【完成】第八讲函数图像的渐近线及其应用(教师版)
渐近线在代数学中的应用

渐近线在代数学中的应用数学既是一门实用性极强的科学,同时也是一种抽象的思维体系。
在数学的学习和研究中,不同的数学工具都有不同的作用和应用。
其中,渐近线作为一种特殊的函数特征,其在代数学中有着广泛的应用,本文将探讨其在代数学领域中的应用。
一、渐近线的定义及性质在数学中,渐近线指的是某个函数趋向某一定值或趋向无穷大时的一种特殊情况。
其作为一种函数特征,特别适合于对于一些不确定情况的表达和分析。
具体而言,如果一个函数的自变量趋近于某个值时,因变量与某一水平线夹角的绝对值趋近于零,那么这条水平线就被称为该函数的渐近线。
在常见的函数图像中,一般有两个渐近线,称为水平渐近线和垂直渐近线。
渐近线的性质有以下几点:1. 垂直渐近线:函数在某些特殊情况下可能不存在水平渐近线,此时可能存在垂直渐近线。
如果一个函数趋近某个点时,因变量呈现出无限大或无限小的趋势,那么这个点就是垂直渐近线。
2. 水平渐近线:如果一个函数在自变量趋近于无穷大或负无穷大的时候,函数值趋近于某一有限值,那么这个函数就有一个水平渐近线。
3. 斜渐近线:如果函数趋近某一值时,因变量与水平线的夹角在某个角度之内,而这个角度不等于零或90度,那么这条渐近线就称为斜渐近线。
二、1. 垂直渐近线的应用垂直渐近线在代数学中的应用主要体现在分式函数的分解和计算中。
如果一个分式函数存在垂直渐近线,那么这个分式的分母就存在无零因子的因式,从而可以将这个函数分解成多个简单的分式函数的和。
这样,就可以在计算分式函数时,简化计算过程,使分式函数更加易于处理。
2. 斜渐近线的应用斜渐近线在代数学中的应用主要是用于研究有理函数在正无穷或负无穷时的行为。
有理函数在趋近于正无穷或负无穷时一般呈现出一个斜线性行为。
通过研究这个斜线性行为,我们可以了解有理函数在趋近于正无穷或负无穷时的极限及其性质。
3. 水平渐近线的应用水平渐近线在代数学中的应用主要是用于研究无穷级数的收敛性和发散性。
函数渐近线及函数图形的描绘

使用图形计算器绘制函数图形
简单易用、无需额外设置
图形计算器的操作通常非常简单,只需要选择相应的函数 类型或输入函数表达式,就可以自动绘制出相应的图形。 用户无需进行复杂的设置或调整参数,使得绘图过程更加 快速和简便。
使用图形计算器绘制函数图形
功能相对有限
VS
相对于数学软件,图形计算器的功能 相对有限。它们通常只能绘制基本的 函数图形,如直线、二次函数、三角 函数等,而无法绘制更复杂的函数图 形或进行高级的图形定制。
功能强大、精确度高
数学软件如Matlab、Mathematica和Maple等,提供了强大的绘图工具和函数 库,可以绘制各种复杂的函数图形,包括三维图形和极坐标图形。这些软件通常 具有高精度的计算和绘图能力,能够准确地表示函数的形状和变化趋势。
使用数学软件绘制函数图形
操作简便、可视化效果好
这些软件通常具有直观的用户界面和易于操作的命令语言,使得用户可以轻松地绘制函数图形。同时,这些软件还提供了丰 富的颜色、线条样式和标记工具,使得绘制的图形更加生动和易于理解。
验证模型
通过比较函数渐近线和实际数据,可以验证数学模型的准确 性和可靠性。
在科学计算中的应用
数据拟合
在科学实验中,利用函数渐近线可以 对实验数据进行拟合,得到更准确的 结论。
理论推导
在理论推导中,函数渐近线可以作为 理论依据,帮助推导出新的科学理论。
04 函数图形的描绘工具和技 术
使用数学软件绘制函数图形
平移变换
对称变换
将函数图像沿x轴或y轴方向平移一定 的距离。
将函数图像关于原点、x轴或y轴进行 对称。
伸缩变换
将函数图像在x轴或y轴方向上伸缩一 定的比例。
平面解析几何基础知识曲线的渐进线与渐近线

平面解析几何基础知识曲线的渐进线与渐近线在平面解析几何学中,曲线是一种由数学函数描述的图形。
当我们研究曲线的性质时,渐进线和渐进线是两个重要的概念。
它们为我们理解曲线的特性和行为提供了重要的线索。
一、渐进线渐进线是指一条曲线向无穷远点无限靠近的直线。
在数学中,渐进线的定义可以由以下两种情况来描述:1.当曲线无限延伸时,渐进线可以理解为曲线在无穷远处的“极限位置”。
例如,在坐标平面上,曲线可以趋近于某一直线,但永远无法穿过该直线。
2.当曲线在某一点处与一直线相切时,并且该点的斜率等于直线的斜率,那么这条直线就是曲线的渐进线。
通过这两个定义,我们可以得出渐进线的特点:1.渐进线永远无法与曲线相交,它们只是在无穷远处趋于平行或相切。
2.曲线可以有一个或多个渐进线,这取决于曲线的形状和特性。
二、渐进线的类型根据曲线的性质和形状,渐进线可以分为以下几种类型:1.水平渐进线:当曲线向无穷远点延伸时,曲线在水平方向上趋近于某一水平直线。
这种情况在函数图像中经常出现,例如y = k(k为常数)这种线性函数。
2.垂直渐进线:当曲线向无穷远点延伸时,曲线在竖直方向上趋近于某一竖直直线。
这种情况也常见于函数图像中,例如x = h(h为常数)的函数。
3.斜渐进线:当曲线在无穷远点处的斜率有固定的极限值时,曲线会向一条斜直线靠近。
这种情况在二次函数或其他多项式函数的情况下经常出现。
三、渐近线渐进线是曲线向无穷远点靠近时的极限情况。
而渐进线则是曲线在无穷远点处的实际行为。
对于一条曲线,它可能存在一条或多条渐近线。
渐近线可以分为以下几种情况:1.纵轴渐近线:当曲线在无穷远点处趋近于纵轴(x轴)时,我们称该曲线有纵轴渐近线。
这种情况通常出现在有理函数中,例如y = 1/x。
2.横轴渐近线:当曲线在无穷远点处趋近于横轴(y轴)时,我们称该曲线有横轴渐近线。
这种情况常出现在一些函数中,例如y =sin(x)。
3.斜渐近线:当曲线在无穷远点处趋近于某一斜线时,我们称该曲线有斜渐近线。
求函数渐近线及与函数曲线的夹角

求函数渐近线及与函数曲线的夹角函数渐近线及与函数曲线的夹角是数学分析中一个重要的概念,它可以帮助我们更好地理解函数的特性和行为。
在本文中,我们将探讨函数渐近线的定义、求解方法以及与函数曲线的夹角的相关知识。
一、函数渐近线的定义所谓函数渐近线,是指在无穷远处,函数曲线趋于一条确定的直线。
这条直线可以是水平线、垂直线或斜线。
为了更形象地描述函数渐近线与函数曲线的关系,我们可以以图形方式来说明。
二、水平渐近线的求解方法当函数曲线在无穷远处趋近于某个常数时,我们称该曲线存在水平渐近线。
求解水平渐近线的方法是通过计算函数在无穷远处的极限值。
三、垂直渐近线的求解方法当函数曲线在某一点处的斜率趋近于无穷大或负无穷大时,我们称该点存在垂直渐近线。
求解垂直渐近线的方法是通过计算函数在该点处的导数值。
四、斜渐近线的求解方法当函数曲线在无穷远处既不存在水平渐近线也不存在垂直渐近线时,我们称该曲线存在斜渐近线,也称为斜渐近线。
求解斜渐近线的方法是通过计算函数在无穷远处的斜率。
