现代数值计算方法第七章

合集下载

第七章数值积分

第七章数值积分
x0 x2
x2
x4
h h ( f 0 4 f1 f 2 ) ( f 2 4 f3 f 4 ) 3 3 h ( f 0 4 f1 2 f 2 4 f3 f 4 ) 3
2019/4/8 华南师范大学数学科学学院 谢骊玲
例7.3
1
可见,依然是布尔公式的结果最接近真实值

x3
x0
3h 3h5 (4) f ( x)dx ( f 0 3 f1 3 f 2 f3 ) f ( ) 8 80
布尔公式的精度为n=5,如果f∈C6[a,b],则
2019/4/8

x4
x0
2h 8h7 (6) f ( x)dx (7 f 0华南师范大学数学科学学院 32 f1 12 f 2 32 f3 谢骊玲 7 f4 ) f ( ) 45 945

1
0
f ( x)dx
2(1/ 4) 1 1 3 (7 f (0) 32 f ( ) 12 f ( ) 32 f ( ) 7 f (1)) 45 4 2 4 1 (7(1.00000) 32(1.65534) 12(1.55152) 32(1.06666) 7(0.72159)) 1.30859 90
x1

x0
h h3 (2) f ( x)dx ( f 0 f1 ) f ( ) 2 12
辛普森公式的精度为n=3,如果f∈C4[a,b],则

x2
x0
h h5 (4) f ( x)dx ( f 0 4 f1 f 2 ) f ( ) 3 90
辛普森3/8公式的精度为n=3,如果f∈C4[a,b],则
且具有性质 a f ( x)dx Q[ f ] E[ f ] 的公式为数值积分 或面积公式。项 E[ f ] 称为积分的截断误差,值

最新(完美版)第七章习题答案_数值分析

最新(完美版)第七章习题答案_数值分析

第七章习题解答2、试确定系数a ,b 的值使220[()cos ]ax b x dx p+-ò达到最小解:设220(,)[()cos ]I a b ax b x dx p=+-ò确定a ,b 使(,)I a b 达到最小,必须满足0,0I Ia b ¶¶==¶¶即3222222000022222000012[cos ]0cos 248212[cos ]0cos 82a b ax b x xdx a x dx b xdx xxdx a b ax b x dx a xdx b dx xdx p p p p p p p pp p p p p ììì+=-+-=+=ïïïïïïÞÞíííïïï+=+-=+=ïïïîîîòòòòòòòò解得:0.6644389, 1.1584689a b »-»5、试用Legendre 多项式构造()f x x =在[-1, 3]上的二次最佳平方逼近多项式 解:作变量代换,将区间[-1, 3]变为[-1, 1],令21x t =+,即12x t -=则()()(21)21(11)F t f x f t t t ==+=+-££对()F t 利用Legendre 多项式求其在}{21,,span t t上的最佳平方逼近多项式20()()j j j S t C P t ==å,其中11(,)21()()(0,1,2)(,)2j j j j j P f j C F t P t dt j P P -+===ò20121()=1,()=t,()=(31)2P t P t P t t - 则有:1121012112111212212121215[(21)(21)]24311[(21)(21)]285(31)(31)45[(21)(21)]22264C t dt t dt C t tdt t tdt t t C t dt t dt ---------=--++==--++=--=--++=òòòòòò 01251145()()()()4864S t P t P t P t \=++则()f x 在[-1, 3]上的最佳二次逼近多项式*01222151111451()()()()()()2428264251114511=()((3()1))4826422135+82243512x x x x S t S t S P P P x x x x ----===++--++-+=7、确定一条经过原点的二次曲线,使之拟合下列数据ix123iy0.2 0.5 1.0 1.2并求平方误差2d解:设2012()1,(),()x x x x x j j j ===由题,拟合函数须过原点 则令001122()()()()f x C x C x C x j j j =++,其中00C =,即212()f x C x C x =+ 12000.2110.5,,24 1.039 1.2Y f f æöæöæöç÷ç÷ç÷ç÷ç÷ç÷===ç÷ç÷ç÷ç÷ç÷ç÷èøèøèø 11122122(,)(,)1436(,)(,)3698G f f f f f f f f æöæö==ç÷ç÷èøèø 12(,) 6.1(,)15.3Y F Y f f æöæö==ç÷ç÷èøèø得法方程GC F = 121436 6.1369815.3C C æöæöæö=ç÷ç÷ç÷èøèøèø解方程得:120.61840.0711C C »»-2()0.61840.0711f x x x \=-误差222121(,) 2.730.6184(,)0.0711(,)0.04559j j j YC Y Y Y df f f ==-=-´+´=å8、已知一组数据ix1 2 3iy3 2 1.5试用拟合函数21()S x a bx =+拟合所给数据解:令2()f x a bx =+ 201()1,()x x x j j ==01()()()f x a x b x j j =+则123113111114,219213y A F y y æöæö÷ç÷çæöç÷ç÷ç÷ç÷===ç÷ç÷ç÷ç÷èøç÷ç÷ç÷ç÷èøèøT T a A A A F b æö\=ç÷èø,即331422514983a b æöç÷æöæö=ç÷ç÷ç÷ç÷èøèøç÷èø解方程组得0.3095,0.0408a b == 即210.30950.0408()x f x y=+=从而有21()0.30950.0408S x x =+补充题:用插值极小化法求()sin f x x =在[0, 1]上的二次插值多项式2()P x ,并估计误差 解:作变量替换1(1)2x t =+,将[0, 1]变换[-1, 1]取插值点11(21)cos 0,1,2222(1)K K x K n p+=+=+ 0120.933001270.50.0669873x x x ===利用这些点做插值商表i xi y一阶插商 二阶插商0.9330127 0.80341740.5 0.479425 0.74863250.0669873 0.0659372 0.9549092 -0.23818779则:20.9330127()0.80)0.2341740.743818779(0.9330127)(0.5)86325(x P x x x ---=+-同时误差213322()()()22(1)!3!24n n M M M R x f x P x n --+=-£==+其中(3)3max ()M f x = 由于1(1)2x t =+,即21t x =- 则(3)(3)3max (21)max sin (21)8max cos(21)8[0,1]M f x x x x =-=-=-=Î281()243R x \£=。

