=∆m ℃(2)根据公式(1-19)%100L 0⨯∆=γ 该三台仪表在500℃时的最大相对误差为:%75.2%10050015%10011=⨯=⨯∆=L m m γ %4.2%10050012%10012=⨯=⨯∆=L m m γ %25.2%1005009%10013=⨯=⨯∆=L m m γ 可见,使用2.0级的仪表最合理。
《检测与传感技术》思考题答案

答:直流电桥是测量小电阻的一种电路,分为单臂电桥、半桥和全桥。半桥输出电压为单臂电桥的2倍,全桥输出电压为半桥的2倍。
2-4拟在等截面的悬臂梁上粘贴4个完全相同的电阻应变片,并组成差动全桥电路,试问:
①4个应变片应怎样粘贴在悬臂梁上?
4.4根据螺管型差动变压器的基本特性,说明其灵敏度和线性度的主要特点。
答:差动变压器的结构如图所示,主要由一个初级线圈、两个次级线圈和插入线圈中央的圆柱形铁芯等组成。
差动变压器传感器中的两个次级线圈反相串联,并且在忽略铁损、导磁体磁阻和线圈分布电容的理想条件下,当衔铁位于中心位置时,两个次级线圈感应电压大小相等、方向相反,差动输出电压为零,但实际情况是差动变压器输出电压往往并不等于零。差动变压器在零位移时的输出电压称为零点残余电压,它的存在使传感器的输出特性不经过零点,造成实际特性与理论特性不完全一致,使传感器的灵敏度降低,分辨率变差和测量误差增大。
解:
3-7简述差动式电容测厚传感器系统的工作原理。
答:电容测厚传感器是用来对金属带材在轧制过程中厚度的检测,其工作原理是在被测带材的上下两侧各置放一块面积相等,与带材距离相等的极板,这样极板与带材就构成了两个电容器C1、C2。把两块极板用导线连接起来成为一个极,而带材就是电容的另一个极,其总电容为C1+C2,如果带材的厚度发生变化,将引起电容量的变化,用交流电桥将电容的变化测出来,经过放大即可由电表指示测量结果。
4.5概述差动变压器的应用范围,并说明用差动变压器式传感器检测振动的基本原理。
答:差动变压器式传感器可以直接用于位移测量,也可以测量与位移有关的任何机械量,如振动、加速度、应变、比重、张力和厚度等。
传感器与检测技术-教案

传感器与检测技术-教案第一章:传感器概述1.1 教学目标了解传感器的定义、分类和作用理解传感器的基本原理和特性掌握传感器的选用和安装方法1.2 教学内容传感器的定义和分类传感器的基本原理和特性传感器的选用和安装方法1.3 教学方法讲授传感器的基本概念和分类分析实际案例,讲解传感器的工作原理和特性动手实验,演示传感器的选用和安装方法1.4 教学评估课堂问答,检查学生对传感器定义和分类的理解分析案例,评估学生对传感器工作原理和特性的掌握程度实验报告,评估学生对传感器选用和安装方法的掌握程度第二章:温度传感器2.1 教学目标了解温度传感器的定义、分类和作用理解温度传感器的基本原理和特性掌握温度传感器的选用和安装方法2.2 教学内容温度传感器的定义和分类温度传感器的基本原理和特性温度传感器的选用和安装方法2.3 教学方法讲授温度传感器的基本概念和分类分析实际案例,讲解温度传感器的工作原理和特性动手实验,演示温度传感器的选用和安装方法2.4 教学评估课堂问答,检查学生对温度传感器定义和分类的理解分析案例,评估学生对温度传感器工作原理和特性的掌握程度实验报告,评估学生对温度传感器选用和安装方法的掌握程度第三章:压力传感器3.1 教学目标了解压力传感器的定义、分类和作用理解压力传感器的基本原理和特性掌握压力传感器的选用和安装方法3.2 教学内容压力传感器的定义和分类压力传感器的基本原理和特性压力传感器的选用和安装方法3.3 教学方法讲授压力传感器的基本概念和分类分析实际案例,讲解压力传感器的工作原理和特性动手实验,演示压力传感器的选用和安装方法3.4 教学评估课堂问答,检查学生对压力传感器定义和分类的理解分析案例,评估学生对压力传感器工作原理和特性的掌握程度实验报告,评估学生对压力传感器选用和安装方法的掌握程度第四章:流量传感器4.1 