五、函数曲线与渐近线的夹角求解方法函数曲线与其渐近线之间的夹角可以通过以下步骤来求解:1. 首先,我们需要计算函数曲线在夹角所对应的点的导数值。
2. 然后,我们可以用该导数值与渐近线的斜率之间的差值来计算夹角。
六、实例分析为了更好地理解函数渐近线和与函数曲线的夹角的求解方法,我们来看一个具体的例子。
假设我们有一个函数 f(x) = (2x^2 + 3x + 1) / (x + 2)。
根据上述方法,我们可以计算出该函数的水平渐近线、垂直渐近线和斜渐近线,并求解与函数曲线的夹角。
七、结论函数渐近线及与函数曲线的夹角是数学分析中的重要概念,它们帮助我们进一步了解函数的特性和行为。
在本文中,我们介绍了函数渐近线的定义、求解方法以及与函数曲线的夹角的计算方法。
通过具体的例子分析,我们可以更好地理解这些概念的应用。
希望本文对读者有所帮助。
渐近线与曲率的性质与应用

渐近线通常用于描述 函数在无穷大处的行 为,有助于理解函数 的性质和行为。
在几何和工程领域, 渐近线有广泛的应用 ,例如在绘制地图、 建筑设计等领域。
渐近线的几何意义
渐近线是曲线在无穷远处的切 线
渐近线的斜率等于函数在该点 的导数
渐近线的存在性取决于函数的 单调性和极限
渐近线的位置与函数的极值有 关
渐近线与曲率的性质与 应用
汇报人:XX
目录
添加目录标题
01
渐线的性质
02
渐近线与曲率的关系
04
渐近线与曲率的实际 应用
05
曲率的性质
未来研究展望
03
06
添加章节标题
渐近线的性质
渐近线的定义
渐近线是曲线上的点 集,当这些点与给定 的直线之间的距离趋 向于0时,这些点构 成的线就是渐近线。
渐近线可以是水平、 垂直或斜的,取决 于曲线的形状和方 向。
渐近线与曲率的 实际应用
机械工程中的渐近线和曲率设计
汽车轮胎设计: 利用渐近线和曲 率优化轮胎的形 状和性能,提高 车辆的操控性和
稳定性。
飞机机翼设计: 利用渐近线和曲 率设计机翼,实 现空气动力性能 的提升,提高飞
行效率。
机械零件设计:在 机械零件设计中, 利用渐近线和曲率 可以优化零件的结 构和性能,提高机 械系统的可靠性和
曲率的设计需要考虑不同速度下车辆的行驶轨迹和稳定性,以及道路或桥梁的结构和 承载能力。
渐近线和曲率的设计需要综合考虑道路或桥梁的使用功能、交通流量、车辆类型、 地形条件等因素,并进行详细的分析和计算。
航空航天工程中的渐近线和曲率设计
飞机机翼设计:利用渐近线原理, 设计出符合飞行要求的机翼形状。
第8讲 正切函数图像及其性质(讲义)解析版

第8讲 正切函数图像及其性质知识梳理1、正切函数的图像:可选择的区间作出它的图像,通过单位圆和正切线,类比正、余弦函数图像的画法作出正切函数的图像根据正切函数的周期性,把上述图像向左、右扩展,得到正切函数tan ,y x x R =∈,且()2x k k Z ππ≠+∈的图像,称“正切曲线”.由正弦函数图像可知: (1)定义域:{|()}2x x k k Z ππ≠+∈,(2)值域:R 观察:当x 从小于,时,tan x →+∞当x 从大于,时,tan x →-∞.(3)周期性:T π=(4)奇偶性:tan()tan x x -=-,所以是奇函数⎪⎭⎫⎝⎛-2,2ππ()z k k ∈+2ππ2π+π−→−k x ()z k k ∈+ππ2ππk x +−→−2x yyx(5)单调性:在开区间(,),22k k k Zππππ-++∈内,函数单调递增.(6)中心对称点:,0,2kk Zπ⎛⎫∈⎪⎝⎭2、余切函数的图象:⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛-==2tan2tancotππxxxy即将xy tan=的图象,向左平移2π个单位,再以x轴为对称轴上下翻折,即得xy cot=的图象由余弦函数图像可知:(1)定义域:{|()}x x k k Zπ≠∈,(2)值域:R(3)周期性:Tπ=(4)奇偶性:tan()tanx x-=-,所以是奇函数(5)单调性:在开区间(,),k k k Zπππ+∈内,函数单调递增.(6)中心对称点:,0,2k k Z π⎛⎫∈⎪⎝⎭例题解析一、正切函数的图像例1.(2020·全国高一课时练习)设函数()tan 33x f x π⎛⎫=-⎪⎝⎭. (1)求函数f (x )的最小正周期、对称中心; (2)作出函数f (x )在一个周期内的简图.【答案】(1)最小正周期3π,对称中心是3,02k ππ⎛⎫+⎪⎝⎭()k Z ∈;(2)答案见解析. 【分析】(1)首先根据正切函数的周期公式即可得到函数()f x 的周期,再根据正切函数的对称中心即可得到函数()f x 的对称中心.(2)根据函数的解析式得到()f x 的图象与x 轴的交点坐标为(),0π,图象上的7,14π⎛⎫ ⎪⎝⎭、,14π⎛⎫- ⎪⎝⎭两点,再找到两侧相邻的渐近线方程,画出函数的图象即可. 【详解】(1)()tan 33x f x π⎛⎫=- ⎪⎝⎭,313T ππ==,令332x k ππ-=,k Z ∈,解得32x k ππ=+,k Z ∈, 故对称中心为3,02k ππ⎛⎫+⎪⎝⎭()k Z ∈. (2)令033x π-=,解得x π=,令334x ππ-=,解得74x π=,令334x ππ-=-,解得4x π=, 令332x ππ-=,解得52x π=,令332x ππ-=-,解得2x π=-,所以函数()tan 33x f x π⎛⎫=-⎪⎝⎭的图象与x 轴的一个交点坐标为(),0π, 图象上的点有7,14π⎛⎫⎪⎝⎭、,14π⎛⎫- ⎪⎝⎭两点, 在这个5,22ππ⎛⎫-⎪⎝⎭周期内左右两侧相邻的渐近线方程分别为2x π=-和52x π=, 从而得到函数()f x 在一个周期5,22ππ⎛⎫-⎪⎝⎭内的简图(如图).【点睛】本题主要考查正切函数的周期和对称中心,同时考查了正切函数的图象,关键点是找出图象上的点用描点法画图象,属于中档题.例2.(2020·全国高一课时练习)已知函数()sin cos xf x x=. (1)求函数()f x 的定义域;(2)用定义判断函数()f x 的奇偶性; (3)在[],ππ-上作出函数()f x 的图象.【答案】(1),2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭;(2)奇函数,见解析;(3)见解析 【分析】(1)根据cos 0x ≠,求解即可;(2)由(1)可知()f x 的定义域关于原点对称,判定()f x -和()f x 的关系,从而判定奇偶性;(3)将()f x 写为分段函数,画出图象即可【详解】(1)由cos 0x ≠,得2x k ππ≠+(k Z ∈),所以函数()f x 的定义域是,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭.(2)由(1)知函数()f x 的定义域关于原点对称,因为()()()()sin sin cos cos x xf x f x xx ---===--,所以()f x 是奇函数. (3)()tan ,22tan ,22x x f x x x x ππππππ⎧-<<⎪⎪=⎨⎪--≤<-<≤⎪⎩或,所以()f x 在[],ππ-上的图象如图所示,【点睛】本题考查函数定义域,考查奇偶性的判断,考查函数图象. 例3.作函数||y tan x =的图像. 【难度】★★ 【答案】如图 【解析】||y tan x =等价于 0,2()0,2tanx x x k y k Z tanx x x k ππππ⎧≥≠+⎪⎪=∈⎨⎪-<≠+⎪⎩,图像如图所示.例4.求函数()tan tan f x x x =+的定义域、周期、单调增区间,并画草图. 【难度】★★★【答案】定义域:{|,}2x x k k Z ππ≠+∈ ,周期:T π=,单调增区间:[,)2k k πππ+(1)tan 0x > (2)tan 0x = (3)tan 0x < (4)tan x >【难度】★ 【答案】(1)Z k k k ∈⎪⎭⎫⎝⎛+,2,πππ, (2){}z k k x x ∈=,π (3)Z k k k ∈⎪⎭⎫⎝⎛-,,2πππ, (4)Z k k k ∈⎪⎭⎫ ⎝⎛++,ππππ2,3例6.根据正切函数图像,写出使下列不等式成立的x 值的集合: (1)0tan 1≥+x (2)3tan -x 0≥ 【难度】★★ 【答案】(1) [,),42k k k Z ππππ-+∈(2)[,),32k k k Z ππππ++∈例7.比较下列两数的大小(1)2tan7π与10tan 7π (2)6tan 5π与13tan()5π- (3)81cot 与191cot 【难度】★ 【答案】(1)2tan7π<10tan 7π (2)6tan 5π>13tan()5π- (3)81cot <191cot 例8.函数sin y x =与tan y x =的图像在[2,2]ππ-上的交点有 ( ).A 3个 .B 5个 .C 7个 .D .D 9个【难度】★★【答案】B【巩固训练】1.作出函数|tan |y x =的图象. 【难度】★★ 【答案】如图2.利用图像,不等式tan 21x <≤的解集为____________. 【难度】★★ 【答案】(,],2628k k k Z ππππ-+∈3.比较⎪⎭⎫ ⎝⎛-413tan π与⎪⎭⎫⎝⎛-517tan π的大小 【难度】★【答案】tan413tan -=⎪⎭⎫⎝⎛-π 4π,52tan517tan ππ-=⎪⎭⎫⎝⎛-,⎪⎭⎫⎝⎛=<<2,0tan ,5240πππ在x y内单调递增. ⎝⎛->⎪⎭⎫ ⎝⎛-->-∴<∴ππππππ517tan 413tan ,52tan 4tan ,52tan4tan即 4.若()tan()4f x x π=+,试比较(1),(0),(1)f f f -,并按从小到大的顺序排列:_________. 【难度】★★【答案】(1)(1)(0)f f f <-<5.(2020·全国高一课时练习)设函数()tan 23π⎛⎫=-⎪⎝⎭x f x . (1)求函数f (x )的最小正周期,对称中心; (2)作出函数()f x 在一个周期内的简图.【答案】(1)2T π=,2,03ππ⎛⎫+ ⎪⎝⎭k ()k Z ∈;(2)图象见解析【分析】(1)首先根据正切函数的周期公式即可得到函数()tan 23π⎛⎫=-⎪⎝⎭x f x 的周期,再根据正切函数的对称中心即可得到函数()tan 23π⎛⎫=-⎪⎝⎭x f x 的对称中心. (2)首先根据函数的解析式得到数()tan 23π⎛⎫=-⎪⎝⎭x f x 的图象与x 轴的一个交点坐标为2,03π⎛⎫⎪⎝⎭,在这个交点左右两侧相邻的渐近线方程分别为3x π=-和53x π=,再画出函数的图象即可.【详解】(1)()tan 23π⎛⎫=- ⎪⎝⎭x f x ,212T ππ==.令232ππ-=x k ,k Z ∈,解得23ππ=+x k ,k Z ∈, 故对称中心为2,03ππ⎛⎫+ ⎪⎝⎭k ()k Z ∈.(2)令023x π-=,解得23x π=,令234x ππ-=,解得76x π=, 令234x ππ-=-,解得6x π=,令232x ππ-=,解得53x π=, 令232x ππ-=-,解得3x π=-, 所以函数()tan 23π⎛⎫=-⎪⎝⎭x f x 的图象与x 轴的一个交点坐标为2,03π⎛⎫⎪⎝⎭, 在这个交点左右两侧相邻的渐近线方程分别为3x π=-和53x π=. 故函数在一个周期内的函数图象为:【点睛】本题主要考查正切函数的周期和对称中心,同时考查了正切函数的图象,属于中档题.二、正切函数的定义域及值域1、正切函数的定义域例1.求下列函数的定义域(1)tan 2y x = (2)y = (3)cos tan y x x =⋅ (4)11tan y x=+ 【难度】★ 【答案】(1)⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,24ππ (2)Z k k k ∈⎪⎭⎫ ⎝⎛++-,3,3ππππ (3),2x x R x k k Z ππ⎧⎫∈≠+∈⎨⎬⎩⎭且 (4),,42x x k x k k Z ππππ⎧⎫≠-≠+∈⎨⎬⎩⎭且例2.(2019·宝山区·上海交大附中高一期末)下列四个函数中,与函数()tan f x x =完全相同的是( )A .22tan21tan 2xy x =- B .1cot y x = C .sin 21cos 2x y x =+ D .1cos 2sin 2x y x -=【答案】C【分析】先判断函数的定义域是否相同,再通过化简判断对应关系是否相同,从而判断出与()f x 相同的函数.【详解】()f x 的定义域为|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭, A. 22tan 21tan 2x y x =-,因为tan 12,22x x k k Z ππ⎧≠±⎪⎪⎨⎪≠+∈⎪⎩,所以,24,22x k k Z x k k Z ππππ⎧≠±+∈⎪⎪⎨⎪≠+∈⎪⎩, 定义域为{|22x x k ππ≠±或2,}x k k Z ππ≠+∈,与()tan f x x =定义域不相同; B. 1cot y x =,因为cos 0sin 0x x ≠⎧⎨≠⎩,所以,2,x k k Z x k k Zπππ⎧≠+∈⎪⎨⎪≠∈⎩, 所以定义域为,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭,与()tan f x x =定义域不相同; C. sin 21cos 2x y x =+,因为1cos20x +≠,所以定义域为|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭, 又因为2sin 22sin cos tan 1cos 22cos x x x y x x x ===+,所以与()tan f x x =相同; D. 1cos 2sin 2x y x-=,因为sin 20x ≠,所以2,x k k Z π≠∈,定义域为|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭, 与()tan f x x =定义域不相同.