现代数值计算方法word精品文档5页

现代数值计算方法word精品文档5页

吉林大学研究生公共数学课程教学大纲课程编号:课程名称:现代数值计算方法课程英文名称:Modern numerical method学时/学分:64/3(硕士)/32/2(博士)课程类别:研究生公共课程课程性质:必修课适用专业:理、工、经、管等专业开课学期:第Ⅰ或第Ⅱ学期考核方式:考试(闭卷)执笔人:李永海制定日期:2019年5月吉林大学研究生公共数学课程教学大纲课程编号:课程名称:现代数值计算方法课程英文名称:Modern numerical method学时/学分:64/3(硕士)/32/2(博士)课程类别:研究生教育课程课程性质:必修课适用专业:理、工、经、管等专业开课学期:第Ⅰ或第Ⅱ学期考核方式:考试(闭卷)一、本课程的性质、目的和任务本课程属于非数学类研究生数学公共基础课程之一,数值计算方法作为一种基本的数学工具,在数学学科与其他科学技术领域诸如力学、电磁学、化学、生物、系统工程等学科都有广泛应用。

电子计算机及计算技术的发展也为数值计算方法的应用开辟了更广阔的前景。

因此,学习和掌握现代数值计算方法,对于将来从事工程技术工作的工科研究生来说是必不可少的。

通过该门课程的学习,期望学生能深刻地理解现代数值计算方法的基本知识和数学思想,掌握有关的计算方法及技巧,提高学生的数学素质,提高科研能力,掌握现代数值计算方法在物理、电子、化学、生物、工程等领域的许多应用。

二、本课程教学基本要求1. 线性代数方程组直接法理解线性代数方程组直接法求解算法原理,了解算法收敛性结果;理解算法应用条件;掌握用软件实现一般线性代数方程组直接法的求解步骤。