教学目标了解流量传感器的定义、分类和作用理解流量传感器的基本原理和特性掌握流量传感器的选用和安装方法4.2 教学内容流量传感器的定义和分类流量传感器的基本原理和特性流量传感器的选用和安装方法4.3 教学方法讲授流量传感器的基本概念和分类分析实际案例,讲解流量传感器的工作原理和特性动手实验,演示流量传感器的选用和安装方法4.4 教学评估课堂问答,检查学生对流量传感器定义和分类的理解分析案例,评估学生对流量传感器工作原理和特性的掌握程度实验报告,评估学生对流量传感器选用和安装方法的掌握程度第五章:位移传感器5.1 教学目标了解位移传感器的定义、分类和作用理解位移传感器的基本原理和特性掌握位移传感器的选用和安装方法5.2 教学内容位移传感器的定义和分类位移传感器的基本原理和特性位移传感器的选用和安装方法5.3 教学方法讲授位移传感器的基本概念和分类分析实际案例,讲解位移传感器的工作原理和特性动手实验,演示位移传感器的选用和安装方法5.4 教学评估课堂问答,检查学生对位移传感器定义和分类的理解分析案例,评估学生对位移传感器工作原理和特性的掌握程度实验报告,评估学生对位移传感器选用和安装方法的掌握程度第六章:光学传感器6.1 教学目标了解光学传感器的定义、分类和作用理解光学传感器的基本原理和特性掌握光学传感器的选用和安装方法6.2 教学内容光学传感器的定义和分类光学传感器的基本原理和特性光学传感器的选用和安装方法6.3 教学方法讲授光学传感器的基本概念和分类分析实际案例,讲解光学传感器的工作原理和特性动手实验,演示光学传感器的选用和安装方法6.4 教学评估课堂问答,检查学生对光学传感器定义和分类的理解分析案例,评估学生对光学传感器工作原理和特性的掌握程度实验报告,评估学生对光学传感器选用和安装方法的掌握程度第七章:超声波传感器7.1 教学目标了解超声波传感器的定义、分类和作用理解超声波传感器的基本原理和特性掌握超声波传感器的选用和安装方法7.2 教学内容超声波传感器的定义和分类超声波传感器的基本原理和特性超声波传感器的选用和安装方法7.3 教学方法讲授超声波传感器的基本概念和分类分析实际案例,讲解超声波传感器的工作原理和特性动手实验,演示超声波传感器的选用和安装方法7.4 教学评估课堂问答,检查学生对超声波传感器定义和分类的理解分析案例,评估学生对超声波传感器工作原理和特性的掌握程度实验报告,评估学生对超声波传感器选用和安装方法的掌握程度第八章:无线传感器网络8.1 教学目标了解无线传感器网络的定义、分类和作用理解无线传感器网络的基本原理和特性掌握无线传感器网络的选用和安装方法8.2 教学内容无线传感器网络的定义和分类无线传感器网络的基本原理和特性无线传感器网络的选用和安装方法8.3 教学方法讲授无线传感器网络的基本概念和分类分析实际案例,讲解无线传感器网络的工作原理和特性动手实验,演示无线传感器网络的选用和安装方法8.4 教学评估课堂问答,检查学生对无线传感器网络定义和分类的理解分析案例,评估学生对无线传感器网络工作原理和特性的掌握程度实验报告,评估学生对无线传感器网络选用和安装方法的掌握程度第九章:传感器信号处理与分析9.1 教学目标了解传感器信号处理与分析的基本概念、方法和作用理解传感器信号处理与分析的基本原理和特性掌握传感器信号处理与分析的方法和技巧9.2 教学内容传感器信号处理与分析的基本概念和方法传感器信号处理与分析的基本原理和特性传感器信号处理与分析的方法和技巧9.3 教学方法讲授传感器信号处理与分析的基本概念和方法分析实际案例,讲解传感器信号处理与分析的基本原理和特性动手实验,演示传感器信号处理与分析的方法和技巧9.4 