故选:C.【点睛】本题考查与三角函数有关的相同函数的判断,难度一般.判断相同函数时,首先判断定义域是否相同,定义域相同时再去判断对应关系是否相同(函数化简),结合定义域与对应关系即可判断出是否是相同函数.例3.(2019·上海市大同中学高一期中)函数arcsin tan 2y x x =+的定义域是________【答案】[1,)(,)(,1]4444ππππ--- 【分析】解不等式11,2,2x x k k Z ππ-≤≤⎧⎪⎨≠+∈⎪⎩即得解. 【详解】由题得11,2,2x x k k Z ππ-≤≤⎧⎪⎨≠+∈⎪⎩所以x ∈[1,)(,)(,1]4444ππππ---. 故函数的定义域为[1,)(,)(,1]4444ππππ--- 故答案为[1,)(,)(,1]4444ππππ---【点睛】本题主要考查函数定义域的求法,考查反三角函数和正切函数的定义域,意在考查学生对这些知识的理解掌握水平,属于基础题.例4.(2017·上海杨浦区·复旦附中高一期中)已知函数()()lg tan 1f x x =-()f x 的定义域是____.【答案】3,,4242ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ 【分析】由意义得出2tan 1090x x ->⎧⎨-≥⎩,解出该不等式组即可得出函数()y f x =的定义域. 【详解】函数()()lg tan 1f x x =-+2tan 1090x x ->⎧∴⎨-≥⎩, ()4233k x k k Z x ππππ⎧+<<+∈⎪∴⎨⎪-≤≤⎩,3,,4242x ππππ⎛⎫⎛⎫∴∈-- ⎪ ⎪⎝⎭⎝⎭,因此,函数()y f x =的定义域为3,,4242ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭. 故答案为:3,,4242ππππ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭. 【点睛】本题考查函数定义域的求解, 同时也涉及了正切不等式的求解,考查运算求解能力,属于中等题.例5.求函数y =lg(tan x -+3cos 2+x 的定义域. 【难度】★★【答案】(,),32k k k Z ππππ++∈【解析】tan 2cos 0,2x x x k k Z ππ⎧>⎪⎪≥⎨⎪⎪≠+∈⎩ 由此不等式组作图: ∴(,),32k k k Z ππππ++∈ 【巩固训练】1.函数tan 4y x π⎛⎫=+ ⎪⎝⎭的定义域为__________ 【难度】★【答案】,4x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭2.与函数)42tan(π+=x y 的图象不相交的一条直线是 ( ).A 2π=x .B 2π-=x .C 4π=x .D 8π=x【难度】★【答案】D3.求下列函数的定义域(1)1tan y x = ;(2)sin tan()log (2cos 1)4x y x x π=+⋅- . 【难度】★★★【答案】见解析解:等价转化为求一个不等式组的解 (1)sin 0tan 0,()2x x x k k Z ππ⎧⎪≥⎪≠⎨⎪⎪≠+∈⎩(2,2),,()2x k k x k k Z πππππ⇒∈+≠+∈ (2) 2cos 10sin 0,()42x x x k k Z πππ⎧⎪->⎪>⎨⎪⎪+≠+∈⎩⇒(2,2)33(2,2)(2,2)224x k k x k k k k x k πππππππππππππ⎧∈-+⎪⎪⎪∈+++⎨⎪⎪≠=⎪⎩(2,2)(2,2),()443x k k k k k Z πππππππ⇒∈+++∈. 注:转化过程中要注意必须是等价转换,才能保证结果既不扩大也不缩小.在求条件组的解时,常会求角集得交集,可以画数轴,用单位圆或函数的图像,应熟练掌握这种技能.2、正切函数的值域与最值例1.(2016·上海浦东新区·华师大二附中高一期中)设函数()sin 2sin 1cos 2cos x x f x x x-=+-,关于()f x 的性质,下列说法正确的是_________. ①定义域是,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭;②值域是R ;③最小正周期是π; ④()f x 是奇函数;⑤()f x 在定义域上单调递增.【答案】③④【分析】先求定义域,再化简函数解析式,根据正切函数性质求值域、求周期、判断单调性与奇偶性.【详解】()sin 2sin 1cos 2cos 01cos 2cos x x f x x x x x-=∴+-≠+- 22cos cos 0cos 0x x x ∴-≠∴≠且1cos 2x ≠, 定义域是,,23x x k x k k Z ππππ⎧⎫≠+≠±∈⎨⎬⎩⎭; ()sin 2sin sin (2cos 1)tan 1cos 2cos cos (2cos 1)x x x x f x x x x x x --===+--所以()f x ≠()f x 最小正周期是π;()f x 是奇函数;()f x 在定义域上不具有单调性故答案为:③④【点睛】本题考查二倍角余弦公式以及函数综合性质,考查综合分析求解能力,属中档题.例2.(2020·上海高一课时练习)求下列函数的值域:(1)1tan ,,01tan 2+⎛⎫=∈- ⎪-⎝⎭x y x x π; (2)2tan 3tan 1,,34⎡⎤=+-∈-⎢⎥⎣⎦y x x x ππ. 【答案】(1)(1,1)-;(2)13,34⎡⎤-⎢⎥⎣⎦ 【分析】(1)由定义域可得()tan ,0x ∈-∞,令tan t x =则(),0t ∈-∞,所以1211t 1t y t +-==-+--,再根据幂函数的性质计算可得; (2)利用换元法将函数转化为二次函数,根据二次函数的性质计算可得;【详解】解:(1)因为1tan ,,01tan 2+⎛⎫=∈- ⎪-⎝⎭x y x x π,所以()tan ,0x ∈-∞ 令tan t x =则(),0t ∈-∞ 所以1211t 1t y t +-==-+-- 因为(),0t ∈-∞,所以()1,1t -∈-∞-,()11,01t ∈--,()2210,t -∈-, ()211,11t --+∈--,即()1,1y ∈- (2)因为2tan 3tan 1,,34⎡⎤=+-∈-⎢⎥⎣⎦y x x x ππ所以tan x ⎡⎤∈⎣⎦令tan m x =,m ⎡⎤∈⎣⎦所以()223133124y f m m m m ⎛⎫==+-=+- ⎪⎝⎭所以()f m 在3,12⎡⎤-⎢⎥⎣⎦上单调递增,在32⎡⎫-⎪⎢⎣⎭上单调递减, 31324f ⎛⎫-=- ⎪⎝⎭,()13f =,(2f =-所以()13,34f m ⎡⎤∈-⎢⎥⎣⎦即函数的值域为13,34⎡⎤-⎢⎥⎣⎦【点睛】本题考查正切函数的性质的应用,换元法求函数的值域,属于中档题. 