2. 线性代数方程组迭代法理解线性代数方程组迭代法求解算法原理,了解算法收敛性结果;理解算法应用条件;掌握用软件实现一般线性代数方程组迭代法的求解步骤。

3. 矩阵特征值与特征向量计算理解乘幂法和反幂法算法原理,了解实对称矩阵的Jacobi方法;理解算法应用条件;掌握用软件实现一般矩阵特征值与特征向量计算。

现代数值计算方法—肖筱南

现代数值计算方法—肖筱南

现代数值计算方法习题答案习 题 一1、解:根据绝对误差限不超过末位数的半个单位,相对误差限为绝对误差限除以有效数字本身,有效数字的位数根据有效数字的定义来求.因此49×10-2:E = 0.005; r E = 0.0102; 2位有效数字.0.0490 :E = 0.00005;r E = 0.00102; 3位有效数字. 490.00 :E = 0.005; r E = 0.0000102;5位有效数字. 2、解:722= 3.1428 …… , π = 3.1415 …… , 取它们的相同部分3.14,故有3位有效数字.E = 3.1428 - 3.1415 = 0.0013 ;r E =14.3E = 14.30013.0 = 0.00041. 3、解:101的近似值的首位非0数字1α = 1,因此有 |)(*x E r |)1(10121--⨯⨯=n < = 21× 10-4 , 解之得n > = 5,所以 n = 5 . 4、证:)()(1)()(1)(*11**11**x x x nx E x n x E n n n-=≈--)(11)()(1)()(*****11****x E nx x x n x x x x nx x E x E r nnnn n r =-=-≈=- 5、解:(1)因为=20 4.4721…… ,又=)(*x E |*x x -| = |47.420-| = 0.0021 < 0.01, 所以 =*x 4.47.(2)20的近似值的首位非0数字1α = 4,因此有 |)(*x E r |)1(10421--⨯⨯=n < = 0.01 , 解之得n > = 3 .所以,=*x 4.47. 6、解:设正方形的边长为x ,则其面积为2x y =,由题设知x 的近似值为*x = 10cm .记*y 为y 的近似值,则)(20)(20)(2)(*****x E x x x x x y E =-=-= < = 0.1,所以)(*x E < = 0.005 cm . 7、解:因为)()(*1x x nx x E n n -≈-,所以n x nE x x x n xx E x E r nn nr 01.0)()()(*==-≈=. 8、解:9、证:)()()(**t gtE t t gt S S S E =-≈-=t t E gt t t gt S S S S E r )(22/)()(2**=-≈-= 由上述两式易知,结论. 10、解:代入求解,经过计算可知第(3)个计算结果最好.11、解:基本原则为:因式分解,分母分子有理化、三角函数恒等变形…… (1)通分;(2)分子有理化;(3)三角函数恒等变形.12、解: 因为20=x ,41.1*0=x ,所以|*0x x -| < = δ=⨯-21021 于是有 |*11x x -| = |110110*00+--x x | = 10|*0x x -| < =δ10 |*22x x -| = |110110*11+--x x | = 10|*11x x -| < =δ210 类推有 |*1010x x -| < =810102110⨯=δ 即计算到10x ,其误差限为δ1010,亦即若在0x 处有误差限为δ,则10x 的误差将扩大1010倍,可见这个计算过程是不稳定的.习 题 二1、 解:只用一种方法.(1)方程组的增广矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----11114423243112 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1010411101110112 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---11041001110112→ 31=x , 12=x , 13=x . (2)方程组的增广矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------017232221413 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--247210250413 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--147200250413 → 21=x , 12=x , 2/13=x . (3)适用于计算机编程计算.2、 解:第一步:计算U 的第一行,L 的第一列,得611=u 212=u 113=u 114-=u3/1/112121==u a l 6/1/113131==u a l6/1/114141-==u a l第二步:计算U 的第二行,L 的第二列,得3/1012212222=-=u l a u 3/213212323=-=u l a u 3/114212424=-=u l a u 5/1/)(2212313232=-=u u l a l10/1/)(2212414242=-=u u l a l第三步:计算U 的第三行,L 的第三列,得10/37233213313333=--=u l u l a u 10/9243214313434-=--=u l u l a u 37/9/)(33234213414343-=--=u u l u l a l第四步:计算U 的第四行,得370/9553443244214414444-=---=u l u l u l a u从而, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----3101141101421126=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--137/910/16/1015/16/10013/10001⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---370/95500010/910/37003/13/23/1001126由b LY = , 解得Y =(6,-3,23/5,-955/370)T . 