教学评估课堂问答,检查学生对传感器信号处理与分析的基本概念和方法的理解分析案例,评估学生对传感器信号处理与分析的基本原理和特性的掌握程度实验报告,评估学生对传感器信号处理与分析的方法和技巧的掌握程度第十章:传感器在工程应用中的案例分析10.1 教学目标了解传感器在工程应用中的重要性理解传感器在不同工程领域的应用案例掌握传感器在工程应用中的选型和应用方法10.2 教学内容传感器在工程应用中的重要性传感器在不同工程领域的应用案例传感器在工程应用中的选型和应用方法10.3 教学方法讲授传感器在工程应用中的重要性分析实际案例,讲解传感器在不同工程领域的应用动手实验,演示传感器在工程应用中的选型和应用方法10.4 教学评估课堂问答,检查学生对传感器在工程应用中的重要性的理解分析案例,评估学生对传感器在不同工程领域应用的掌握程度实验报告,评估学生对传感器在工程应用中的选型和应用方法的掌握程度重点和难点解析1. 传感器的基本概念和分类:重点关注传感器定义和分类的理解,以及传感器的功能和作用。
传感器与检测技术实践训练教程

传感器与检测技术实践训练教程第一章:传感器与检测技术概述1.1 什么是传感器1.2 传感器的分类与应用领域1.3 检测技术的发展与应用1.4 传感器与检测技术的重要性第二章:传感器的工作原理2.1 传感器的基本原理2.2 常见传感器的工作原理介绍2.2.1 压力传感器2.2.2 温度传感器2.2.3 光电传感器2.2.4 加速度传感器2.2.5 气体传感器2.2.6 液位传感器2.2.7 气象传感器第三章:传感器的选择与应用3.1 传感器的选择因素3.2 传感器的应用案例分析3.2.1 工业自动化领域的传感器应用3.2.2 环境监测领域的传感器应用3.2.3 医疗器械领域的传感器应用3.2.4 智能家居领域的传感器应用第四章:传感器的实践训练4.1 传感器实验室介绍4.2 传感器实验器材与软件的使用方法4.3 基于Arduino的传感器实验4.4 基于树莓派的传感器实验4.5 传感器数据的采集与处理方法第五章:检测技术的实践训练5.1 检测技术实验室介绍5.2 常见检测技术的实验方法与操作要点5.3 光学检测技术实验5.4 电化学检测技术实验5.5 红外检测技术实验第六章:传感器与检测技术的未来发展6.1 传感器与检测技术的发展趋势6.2 人工智能与传感器技术的结合6.3 新兴传感器与检测技术的研究方向6.4 传感器与检测技术的社会影响与应用前景结语:传感器与检测技术实践训练的重要性与价值通过本教程的学习与实践训练,读者将能够全面了解传感器与检测技术的基本原理、分类与应用,掌握传感器与检测技术的实践操作方法,以及对未来发展趋势有一定的了解。
希望本教程能够帮助读者在相关领域的学习与工作中取得更好的成果。
陈杰 传感器与检测技术课后答案

第一章习题答案1.什么是传感器?它由哪几个部分组成?分别起到什么作用?解:传感器是一种以一定的精确度把被测量转换为和之有确定对应关系的、便于使用的某种物理量的测量装置,能完成检测任务;传感器由敏感元件,转换元件,转换电路组成。
敏感元件是直接感受被测量,并输出和被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。
2.传感器技术的发展动向表现在哪几个方面?解:(1)开发新的敏感、传感材料:在发现力、热、光、磁、气体等物理量都会使半导体硅材料的性能改变,从而制成力敏、热敏、光敏、磁敏和气敏等敏感元件后,寻找发现具有新原理、新效应的敏感元件和传感元件。
(2)开发研制新型传感器及组成新型测试系统①MEMS技术要求研制微型传感器。
如用于微型侦察机的CCD传感器、用于管道爬壁机器人的力敏、视觉传感器。
②研制仿生传感器③研制海洋探测用传感器④研制成分分析用传感器⑤研制微弱信号检测传感器(3)研究新一代的智能化传感器及测试系统:如电子血压计,智能水、电、煤气、热量表。
它们的特点是传感器和微型计算机有机结合,构成智能传感器。