例3.(2020·上海高一课时练习)求下列函数的值域:(1)tan ,,626⎛⎫⎡⎤=+∈- ⎪⎢⎥⎝⎭⎣⎦y x x πππ; (2)2tan 1,,1tan 46+⎛⎫=∈- ⎪-⎝⎭x y x x ππ; (3)2sec 2tan 1,,33⎡⎤=++∈-⎢⎥⎣⎦y ππθθθ.【答案】(1)[;(2)12⎛- ⎝⎭;(3)[1,5+ 【分析】(1)首先令6t x π=+,得到tan y t =,再根据tan y t =的单调性即可得到函数的值域.(2)首先令tan t x =,得到213211t y t t+==-+--,再根据函数的单调性即可得到值域.(3)首先将函数化简为2tan 2tan 2y θθ=++,令tan t θ=,得到222y t t =++,再利用二次函数的性质即可求出函数的值域. 【详解】(1)令6t x π=+,因为,26x ππ⎡∈⎤-⎢⎥⎣⎦,所以,33t ππ⎡⎤∈-⎢⎥⎣⎦, 又tan y t =在,33t ππ⎡⎤∈-⎢⎥⎣⎦上为增函数,所以所求函数值域为[. (2)令tan t x =,因为,46⎛⎫∈- ⎪⎝⎭x ππ,所以⎛∈- ⎝⎭t .212(1)332,1,1113⎛+-+===-+∈- ---⎝⎭t t y t t t t . 因为1y t =-为减函数,所以31y t =-在⎛∈- ⎝⎭t 为增函数, 即:321=-+-y t在⎛∈- ⎝⎭t 上为增函数, 所以min 31222y =-+=-,max 522y +=-=.所以函数的值域为12⎛- ⎝⎭. (3)222221sin cos 2tan 1=2tan 1tan 2tan 2cos cos y θθθθθθθθ+=++++=++. 令tan ,,33⎡⎤=∈-⎢⎥⎣⎦t ππθθ,所以[∈t .2222(1)1,[=++=++∈y t t t t .当1t =-时,min 1y =,当t =时,max 5y =+所以函数的值域为[1,5+.【点睛】本题主要考查正切函数的值域问题,利用换元法求值域为解决本题的关键,属于中档题.例4.函数2tan ,0,124y x x ππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦的值域为 【难度】★ 【答案】[]32,324- 例5.若⎥⎦⎤⎢⎣⎡-∈4,3ππx ,求函数1tan 2cos 12++=x x y 的最值及相应的x 值;. 【难度】★★ 【答案】4x π=-时,min 1y =; 4x π=时,max 5y =例6.已知2tan tan y x a x =-,当1[0,],[0,]34x a π∈∈时,函数max y =,求实数a 的值. 【难度】★ 【答案】323-=a 例7.求函数252tan 4tan 3y x x =-+的值域. 【难度】★★【答案】(0,5] 【巩固训练】1.求函数sin tan ,[,]44y x x x ππ=+∈-的值域【难度】★★【答案】[1]-+2.求函数2)1(tan 12-+=x y 的最大值,并求当函数取得最大值时,自变量x 的集合. 【难度】★★【答案】2max =y ,此时⎭⎬⎫⎩⎨⎧∈+==Z k k x x x ,4ππ3.已知2tan 2tan 3y x x =-+,求它的最小值【难度】★★【答案】当tan 1x =时,min 2y =4.函数2tan 4tan 1y x x =+-的值域为____________ 【难度】★ 【答案】[)5,-+∞【解析】令tan t x =则转化为t 的二次函数求最值。
第8讲 函数图像的渐近线及其应用(教师版)

§8 函数图像的渐近线及其应用秒杀知识点①②知识点1:(渐近线的定义与类型)1.若曲线C 上的动点P 沿着曲线无限地远离原点时,点P 与某一固定直线l 的距离趋于零,则称直线l 为曲线C 的渐近线.2.渐近线分类:共分三类:水平渐近线(0α=),垂直渐近线π2α⎛⎫= ⎪⎝⎭和斜渐近线(0πα<<),其中α为渐近线的倾斜角.知识点2:(渐近线的求法)设曲线()y f x =有斜渐近线y kx b =+.如图所示,曲线上动点P 到渐近线的距离()()cos PN PM f x kx b α==-+.① 根据渐近线定义,当x →+∞(对x →-∞的情形也有相应结果)时,0PN →,从而应有()()lim 0x f x kx b →+∞-+=⎡⎤⎣⎦,②或()lim x f x kx b →+∞-⎡⎤⎦=⎣,③ 又由()()()1lim lim 00x x f x k f x kx b x x→+∞→+∞⎛⎫-=-=⋅=⎪⎝⎭. 得()limx f x k x→+∞=.④于是,若曲线()y f x =有斜渐近线y kx b =+,则k ,b 可由③,④确定,反之,若由④和③式求得k ,b ,再由②和①式得0PN →,从而直线y kx b =+为曲线()y f x =的渐近线.即斜渐近线问题就是③和④的极限问题.若曲线()y f x =存在水平渐近线y b =,则有()lim x f x b →+∞=或()lim x f x b →-∞=,反之,则y b =是曲线()y f x =的水平渐近线.若曲线()y f x =存在垂直渐近线0x x =,则有()0lim x x f x →=∞或()0lim x x f x +→=∞,()0lim x x f x -→=∞,反之,则说明0x x =是曲线()y f x =的垂直渐近线.知识点3:(正确认识渐近线——关于渐近线的几点注记)第一,并不是所有无限伸展或远离原点的曲线都有渐近线,如2y x =,sin y x =等都没有渐近线. 第二,在定义“无限地远离原点”中的原点,也未必是原点,可以是任意一个给定的点,两者是等价的,只不过原点比较有名且明确而已.如1x =是()211y x =-的垂直渐近线,“无限地远离原点”和无限地远离点()1,0,甚至点(),a b 没有本质区别.第三,定义中,当曲线上的动点无限地远离原点时,只需要以某种方式远离即可,不需要以任意方式都远离.如0y =是2x y =的水平渐近线,动点P 无限地远离原点,即这只是当x →-∞时,2x y =无限接近于x 轴,而当x →+∞时,2x y =无限远离x 轴.第四,若曲线存在渐近线,则当x 充分大(或充分小),或无限趋于0x (0x x =是其垂直渐近线)时,曲线基本就像相应渐近线那样近似于一条直线,如,双曲线存在渐近线,而抛物线则没有,从渐近线的角度很容易明白两者的区别.第五,曲线与其渐近线是可以相交的,甚至曲线在“渐近”的过程中与其渐近线可无限次地穿过来穿过去. 