由Y UX = , 解得X =(1,-1,1,-1)T .3、(1)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断.11a = 3 > 0, 2223= 2 > 0, 301022123 = 4 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行:第一步 分解:A = L L T. 由公式计算出矩阵的各元素:311=l 33221=l 3622=l 3331=l 3632-=l 233=l因此, L =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-23633036332003. 第二步 求解方程组LY = b . 解得Y = (335,36,2)T . 第三步 求解方程组L T X = Y . 解得X =(0,2,1)T .(2)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断.11a = 3 > 0,2223= 2 > 0, 1203022323 = 6 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行: 第一步 分解:A = L L T . 由公式计算出矩阵的各元素:311=l 33221=l 3622=l331=l 632-=l 333=l因此, L =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-363036332003 . 第二步 求解方程组LY = b . 解得Y = (335,66-,33)T. 第三步 求解方程组L T X = Y . 解得X = (1,21,31)T . 4、解: 对1=i , 2111==a d ;对2=i , 121-=t , 2121-=l , 252-=d ;对3=i , 131=t , 2732=t ,2131=l , 5732-=l ,5273=d .所以数组A 的形式为: ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=527572102521002A 求解方程组LY = b . 解得Y = (4,7,569)T.求解方程组DL T X = Y . 解得X = (910,97,923)T .5、解:(1)设A = LU = ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1010000000000010010015432l l l l ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡5432106000000000600006006u u u u u计算各元素得: 51=u , 512=l , 1952=u , 1953=l , 19653=u ,65194=l , 652114=u , 211655=l , 2116655=u .求解方程组LY = d . 解得Y = (1,51-,191,651-,211212)T.求解方程组UX = Y . 解得X = (6651509,6651145,665703,665395-,665212)T.(2)设A = LU = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100100132l l ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32101001u u u 计算各元素得:51=u ,512=l ,5242=u ,2453=l ,241153=u . 求解方程组LY = d . 解得Y = (17,553,24115)T.求解方程组UX = Y . 解得X = (3,2,1)T . 6、证:(1)(2)相同.因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛. (1)雅可比迭代公式:7107271)(3)(2)1(1+--=+k k k x x x14141)(3)(1)1(2+--=+k k k x x x329292)(2)(1)1(3+--=+k k k x x x高斯-赛德尔迭代公式:7107271)(3)(2)1(1+--=+k k k x x x14141)(3)1(1)1(2+--=++k k k x x x329292)1(2)1(1)1(3+--=+++k k k x x x(2)雅可比迭代公式:545152)(3)(2)1(1+-=+k k k x x x 525351)(3)(1)1(2++-=+k k k x x x 5115152)(2)(1)1(3++=+k k k x x x 高斯-赛德尔迭代公式:545152)(3)(2)1(1+-=+k k k x x x 525351)(3)1(1)1(2++-=++k k k x x x5115152)1(2)1(1)1(3++=+++k k k x x x 7、(1)证:因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛。