系统功能最大程度地用软件实现。
(4)传感器发展集成化:固体功能材料的进一步开发和集成技术的不断发展,为传感器集成化开辟了广阔的前景。
(5)多功能和多参数传感器的研究:如同时检测压力、温度和液位的传感器已逐步走向市场。
3.传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义?动态参数有那些?应如何选择?解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。
衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。
1)传感器的线性度是指传感器的输出和输入之间数量关系的线性程度;2)传感器的灵敏度S是指传感器的输出量增量Δy和引起输出量增量Δy的输入量增量Δx的比值;3)传感器的迟滞是指传感器在正(输入量增大)反(输入量减小)行程期间其输出-输入特性曲线不重合的现象;4)传感器的重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。
《传感器及检测技术》实验5 光纤传感器位移特性及测速实验

实验五光纤传感器位移特性及测速实验一、实验目的了解反射式光纤位移传感器的原理与应用。
了解光纤位移传感器用于测转速的方法。
二、实验仪器Y 型光纤传感器、测微头、反射面、差动放大器、电压放大器、数显电压表、频率/转速表、转动源、示波器、直流稳压电源。
三、实验原理反射式光纤位移传感器是一种传输型光纤传感器。
其原理如图5-1 所示, 光纤采用Y型结构, 两束光纤一端合并在一起组成光纤探头, 另一端分为两支, 分别作为光源光纤和接收光纤。
光从光源耦合到光源光纤, 通过光纤传输, 射向反射面, 再被反射到接收光纤, 最后由光电转换器接收, 转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。
当反射表面位置确定后, 接收到的反射光光强随光纤探头到反射体的距离的变化而变化。
显然, 当光纤探头紧贴反射面时, 接收器接收到的光强为零。
随着光纤探头离反射面距离的增加, 接收到的光强逐渐增加, 到达最大值点后又随两者的距离增加而减小。
反射式光纤位移传感器是一种非接触式测量, 具有探头小, 响应速度快, 测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。
图5-1 反射式光纤位移传感器原理图5-2 光纤位移传感器安装示意图在测速时, 需利用光纤位移传感器探头对旋转被测物反射光的明显变化产生电脉冲, 经电路处理即可测量转速。
四、实验内容与步骤(1)光纤传感器位移特性实验1. 光纤传感器的安装如图5-2 所示, 将Y 型光纤结合处安装在传感器固定支架上, 光纤分叉两端插入“光纤插座”中。
探头对准镀铬反射板(铁质材料圆盘), 固定在测微头上。
按图5-3接线, 电压放大器的输出接直流电压表。
2.将测微头起始位置调到10cm处, 手动使反射面与光纤探头端面紧密接触, 固定测微头。
3. 将“差动变压器”与“电压放大器”的增益调节旋钮调到中间位置。
打开直流电源开关。
4.将“电压放大器”输出端接到直流电压表(20V档), 仔细调节调零电位器使电压表显示为零。
“传感器与检测技术”(5-13章)练习题

“传感器与检测技术”(5—13章)练习题班级:学号:姓名:一、填空题1、根据工作原理电感式传感器可分为()、()、()。
2、由单线圈变隙式电感传感器的基本特性可知,其测量范围与()及()相矛盾。
3、闭磁路变隙式电感传感器主要由()、()及铁芯组成。
4、闭磁路变隙式电感传感器工作时,衔铁与被测物体连接。
当被测物体移动时,引起磁路中气隙()发生相对变化,从而导致()、()及()的变化。