高中教材唯一一次挑明渐近线身份是学习双曲线时,给出指示性定义后教材补充一句“也就是说,双曲线与它的渐近线无限接近,但永不相交”.因此可能会给学生造成一般的渐近线都不能与曲线相交的错误认识.如sin x y x =,因为sin lim 0x x x →∞=,所以0y =是该偶函数的水平渐近线,但sin x y x =在区间()0,+∞内有无数个零点,如图所示.第六,曲线与其渐近线可以是相切的,而且可以有无数个切点.如sin 1x y x +=,因为sin 1lim 0x x x →∞+=,0sin 1lim x x x→+=∞,所以0y =,0x =分别是该函数的水平渐近线和垂直渐近线.但该函数与其水平渐近线0y =有无数个切点3π2π,02k ⎛⎫+ ⎪⎝⎭,()k +∈N ,如图所示.第七,根据以上讨论知,曲线并不都是一直“单调”接近渐近线的.知识点4:(求渐近线举例)【示例】求曲线()3223x f x x x =+-的渐近线. 【解析】由④()33223f x x xx x x=+-,所以332lim 123x x x x x →∞=+-,即1k =. 由③及1k =得:()()32lim lim 223x x x f x kx x x x →∞→∞⎛⎫-=-=- ⎪+-⎝⎭,即2b =-. 从而曲线的渐近线方程为2y x =-.又()3223x f x x x =+-,得()3lim x f x →-=∞,()1lim x f x →=∞.所以垂直渐近线为3x =-和1x =.(如上图所示)秒杀思路分析一般用渐近线分析函数性质,常见的有()b f x ax x =+和()()f x yg x =(其中()f x ,()g x 都是关于x 的非零多项式)两种类型.(1)关于型如()b f x ax x =+的分析:当0a =,0b ≠时,()b f x x=为反比例函数;当0a ≠,0b =时,()f x ax =为正比例函数(一次函数); 当0ab ≠时,0lim x b ax x →⎛⎫+=∞ ⎪⎝⎭,则0x =是其一条垂直渐近线. 又lim x b ax x a x →∞⎛⎫+ ⎪= ⎪ ⎪⎝⎭,lim 0x b ax ax x →∞⎛⎫+-= ⎪⎝⎭,则y ax =是其一条斜渐近线,即()b f x ax x =+的图像是夹在两条渐近线0x =和y ax =之间的双曲线,具体情况如下图所示.(2)对于有理分式函数()()f x yg x =的渐近线有如下一般结论:第一,若0x 是方程()0g x =的实数解,且()00f x ≠,则有理分式函数图像存在垂直渐近线0x x =; 第二,若多项式()f x 和()g x 的次数相等,且它们的最高次项系数分别为a ,b ,则该函数图像存在水平渐近线a y b=;第三,若多项式()f x 的次数小于()g x 的次数,则0y =为该函数图像的水平渐近线;第四,若多项式()f x 的次数比()g x 的次数大1,则该函数图像存在斜渐近线,可用公式④和③求解. 【示例】讨论下列三个函数图像的渐近线.(1)()2221x x f x x x +=-+; (2)()221x g x x x =+-; (3)()3221x x h x x x +=+-. 【解析】(1)函数()f x 的定义域为R ,图像如图(1)所示,存在水平渐近线12y =.(2)函数()g x 的定义域为{}112x x x ≠-≠且,图像如图(2)所示,存在水平渐近线0y =和垂直渐近线1x =-,12x =.(3)函数()h x 的定义域为{}112x x x ≠-≠且,图像如图(3)所示,存在垂直渐近线1x =-,12x =和斜渐近线1124y x =-.方法对比【例1】(2015年安徽卷理9)函数()()2ax b f x x c +=+的图像如图所示,则下列结论成立的是( )A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <【例2】(2002年全国卷)函数111y x =--的图像是(如图所示)( )A .B .C .D .【例3】(2004年湖北卷文)已知52x ≥,则()24524x x f x x-+=-有( )A .最大值5B .最小值5C .最大值1D .最小值1秒杀训练【试题1】曲线()1ln 1e x y x =++渐近线的条数为( )A .0B .1C .2D .3【解析】()001lim lim ln 1e x x x y x →→⎡⎤=++=∞⎢⎥⎣⎦,则0x =是垂直渐近线;()1lim lim ln 1e 0x x x y x →-∞→-∞⎡⎤=++=⎢⎥⎣⎦,则0y =是曲线的水平渐近线; ()2ln 1e 1lim lim 1x x x y x x x →+∞→+∞⎡⎤+⎢⎥+=⎢⎥⎣⎦=,则y x =是其斜渐近线. 综上,共有3条渐近线,故选D . 【试题2】已知函数()321x y x =-,求函数图像的渐近线. 【解析】()321lim 1x x x →=+∞-,1x =是垂直渐近线. ()22lim lim 11x x y x x x →∞→∞==-,且()()32lim lim 21x x x y x x x →∞→∞⎡⎤-=-=⎢⎥-⎢⎥⎣⎦. 从而2y x =+是图像的斜渐近线.【试题3】如图所示的是一个函数的图像,在下面的四个函数中,其图像是所给图像的是( )A .ln y x x =+B .ln y x x =-C .ln y x x =-+D .ln y x x =--【解析】易知选择B .真题回放【试题1】(2017年全国卷Ⅲ文7)函数2sin 1x y x x=++的部分图像大致为(如图所示)( )A .B .C .D .【解析】31sin limlim 11x x y x x x x →+∞→+∞⎛⎫=++= ⎪⎝⎭.()2sin lim lim 11x x x y x x →+∞→+∞⎛⎫-=+= ⎪⎝⎭. 所以1y x =+是其斜渐近线,排除C ,B .又20sin lim 1x x x x +→⎛⎫++=+∞ ⎪⎝⎭,故选择D . 【试题2】(2010福建卷理10)对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(k ,b 为常数),对任给的正数m ,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有()()()()00f x h x mh x g x m⎧<-<⎪⎨<-<⎪⎩,则称直线:l y kx b =+为曲线()y f x =和()y g x =的“分渐近线”.给出定义域均为{}1D x x =>的四组函数如下:①()2f x x =,()g x = ②()102x f x -=+,()23x g x x-=;③()21x f x x +=,()ln 1ln x x g x x +=; ④()221x f x x =+,()()21e x g x x -=--. 其中,曲线()y f x =和()y g x =存在“分渐近线”的是( )A .①④B .②③C .②④D .③④【解析】①两个函数图像都没有渐近线;②当x →+∞时,()f x 从直线2y =上方趋近2,而()g x 从直线2y =下方趋近2,故2y =是两函数图像的“分渐近线”;③()f x 是双曲线型函数,存在渐近线0x =,y x =,而()g x 存在渐近线1x =,y x =.但是,当x →+∞时,()f x x >,()g x x >.即()f x 和()g x 都是从直线y x =上方趋于渐近线y x =,故不满足题意. ④当x →+∞时,()()()221211f x x x x =-+→-+,()()()22121e x g x x x =--→-.并且()()21f x x >-,()()21g x x <-.所以()21y x =-是()f x 和()g x 的斜渐近线且分别从两侧趋于()21y x =-.故选C .。