数值计算方法教案

数值计算方法教案

数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与特点引言:介绍数值计算的定义和基本概念数值计算的特点:离散化、近似解、误差分析1.2 数值计算方法分类直接方法:高斯消元法、LU分解法等迭代方法:雅可比迭代、高斯-赛德尔迭代等1.3 数值计算的应用领域科学计算:物理、化学、生物学等领域工程计算:结构分析、流体力学、电路模拟等第二章:误差与稳定性分析2.1 误差的概念与来源绝对误差、相对误差和有效数字误差来源:舍入误差、截断误差等2.2 数值方法的稳定性分析线性稳定性分析:特征值分析、李雅普诺夫方法非线性稳定性分析:李模型、指数稳定性分析2.3 提高数值计算精度的方法改进算法:雅可比法、共轭梯度法等增加计算精度:闰塞法、理查森外推法等第三章:线性方程组的数值解法3.1 高斯消元法算法原理与步骤高斯消元法的优缺点3.2 LU分解法LU分解的步骤与实现LU分解法的应用与优势3.3 迭代法雅可比迭代法与高斯-赛德尔迭代法迭代法的选择与收敛性分析第四章:非线性方程和方程组的数值解法4.1 非线性方程的迭代解法牛顿法、弦截法等收敛性条件与改进方法4.2 非线性方程组的数值解法高斯-赛德尔法、共轭梯度法等方程组解的存在性与唯一性4.3 非线性最小二乘问题的数值解法最小二乘法的原理与方法非线性最小二乘问题的算法实现第五章:插值与逼近方法5.1 插值方法拉格朗日插值、牛顿插值等插值公式的构造与性质5.2 逼近方法最佳逼近问题的定义与方法最小二乘逼近、正交逼近等5.3 数值微积分数值求导与数值积分的方法数值微积分的应用与误差分析第六章:常微分方程的数值解法6.1 初值问题的数值解法欧拉法、改进的欧拉法龙格-库塔法(包括单步和多步法)6.2 边界值问题的数值解法有限差分法、有限元法谱方法与辛普森法6.3 常微分方程组与延迟微分方程的数值解法解耦与耦合方程组的处理方法延迟微分方程的特殊考虑第七章:偏微分方程的数值解法7.1 偏微分方程的弱形式介绍偏微分方程的弱形式应用实例:拉普拉斯方程、波动方程等7.2 有限差分法显式和隐式差分格式稳定性分析与收敛性7.3 有限元法离散化过程与元素形状函数数值求解与误差估计第八章:优化问题的数值方法8.1 优化问题概述引言与基本概念常见优化问题类型8.2 梯度法与共轭梯度法梯度法的基本原理共轭梯度法的实现与特点8.3 序列二次规划法与内点法序列二次规划法的步骤内点法的原理与应用第九章:数值模拟与随机数值方法9.1 蒙特卡洛方法随机数与重要性采样应用实例:黑箱模型、金融衍生品定价等9.2 有限元模拟离散化与求解过程应用实例:结构分析、热传导问题等9.3 分子动力学模拟基本原理与算法应用实例:材料科学、生物物理学等第十章:数值计算软件与应用10.1 常用数值计算软件介绍MATLAB、Python、Mathematica等软件功能与使用方法10.2 数值计算在实际应用中的案例分析工程设计中的数值分析科学研究中的数值模拟10.3 数值计算的展望与挑战高性能计算的发展趋势复杂问题与多尺度模拟的挑战重点解析本教案涵盖了数值计算方法的基本概念、误差分析、线性方程组和非线性方程组的数值解法、插值与逼近方法、常微分方程和偏微分方程的数值解法、优化问题的数值方法、数值模拟与随机数值方法以及数值计算软件与应用等多个方面。

数值计算方法教学教材

数值计算方法教学教材

2 .5 3 3
[2.87,2 5.363 ,1]6 T x(2) x(1) 2.132720
华长生制作
0
x(3) BJx(2) f
4 11
1 2
3 8 0
1 4
1 4 1
11
0
2 . 875 2 . 3636
1
2 .5 3 3
[3.13,2 6.044,5 0.957]T 16 x(3) x(2) 0.4127
定义4. 由(7)式确定的 A称为从属于给定向量
范数x
的矩阵范数
简称为从属范数或算子范数
11 华长生制作
显然,由定义不难推出
AxA x
--------(8)
定义5. 对于给定的向 和 量矩 范阵 数范 , 数 若 xRn,ARnn,都有
AxA x
--------(9)
则称所给的向 和 量矩 范阵 数 范 相数 容 .
由(8)式,可知算子范数和其对应的向量范数是相容的
12 华长生制作
根据向量的常用范数可以得到常用的矩阵算子范数
(1)
A1m x0 a A xx1 x1
n
max
1 jn i1
aij
--------(10)
A的每列绝对值之和大 的值 最, 称A的列范数
(2)
Am x0 aA xx x
max
1in
n j1
设 a ii 0(i 1 ,2 , ,n ),则可从上式解出xi
华长生制作
x1a1 11 [b1(a1x 22a1nxn)]
20
x2a 1 2[2 b 2(a 2x 1 1a 2x 3 3a 2nxn)]
依此类推,线性方程组(1)可化为

