第三章 概率测试题
最新人教版高中数学必修3第三章第三章概率单元测试(第三章概率测评)

本章测评(时间90分钟,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1下列事件是随机事件的个数是( )①同种电荷,互相排斥;②明天天晴;③自由下落的物体做匀速直线运动;④函数y =log a x (a >0且a ≠1)在定义域上是增函数.A .0个B .1个C .2个D .3个2从四双不同的鞋中任意摸出4只,事件“4只全部成对”的对立事件是( )A .至多有两只不成对B .恰有两只不成对C .4只全部不成对D .至少有两只不成对3下列4个命题:①对立事件一定是互斥事件;②若A ,B 为两个事件,则P (A +B )=P (A )+P (B );③若事件A ,B ,C 彼此互斥,则P (A )+P (B )+P (C )=1;④若事件A ,B 满足P (A )+P (B )=1,则A ,B 是对立事件,其中错误的有( )A .0个B .1个C .2个D .3个4甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为70%,则甲、乙两人下一盘棋,你认为最可能出现的情况是( )A .甲获胜B .乙获胜C .甲、乙下成和棋D .无法得出5袋中装白球和黑球各3个,从中任取2个,则至多有一黑球的概率是( ) A.15 B.45 C.13 D.126从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率是( )A.15B.25C.35D.457利用简单随机抽样的方法抽查某工厂的100件产品,其中一等品为20个,合格品有70个,其余为不合格品,现在这个工厂随机抽查一件产品,设事件A =“是一等品”,B =“是合格品”,C =“是不合格品”,则下列结果错误的是( )A .P (B )=710 B .P (A +B )=910C .P (A ∩B )=0D .P (A ∪B )=P (C )8把12个人平均分成两组,每组任意指定正、副组长各1人,则甲被指定为正组长的概率为( )A.112 B .16 C .14 D .139若以连续两次掷骰子分别得到的点数m ,n 作为点P 的坐标(m ,n ),则点P 在圆x 2+y 2=25外的概率是…( )A.536 B .712 C .512 D .1310(2009安徽高考,文10)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于…( )A .1B .12C .13D .0二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上)11(2009江苏高考,5)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m 的概率为________.12产品中有一、二、三等品及废品4种,一、二、三等品和废品率分别是60%,10%,20%,10%.任取一个产品检验其质量,那么取得一等品或二等品的概率是________.13在一次教师联欢会上,到会的女教师比男教师多12人.从这些教师中随机挑选一人表演节目,若选到男教师的概率为920,则参加联欢会的教师共有________人. 14有以下说法:①一年按365天计算,两名学生的生日相同的概率是1365.②买彩票中奖的概率为0.001,那么买1 000张彩票就一定能中奖.③乒乓球赛前,决定谁先发球,抽签方法是从1~10共10个数字中各抽取1个,再比较大小,这种抽签方法是公平的.④昨天没有下雨,则说明“昨天气象局的天气预报降水概率是90%”是错误的.根据我们所学的概率知识,其中说法正确的序号是______.15在区间[-1,1]上任取两数x和y,组成有序数对(x,y),记事件A为“x2+y2<1”,则P(A)=________.三、解答题(本大题共4小题,共40分.解答时应写出文字说明、证明过程或演算步骤)16(本小题满分9分)已知集合A={-3,-1,0,2,4},在平面直角坐标系中,点(x,y)的坐标x∈A,y∈A且x≠y,计算:(1)点(x,y)不在x轴上的概率;(2)点(x,y)在第二象限的概率.17(本小题满分10分)设有一个等边三角形网格,其中每个最小等边三角形的边长都是4 3 cm,现用直径等于2 cm硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.18(本小题满分10分)从一副扑克牌(没有大小王)的52张牌中任取2张,求:(1)两张是不同花色牌的概率;(2)至少有一张是红心的概率.19(本小题满分11分)连续抛掷两颗骰子,设第一颗点数为m,第二颗点数为n,则求:(1)m+n=7的概率;(2)m=n的概率;(3)m·n为偶数的概率;(4)点P(m,n)在圆x2+y2=16内的概率.参考答案1解析:②④是随机事件;①是必然事件;③是不可能事件.答案:C2解析:从四双不同的鞋中任意摸出4只,可能的结果为“恰有2只成对”,“4只全部成对”,“4只都不成对”,∴事件{4只全部成对}的对立事件是{恰有2只成对}+{4只都不成对}={至少有两只不成对},故选D.答案:D3解析:①正确;②当且仅当A 与B 互斥时,P (A +B )=P (A )+P (B ),对于任意两个事件A ,B 满足P (A +B )=P (A )+P (B )-P (AB ),②不正确;③P (A +B +C )不一定是等于1,还可能小于1,∴③也不正确;④也不正确.例如,袋中有大小相同的红、黄、黑、蓝四个球,从袋中任摸一个球,设事件A ={红球或黄球},事件B ={黄球或黑球},显然事件A 与B 不互斥,但P (A )=12,P (B )=12,P (A )+P (B )=1. 答案:D4解析:分别将“甲胜”“和棋”“乙胜”的概率求出,并比较,因为甲获胜的概率为30%,甲和棋的概率为40%,甲输棋的概率为30%,故甲、乙下成和棋的可能性最大.答案:C5解析:从袋中任取2个球,有15种等可能取法(不妨将黑球编号为黑1、黑2、黑3,将白球编号为白1、白2、白3).取出的两个球都是白球有3种等可能取法,取出的两个球一白一黑有9种等可能取法,∴事件A =“取出的两个球至多1黑”,共有9+3=12(种)取法,∴P (A )=1215=45. 