5、螺线管式差动变压器式传感器从理论上讲,衔铁位于中心位置时输出电压应为零,而实际上差动变压器输出电压不为零,我们把这个不为零的电压称为()电压。
利用差动变压器测量位移时,如果要求区别位移方向(或正负)可采用()、()电路。
6、电容式传感器是将被测物理量的变化转换成()的一种传感器,电容式传感器的测量电路有()电路、()电路、()电路以及()电路等。
7、工业和计量部门常用的热电阻,我国统一设计的定型产品是()热电阻和()热电阻。
8、铜热电阻在一些测量精度要求不高且温度()的场合,用来测量()范围的温度。
9、热电阻在电桥测量电路中的接法有:()制、()制和()制。
10、采用热电阻作为测量元件是将()的测量转换为()的测量。
11、热电偶中热电势的大小仅与()的性质、()有关,而与热电极尺寸、形状及温度分布无关。
12、按热电偶本身结构划分,有()热电偶、铠装热电偶、()热电偶。
13、压电式传感器的工作原理是基于某些()材料的压电效应。
14、用石英晶体制作的压电式传感器中,晶面上产生的()与作用在晶面上的压强成正比,而与晶片()和面积无关。
15、压电陶瓷是人工制造的多晶体,是由无数细微的电畴组成。
经过()的压电陶瓷才具有压电效应。
16、沿着压电陶瓷极化方向加力时,其()发生变化,引起垂直于极化方向的平面上()的变化而产生压电效应。
17、压电式传感器具有体积小、结构简单等优点,但不能测量()的被测量。
18、压电式传感器中,为了克服力传递函数中的()性,几乎所有的压电式传感器都加()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 压电式传感器
在晶体的弹性限度内,在x轴方向上施加压
力Fx时,在x面上产生的电荷为
Q=d11 Fx
பைடு நூலகம்
(5-1)
式中,d11为x轴方向受力的压电系数 (C/N);Fx为x轴方向的作用力(N)。
2020年9月14日星期一
第5章 压电式传感器
5.1.2 压电材料 压电传感器中的压电元件材料一般有三类:
2020年9月14日星期一
第5章 压电式传感器
5.1 压电式传感器的工作原理
压电式传感器是一种自发电传感器。以 某些电介质的压电效应为基础,压电材料 受力后表面产生电荷,从而实现非电量向 电量的转换。
压电式传感器具有工作频带宽、灵敏度 高、结构简单、体积小、质量轻、工作可 靠等特点。
2020年9月14日星期一
图5-3 石英晶体的压电效应示意图
当石英晶体不受外力作用时,硅离子和氧离子刚好在正六边形 的六个顶角上,也就是说正负电荷是互相平衡的,所以外部没 有带电现象,见图5-3(a);当石英晶体在x轴方向受力时,晶 体的极面A上呈现负电荷,晶体的极面B上呈现正电荷,见图53(b);当石英晶体在y轴方向受力时,晶体的极面A上呈现正电 荷,晶体的极面B上呈现负电荷,见图5-3(c)。
第5章 压电式传感器
5.1.1 压电效应
压电效应具有可逆性,它分为正压电效应和逆压电效应。
正压电效应 是指某些电介质,当沿着一定方向对其施加压力而
使其变形时,它的内部就会产生极化的现象,同时 在它的两个表面上会产生极性相反的电荷,当施加 的压力去掉后,它又重新恢复不带电的状态;当压 力的作用方向改变时,它内部的极性也随着改变。 (顺压电效应) 逆压电效应 是指当在电介质的极化方向施加电场,这些电介质就 会在一定方向上产生机械变形或机械压力,当施加的电 场撤去时,这些机械变形或机械压力也随之消失的现象。
技能目标: (1)能够根据检测要求选择合适的压电式传感器。 (2)能够运用压电式传感器完成一些简单的项目。
2020年9月14日星期一
第5章 压电式传感器
情感目标: (1)养成良好的工作责任心、坚强的意志力和严谨的工 作作风。 (2)具有工作与学习良好的交流与团队合作能力 。
教学重难点