第七章数值微积分

第七章数值微积分

Ck(n)
3 1/8 3/8 3/8 1/8
4 7/90 16/45 2/15 16/45 7/90 5 19/288 25/96 25/144 25/144 25/96 19/288
误差估计 (一)求积公式的代数精确度 若当f(x)为任意次数不高于m的多项式时,求积公 n b 式 ∫ f ( x)dx ≈ ∑ Ak f ( xk )
f ′′( x − θ 2 h) f ( x ) − f ( x − h) f ′( x) − =− h = O ( h) h 2
f ( x + h) − f ( x − h) f ′( x) − 2h f ′′′( x + θ 1 h) + f ′′′( x − θ 2 h) 2 =− h = O(h 2 ) 12
a k =0
均成立,而对某个m+1次多项式,公式不精确成立, 则称该求积公式具有m次代数精确度. 可以验证:梯形公式具有1次代数精确度。 事实上,由f(x)为1次多项式, f ′′(ξ ) R1 ( x ) = f ( x) − L1 ( x ) = ( x − a )( x − b) = 0 2
⇒∫
求导得且分别 代入三点有:
截断误差
h2 ′ f ′′′(ξ 0 ) R2 ( x 0 ) = − 3 h2 ′ f ′′′(ξ1 ) ξ 0 , ξ1 , ξ 2 ∈ (a, b) R2 ( x1 ) = − 6 h2 ′ f ′′′(ξ 2 ) R2 ( x1 ) = 3
b
a
b−a f ( x)dx = ∫ L1 ( x)dx = [ f (a ) + f (b)] a 2
b
b
若取f(x)=x2 ⇒ ∫a

数值分析(计算方法)总结

数值分析(计算方法)总结

第一章 绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差ε(x )=|x −x ∗|是x ∗的绝对误差,e =x ∗−x 是x ∗的误差,ε(x )=|x −x ∗|≤ε,ε为x ∗的绝对误差限(或误差限) e r =ex =x ∗−x x为x ∗ 的相对误差,当|e r |较小时,令 e r =ex ∗=x ∗−x x ∗相对误差绝对值得上限称为相对误差限记为:εr 即:|e r |=|x ∗−x||x ∗|≤ε|x ∗|=εr绝对误差有量纲,而相对误差无量纲若近似值x ∗的绝对误差限为某一位上的半个单位,且该位直到x ∗的第一位非零数字共有n 位,则称近似值 x ∗有n 位有效数字,或说 x ∗精确到该位。

例:设x=π=3.1415926…那么x ∗=3,ε1(x )=0.1415926…≤0.5×100,则x ∗有效数字为1位,即个位上的3,或说 x ∗精确到个位。

科学计数法:记x ∗=±0.a 1a 2⋯a n ×10m (其中a 1≠0),若|x −x ∗|≤0.5×10m−n ,则x ∗有n 位有效数字,精确到10m−n 。