数学解函数渐近线问题

数学解函数渐近线问题一、问题描述与分析在解决数学问题中,我们经常会遇到函数渐近线的问题。
函数的渐近线是指当自变量趋于无穷大时,函数曲线与该直线无限接近,但并不会与其相交的直线。
在解题过程中,我们需要确定函数的渐近线的类型和方程,以便更好地理解和分析函数的性质。
二、概念和原理1. 水平渐近线:当函数f(x)的极限lim(x→±∞) f(x)存在时,若极限lim(x→±∞) f(x) = a,则直线y=a为函数f(x)的水平渐近线。
2. 垂直渐近线:当函数f(x)的极限lim(x→c) f(x)存在或者lim(x→c^+) f(x) = ±∞(或lim(x→c^-) f(x) = ±∞)时,若x=c为函数f(x)的垂直渐近线。
3. 斜渐近线:当函数f(x)的极限lim(x→±∞) f(x)/x存在时,若极限lim(x→±∞) f(x)/x = k,则直线y=kx为函数f(x)的斜渐近线。
三、问题求解我们以一个具体的函数为例进行讲解。
例题:求函数f(x)=3x^3+2x^2-4x-1的渐近线。
1. 水平渐近线的求解:首先我们需要求出函数f(x)当x趋于无穷大时的极限。
由于函数中最高次项为3x^3,所以当x趋于无穷大时,3x^3的影响会主导。
根据极限的性质,lim(x→±∞) f(x) = lim(x→±∞) (3x^3+2x^2-4x-1) = ±∞。
因此,函数f(x)=3x^3+2x^2-4x-1不存在水平渐近线。
2. 垂直渐近线的求解:接下来我们需要寻找函数f(x)的垂直渐近线。
我们可以通过求函数在某些点的极限来确定是否存在垂直渐近线。
a) 当x趋于正无穷大时,函数f(x)的极限为lim(x→∞) f(x) =lim(x→∞) (3x^3+2x^2-4x-1) = ∞。
因此,x=c为函数f(x)的垂直渐近线,其中c为正无穷大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8 函数图像的渐近线及其应用秒杀知识点①②知识点1:(渐近线的定义与类型)1.若曲线C 上的动点P 沿着曲线无限地远离原点时,点P 与某一固定直线l 的距离趋于零,则称直线l 为曲线C 的渐近线.2.渐近线分类:共分三类:水平渐近线(0α=),垂直渐近线π2α⎛⎫= ⎪⎝⎭和斜渐近线(0πα<<),其中α为渐近线的倾斜角.知识点2:(渐近线的求法)设曲线()y f x =有斜渐近线y kx b =+.如图所示,曲线上动点P 到渐近线的距离()()cos PN PM f x kx b α==-+.①根据渐近线定义,当x →+∞(对x →-∞的情形也有相应结果)时,0PN →,从而应有()()lim 0x f x kx b →+∞-+=⎡⎤⎣⎦,②或()lim x f x kx b →+∞-⎡⎤⎦=⎣,③ 又由()()()1lim lim 00x x f x k f x kx b x x→+∞→+∞⎛⎫-=-=⋅=⎪⎝⎭. 得()limx f x k x→+∞=.④于是,若曲线()y f x =有斜渐近线y kx b =+,则k ,b 可由③,④确定,反之,若由④和③式求得k ,b ,再由②和①式得0PN →,从而直线y kx b =+为曲线()y f x =的渐近线.即斜渐近线问题就是③和④的极限问题.若曲线()y f x =存在水平渐近线y b =,则有()lim x f x b →+∞=或()lim x f x b →-∞=,反之,则y b =是曲线()y f x =的水平渐近线.若曲线()y f x =存在垂直渐近线0x x =,则有()0lim x x f x →=∞或()0lim x x f x +→=∞,()0lim x x f x -→=∞,反之,则说明0x x =是曲线()y f x =的垂直渐近线.知识点3:(正确认识渐近线——关于渐近线的几点注记)第一,并不是所有无限伸展或远离原点的曲线都有渐近线,如2y x =,sin y x =等都没有渐近线. 第二,在定义“无限地远离原点”中的原点,也未必是原点,可以是任意一个给定的点,两者是等价的,只不过原点比较有名且明确而已.如1x =是()211y x =-的垂直渐近线,“无限地远离原点”和无限地远离点()1,0,甚至点(),a b 没有本质区别.第三,定义中,当曲线上的动点无限地远离原点时,只需要以某种方式远离即可,不需要以任意方式都远离.如0y =是2x y =的水平渐近线,动点P 无限地远离原点,即这只是当x →-∞时,2x y =无限接近于x 轴,而当x →+∞时,2x y =无限远离x 轴.第四,若曲线存在渐近线,则当x 充分大(或充分小),或无限趋于0x (0x x =是其垂直渐近线)时,曲线基本就像相应渐近线那样近似于一条直线,如,双曲线存在渐近线,而抛物线则没有,从渐近线的角度很容易明白两者的区别.第五,曲线与其渐近线是可以相交的,甚至曲线在“渐近”的过程中与其渐近线可无限次地穿过来穿过去. 高中教材唯一一次挑明渐近线身份是学习双曲线时,给出指示性定义后教材补充一句“也就是说,双曲线与它的渐近线无限接近,但永不相交”.因此可能会给学生造成一般的渐近线都不能与曲线相交的错误认识.如sin x y x =,因为sin lim 0x x x →∞=,所以0y =是该偶函数的水平渐近线,但sin x y x =在区间()0,+∞内有无数个零点,如图所示.第六,曲线与其渐近线可以是相切的,而且可以有无数个切点.如sin 1x y x +=,因为sin 1lim 0x x x →∞+=,0sin 1lim x x x→+=∞,所以0y =,0x =分别是该函数的水平渐近线和垂直渐近线.但该函数与其水平渐近线0y =有无数个切点3π2π,02k ⎛⎫+ ⎪⎝⎭,()k +∈N ,如图所示.第七,根据以上讨论知,曲线并不都是一直“单调”接近渐近线的.知识点4:(求渐近线举例)【示例】求曲线()3223x f x x x =+-的渐近线. 