教学重点: 压电式传感器的工作原理和应用。 教学难点: 压电式传感器的测量电路。
2020年9月14日星期一
第5章 压电式传感器
石英晶体在20~200 ℃内压电 系数的变化率小,因而其性能 非常稳定,不足之处在于压电 系数较小(d=2.31×10-12 C/N)。因此,石英晶体一般只 在标准传感器、高精度传感器 或使用温度较高的传感器中使 用。
2020年9月14日星期一
第5章 压电式传感器
石英晶体切片及封装
石英晶体薄片
2020年9月14日星期一
双面镀银并封装
第5章 压电式传感器
2.压电陶瓷
压电陶瓷是人工制造的多晶压电材料,是一种能 够将机械能转换为电能的陶瓷材料。它比石英晶体 的压电灵敏度高得多,而制造成本却较低,因此目 前国内外生产的压电元件绝大多数都采用压电陶瓷 。 常用的压电陶瓷材料有锆钛酸铅系列压电陶瓷 (PZT)及非铅系压电陶瓷 (如BaTiO3等)。
第5章 压电式传感器
第五章 压电式传感器
2020年9月14日星期一
第5章 压电式传感器
1 5.1 压电式传感器的工作原理 2 5.2 压电式传感器的测量转换电路 3 5.3 压电式传感器的应用
2020年9月14日星期一
第5章 压电式传感器
教学目标
知识目标: (1)了解不同压电材料的结构和特点。 (2)掌握压电式传感器的工作原理及测量转换电路。 (3)熟悉压电式传感器在工程上的应用。
2020年9月14日星期一
第5章 压电式传感器
由于外力的作用,在压电元件上产生的电 荷只有在无泄漏的情况下才能完好地保存, 即需要测量转换电路具有无穷大的输入阻 抗,这实际上是不可能的,所以压电式传 感器不能用于静态力的测量。压电元件在 交变力的作用下,电荷可以不断补充,可 以供给测量转换电路一定的电流,因此, 压电式传感器只适用于动态测量。
压电晶体
压
电
压电陶瓷
材
料
高分子压电材料
2020年9月14日星期一
第5章 压电式传感器
1.石英晶体
天然形成的石英晶体外形
2020年9月14日星期一
第5章 压电式传感器
天然形成的石英晶体外形(续)
2020年9月14日星期一
第5章 压电式传感器
石英晶体的压电机理分析
(a)晶体外形 (b)晶块 图5-2 石英晶体
若让原始的压电陶瓷材料具压电特性,需在一定温 度下对它进行极化处理。将这些材料置于外电场作 用下,使其中的电畴发生转动,趋向于其本身自发 的极化方向与外电场方向一致。极化处理过的压电 陶瓷具有良好的压电特性。
2020年9月14日星期一
第5章 压电式传感器
压电晶体与压电陶瓷的比较:
相同点: 都是具有压电效应的压电材料。
压电陶瓷是人工制造的多晶体压电材料,由无数 细微的单晶组成。每个单晶粒形成一个自发极化方 向一致的小区域即电畴。刚烧结好的压电陶瓷内的 电畴是无规则排列,极化方向杂乱无章,其总极化 强度为0,此时受力则无压电效应。
2020年9月14日星期一
第5章 压电式传感器
(a)未极化的陶瓷 (b)正在极化的陶瓷 (c)极化后的陶瓷 图5-4 压电陶瓷的极化过程
不同点: 石英的优点是它的介电和压电常数的温度稳定性好,适合做工作
温度范围很宽的传感器。 极化后的压电陶瓷的压电系数是石英的几十倍甚至几百倍,但稳
定性不如石英好,居里点也低。
2020年9月14日星期一
第5章 压电式传感器
1)锆钛酸铅系列压电陶瓷 锆钛酸铅系列压电陶瓷PZT有较高的压电系数(d=(200~500) 10-12 C/N)和居里点(500 ℃左右),是目前常采用的一种压电 材料。
石英的晶体结构为六方晶体系, 化学式为SiO2。 定义:
x:两平行柱面内夹角等分线,垂直此轴 压电效应最强。称为电轴。
y :垂直于平行柱面,在电场作用下变 形最大,称为机械轴。
2020年9月14日星期一
z :无压电效应,中心轴,也称光轴。
第5章 压电式传感器
(a)不受外力 (b) x轴方向受力 ( c)y轴方向受力