由有效数字求相对误差限:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)有n 位有效数字,则其相对误差限为12a 1×101−n由相对误差限求有效数字:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)的相对误差限为为12(a 1+1)×101−n 则它有n 位有效数字令x ∗、y ∗是x 、y 的近似值,且|x ∗−x|≤η(x )、|y ∗−y|≤η(y)1. x+y 近似值为x ∗+y ∗,且η(x +y )=η(x )+η(y )和的误差(限)等于误差(限)的和2. x-y 近似值为x ∗−y ∗,且η(x +y )=η(x )+η(y )3. xy 近似值为x ∗y ∗,η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)4. η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)|y ∗|21.避免两相近数相减2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章 非线性方程求根1.逐步搜索法设f (a ) <0, f (b )> 0,有根区间为 (a , b ),从x 0=a 出发, 按某个预定步长(例如h =(b -a )/N )一步一步向右跨,每跨一步进行一次根的搜索,即判别f (x k )=f (a +kh )的符号,若f (x k )>0(而f (x k -1)<0),则有根区间缩小为[x k -1,x k ] (若f (x k )=0,x k 即为所求根), 然后从x k -1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k -x k -1|< 为止,此时取x *≈(x k +x k -1)/2作为近似根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xk a k bk 2
,
( 7 .2 )
若 f ( a k ) f ( x k ) 0 , 则令 a k 1 : a k , b k 1 : x k ; 否则,令 a k 1 : x k , b k 1 : b k ; 再取 x k ( a k 1 b k 1 ) / 2 , 一直做下去,直到满足精 度为止。
算法7.3 (简单迭代法) 取初始点 x 0 , 最大迭代次数N和精度要求 , 置 k : 0 ; 计算 x k 1 ; 若 | x k 1 x k | , 则停算; 若 k N , 则停算;否则,置 k : k 1, 转步2。
步1 步2 步3 步4
function x=maiter(phi,x0,ep,N) %用途:用简单迭代法求非线性方程f(x)=0有根区间[a,b]中的一个根 %格式:x= maiter(phi,x0,ep,N) fun为f(x)的函数句柄,x0为初值, % ep为精度(默认1e-4),N为最大迭代次数(默认500),x返回近似根 if nargin<4,N=500;end if nargin<3,ep=1e-4;end k=0; while k<N x=feval(phi,x0); if abs(x-x0)<ep break; end x0=x;k=k+1; end if k==N, warning('已达迭代次数上限'); end disp(['k=',num2str(k)])
function masearch(fun,a,b,h) %用途:搜索非线性方程f(x)=0的有根区间 %格式:masearch(fun,a,b,h) fun为函数表达式, % a, b为区间左右端点,h为搜索步长 n=(b-a)/h; a1=zeros(1,n); b1=zeros(1,n); aa=a; bb=aa+h; k=1; while bb<b if feval(fun,aa)*feval(fun,bb)<0 a1(k)=aa; b1(k)=bb; else aa=bb; bb=aa+h; continue; end aa=bb; bb=aa+h; k=k+1; end for i=1:k if a1(i)-b1(i)~=0 [a1(i),b1(i)] end end
分别用向量x1,x2 存放隔根区间的左、 右端点
else
a 1 : b1 , b1 : b1 h ;
continue; (返回循环的入口) end
a 1 : b1 , b1 : b1 h ;
检测下一个区间!
k : k 1;
步4
end (循环结束) 输出有根区间 [ x1 ( k ), x 2 ( k )].
等价变换
f (x) = 0 f (x) 的根
x = (x)
(x) 的不动点
从一个初值 x0 出发,计算 x1 = (x0), x2 = (x1), …, 思 xk+1 = (xk), … 若 x k k 0 收敛,即存在 x* 使得 路 lim x k x * ,且 连续,则由 lim x lim x 可 k 1 k k k k 知 x* = (x* ),即x* 是 的不动点,也就是f 的根。 其中 x k 1 ( x k ), k 0 ,1, ,
7.1.2
二分法及其程序实现
二分法的基本思想是通过计算隔根区间的中点,逐步将 f( 隔根区间缩小,从而可得到方程的近似根数列。具体地说,设 x ) 为连续函数,又设方程的隔根区间为 [ a , b ], 即 f ( a ) f ( b ) 0 . 记 a 0 : a , b 0 : b , 取其中点 x 0 ( a 0 b 0 ) / 2 , 若 f ( a 0 ) f ( x 0 ) 0 , 则去掉右半区间,即令 a 1 : a 0 , b1 : x 0 ; 否则,去掉左半区间, a 1 : x 0 , b1 : b 0 . [ a k , b k ], 即令 一般地,记当前有根区间为 取
function x=mabisec(fun,a,b,ep) %用途:用二分法求非线性方程f(x)=0有根区间[a,b]中的一个根 %格式:x=mabisec(fun,a,b,ep) fun为函数表达式, % a, b为区间左右端点,ep为精度,x返回近似根 x=(a+b)/2.0; k=0; while abs(feval(fun,x))>ep|(b-a>ep) if feval(fun,x)*feval(fun,a)<0 b=x; else a=x; end x=(a+b)/2.0; k=k+1; end disp(['k=',num2str(k)])
7.1.3
二分法的收敛性分析
误差 分析: 第1步产生的
x0 ab 2
有误差
|x 0 x*|
ba
ba 2
k 1
第 k 步产生的
xk 有误差 |x k x*|
2 bk a k
2
对于给定的精度 ,可估计二分法所需的步数 k :
b a 2
k 1
ε

k
例7.2 用二分法程序mabisec.m求方程 f ( x ) xe x 1 0 -5 在[0,1]内的一个实根,取定精度 10 .