【解析】由④()33223f x x xx x x=+-,所以332lim 123x x x x x →∞=+-,即1k =.由③及1k =得:()()32lim lim 223x x x f x kx x x x →∞→∞⎛⎫-=-=- ⎪+-⎝⎭,即2b =-. 从而曲线的渐近线方程为2y x =-.又()3223x f x x x =+-,得()3lim x f x →-=∞,()1lim x f x →=∞.所以垂直渐近线为3x =-和1x =.(如上图所示)秒杀思路分析一般用渐近线分析函数性质,常见的有()b f x ax x =+和()()f x yg x =(其中()f x ,()g x 都是关于x 的非零多项式)两种类型.(1)关于型如()b f x ax x =+的分析:当0a =,0b ≠时,()b f x x=为反比例函数;当0a ≠,0b =时,()f x ax =为正比例函数(一次函数); 当0ab ≠时,0lim x b ax x →⎛⎫+=∞ ⎪⎝⎭,则0x =是其一条垂直渐近线. 又lim x b ax x a x →∞⎛⎫+ ⎪= ⎪ ⎪⎝⎭,lim 0x b ax ax x →∞⎛⎫+-= ⎪⎝⎭,则y ax =是其一条斜渐近线,即()b f x ax x =+的图像是夹在两条渐近线0x =和y ax =之间的双曲线,具体情况如下图所示.(2)对于有理分式函数()()f x yg x =的渐近线有如下一般结论:第一,若0x 是方程()0g x =的实数解,且()00f x ≠,则有理分式函数图像存在垂直渐近线0x x =; 第二,若多项式()f x 和()g x 的次数相等,且它们的最高次项系数分别为a ,b ,则该函数图像存在水平渐近线a y b=;第三,若多项式()f x 的次数小于()g x 的次数,则0y =为该函数图像的水平渐近线;第四,若多项式()f x 的次数比()g x 的次数大1,则该函数图像存在斜渐近线,可用公式④和③求解. 【示例】讨论下列三个函数图像的渐近线.(1)()2221x x f x x x +=-+; (2)()221xg x x x =+-;(3)()3221x x h x x x +=+-. 【解析】(1)函数()f x 的定义域为R ,图像如图(1)所示,存在水平渐近线12y =.(2)函数()g x 的定义域为{}112x x x ≠-≠且,图像如图(2)所示,存在水平渐近线0y =和垂直渐近线1x =-,12x =.(3)函数()h x 的定义域为{}112x x x ≠-≠且,图像如图(3)所示,存在垂直渐近线1x =-,12x =和斜渐近线1124y x =-.方法对比【例1】(2015年安徽卷理9)函数()()2ax b f x x c +=+的图像如图所示,则下列结论成立的是( )A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <【例2】(2002年全国卷)函数111y x =--的图像是(如图所示)( )A .B .C .D .【例3】(2004年湖北卷文)已知52x ≥,则()24524x x f x x -+=-有( )A .最大值54B .最小值54C .最大值1D .最小值1秒杀训练【试题1】曲线()1ln 1e x y x =++渐近线的条数为( )A .0B .1C .2D .3【解析】()001lim lim ln 1e x x x y x →→⎡⎤=++=∞⎢⎥⎣⎦,则0x =是垂直渐近线;()1lim lim ln 1e 0x x x y x →-∞→-∞⎡⎤=++=⎢⎥⎣⎦,则0y =是曲线的水平渐近线; ()2ln 1e 1lim lim 1x x x y x x x →+∞→+∞⎡⎤+⎢⎥+=⎢⎥⎣⎦=,则y x =是其斜渐近线. 综上,共有3条渐近线,故选D .【试题2】已知函数()321x y x =-,求函数图像的渐近线. 【解析】()321lim1x x x →=+∞-,1x =是垂直渐近线. ()22limlim 11x x yx x x →∞→∞==-,且()()32lim lim 21x x x y x x x →∞→∞⎡⎤-=-=⎢⎥-⎢⎥⎣⎦.从而2y x =+是图像的斜渐近线.【试题3】如图所示的是一个函数的图像,在下面的四个函数中,其图像是所给图像的是( )A .ln y x x =+B .ln y x x =-C .ln y x x =-+D .ln y x x =--【解析】易知选择B .真题回放【试题1】(2017年全国卷Ⅲ文7)函数2sin 1x y x x=++的部分图像大致为(如图所示)( )A .B .C .D .【解析】31sin limlim 11x x y x x x x →+∞→+∞⎛⎫=++= ⎪⎝⎭.()2sin lim lim 11x x x y x x →+∞→+∞⎛⎫-=+= ⎪⎝⎭. 所以1y x =+是其斜渐近线,排除C ,B .又20sin lim 1x x x x +→⎛⎫++=+∞ ⎪⎝⎭,故选择D . 【试题2】(2010福建卷理10)对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(k ,b 为常数),对任给的正数m ,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有()()()()00f x h x mh x g x m ⎧<-<⎪⎨<-<⎪⎩,则称直线:l y kx b =+为曲线()y f x =和()y g x =的“分渐近线”.给出定义域均为{}1D x x =>的四组函数如下:①()2f x x =,()g x =; ②()102x f x -=+,()23x g x x-=;③()21x f x x +=,()ln 1ln x x g x x +=;④()221x f x x =+,()()21e x g x x -=--.其中,曲线()y f x =和()y g x =存在“分渐近线”的是( )A .①④B .②③C .②④D .③④【解析】①两个函数图像都没有渐近线;②当x →+∞时,()f x 从直线2y =上方趋近2,而()g x 从直线2y =下方趋近2,故2y =是两函数图像的“分渐近线”;③()f x 是双曲线型函数,存在渐近线0x =,y x =,而()g x 存在渐近线1x =,y x =.但是,当x →+∞时,()f x x >,()g x x >.即()f x 和()g x 都是从直线y x =上方趋于渐近线y x =,故不满足题意. ④当x →+∞时,()()()221211f x x x x =-+→-+,()()()22121ex g x x x =--→-.并且()()21f x x >-,()()21g x x <-.所以()21y x =-是()f x 和()g x 的斜渐近线且分别从两侧趋于()21y x =-.故选C .。