在MATLAB窗口执行:
>>mabisec(inline(‘x*exp(x)-1’),0,1,1e-5) 得计算结果: k=16 x= 0.5714630126953 即迭代16次后,得到满足精度的近似根。
本章要介绍:二分法,迭代法及其加速,牛顿法
§7.1 根的插索与二分法
原理:若 f C[a, b],且 f (a) · (b) < 0,则 f 在 (a, b) 上必 f 有一根。 7.1.1 隔根区间
在用近似方法求方程的根时,需要知道方程的根所在的区 间。如果在区间[a,b]内只有方程 f ( x ) 0 的一个根,则称区 间[a,b]为隔根区间。通常可以用逐步扫描法来寻找隔根区间。 算法的基本思想是:先确定方程 f ( x ) 0 的所有实根所在的 h 区间[a,b],再按选定的步长 ( b a ) / n (n为正整数),逐 xk f ( xk ) 点计算 a kh 处的函数值) ( k 0 ,1, , n ), f ( x当 f ( x k 1 ) 与 k 的值异号时,则 [ x k , x k 1 ] 即为方程 f ( x ) 0 的一个隔根区间。
ln b a ln ε
ln 2
1
同时由 | x k x * | 0 ( k ),
知 lim x k x * . k
①简单; 收敛 由此可知,序列{xk}的收敛 ② 对f (x) 要求不高(只要连续即可) . 性与区间[a,b]无关,故对任 ①无法求复根及重根 给区间[a,b],{xk}均收敛 ② 收敛慢
例7.3 用二分法求方程 在区间[1,2]内的 根,使其精度达到两位有效数字。问需要将区间二分多少次? a 1 b( b a ) | x x * x | ( 7 .( 7 . 2 ) 3) 并求出满足精度的近似根。 , 2
k
x 3x 1 0
3
k
k
k 1
k

根据(7.3)可以估计二分次数k的大小。设
( 7 .5 )
称为迭代格式
y p1 p0
y=x y= (x)
y p0
y=x

x x0 y x1 x* y=x y y= (x) p0 x0 x* y= (x)

p1 y= (x) x x1 y=x
p0 p1

x x0 x*
p1

x
x1 x0 x*
x1
x k 1 ( x k ), k 0 ,1, ,
( 7 .5 )
总之,若序列 { x k } 存在极限 x *, 即
lim x k x *,
k
则称迭代过程(或迭代公式)是收敛的。如果函数 ( x ) 连续, 在式(7.5)两端取极限得到
x * ( x *),
则 x * 是方程 x ( x ) 的根。我们也称 x * 是函数 ( x ) 的一个 不动点,因此也称迭代公式(7.5)为不动点迭代。在迭代公 x xk 式(7.5)中,由于k 1 仅由 决定,因此这是一个单步迭代 公式。
例7.1 试用逐步搜索法确定方程
f ( x) x x 3x 3 0
3 2
的有根区间。 容易看出,当 | x | 3 时,f ( x ) 保持符号不变,故其根必 定全部落在区间[-3,3]内,即可初步确定 a - 3 , b 3,取步 长h=0.6,利用算法7.1的通用程序masearch.m,在MATLAB窗 口执行: >>masearch(inline(‘x^3_x^2-3*x-3’),-3,3,0.6) 得计算结果: ans= -1.8000 -1.2000 ans= -1.2000 -0.6000 ans= 1.2000 1.8000 即有三个根,分别在区间[-1.8,-1.2],[-1.2,0.6],[1.2,1.8]
第七章 非线性方程迭代法
求 f (x) = 0 的根
其中 f ( x ) 是连续的非线性函数。而方程按 f ( x ) 是多项 式或超越函数又分别称为代数方程和超越方程。例如,代数 方程
x 3 x 2 0,
8 3
超越方程
sin
x
2
e
x
0.
已经证明,对于5次及5次以上的一元多项式方程不存在精确 的求根公式,至于超越方程就更难求其精确解了。鉴于此, 如何求得满足一定精度的方程的近似根,已成为广大科研工 作者迫切需要解决的问题。
相关文档
最新文档