答案:B6解析:可以构成的两位数的总数为5×4=20(种),因为是“任取”两个数,所以每个数被取到的概率相同,可以采用古典概型公式求解,其中大于40的两位数有以4开头的:41、42、43、45共4种;以5开头的:51、52、53、54共4种.所以P =820=25. 答案:B7解析:根据事件的关系及运算求解,A 、B 、C 为互斥事件,故C 项正确,又因为从100件中抽取产品符合古典概型的条件,则A 、B 两项正确,D 项错误.答案:D8解析:12个人被平均分成两组,每组6个人,则甲必被分到其中一组,则只需研究该组即可.该组6个人中,甲被选为正组长的概率为16. 答案:B9解析:本题中涉及两个变量的平方和,类似于两变量的和或积的情况,可以用列表法(如下图),使x 2+y 2>25的次数与总试验次数的比就近似为本题结果.即2136=712. 答案:B10解析:正方体六个面的中心任取三个只能组成两种三角形.一种是等腰直角三角形,如图甲.另一种是正三角形,如图乙.若任取三个点构成的是等腰直角三角形,剩下的三个点也一定构成等腰直角三角形,若任取三个点构成的是正三角形,剩下的三点也一定构成正三角形.这是一个必然事件,因此概率为1.答案:A11解析:从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3 m 的事件数为2,分别是2.5和2.8,2.6和2.9,所求概率为0.2.答案:0.212解析:利用概率的加法公式P (A ∪B )=P (A )+P (B )易得.答案:0.713解析:本题为古典概型概率题目,设参加联欢会的男教师为x 名,女教师为12+x名,因为男教师被挑选出一人的概率为x 12+2x. 所以x 12+2x =920,则x =54,即参加联欢会的教师共有120人. 答案:12014解析:根据“概率的意义”求解,买彩票中奖的概率0.001,并不意味着买1 000张彩票一定能中奖,只有当买彩票的数量非常大时,我们可以看成大量买彩票的重复试验,中奖的次数为n 1 000;昨天气象局的天气预报降水概率是90%,是指可能性非常大,并不一定会下雨.答案:①③15解析:[-1,1]上任取的x 和y 组成有序数对(x ,y ),构成基本事件空间Ω,区域Ω是边长为2的正方形,子区域A 为圆面,所以P (A )=μA μΩ=π4.答案:π416分析:本题为古典概型概率,先根据题意求出基本事件总数,特别注意x ≠y 这一条件,很容易出现错误.解:∵x ∈A ,y ∈A 且x ≠y ,∴数对(x ,y )的取法共有5×4=20种.(1)事件A =“点(x ,y )不在x 轴上”即点(x ,y )的纵坐标y ≠0.∵y =0的点的取法有4种,∴P (A )=20-420=45. (2)事件B =“点(x ,y )在第二象限”即x <0,y >0,∴数对(x ,y )取法有2×2=4种.∴P (B )=420=15. 17分析:硬币落下后与格线没有公共点等价于硬币中心与格线的距离都大于半径1,在等边三角形内作三条与正三角形三边距离为1的直线,构成小等边三角形,当硬币中心在小等边三角形内时,硬币与三边都没有公共点,所以硬币与格线没有公共点就转化为硬币中心落在小等边三角形内的问题.解:记A ={硬币落下后与格线没有公共点}.在等边三角形内作小等边三角形,使其三边与原等边三角形三边距离都为1,如图所示,则小等边三角形的边长为43-23=23,由几何概率公式,得P (A )=S 小等边△S 大等边△=12×(23)2×3212×(43)2×32=14. 18分析:根据古典概型概率计算公式求解,要注意:抽取2张同样的牌,有先抽后抽之分,但是属于同一个基本事件.解:从52张牌中任取2张,取第一张时有52种取法,取第二张时有51种取法,但第一张取2、第二张取4和第一张取4、第二张取2是同一基本事件,故共有总取法种数为n=12×52×51. (1)记“两张是不同花色牌”为事件A ,取第一张时有52种取法,不妨设第一张取到了方块,则第二张需从红心、黑心、梅花共39张牌中任取一张,不妨设取到一张红心,但第一张取方块、第二张取红心和第一张取红心、第二张取方块是同一基本事件,所以事件A含的基本事件数为m 1=12×52×39. ∴P (A )=m 1n =3951=1317. (2)记“至少有一张是红心”为事件B ,其对立事件C 为“所取2张牌都不是红心”即两张都是方块、梅花、黑桃中取的,事件C 含的基本事件数为m 2=12×39×38. ∴P (C )=m 2n =1934. ∴由对立事件的性质,得P (B )=1-P (C )=1-1934=1534. 19分析:本题为古典概型问题,求解时可先求出基本事件总数,再求出各事件包含的基本事件数,最后求得结果.解:(m ,n )总的个数为36个.(1)事件A ={m +n =7}含基本事件为:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共有6个.则P (A )=636=16. (2)事件B ={m =n }含基本事件为:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)共有6个,则P (B )=636=16. (3)事件C ={m ·n 为偶数}含基本事件为:(1,2),(1,4),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,2),(3,4),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,2),(5,4),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共有27个.(也可以把事件{m ·n 为偶数}分类为:奇数×偶数,偶数×奇数,偶数×偶数.则所含基本事件个数为3×3+3×3+3×3=27.)∴P (C )=2736=34. (4)事件D ={点P (m ,n )在圆x 2+y 2=16内}包含基本事件为:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个,则P (D )=836=29.。
高中数学必修三第三章《概率》章节练习题(含答案)

高中数学必修三第三章《概率》章节练习题(30分钟50分)一、选择题(每小题3分,共18分)1.下列试验属于古典概型的有( )①从装有大小、形状完全相同的红、黑、绿各一球的袋子中任意取出一球,观察球的颜色;②在公交车站候车不超过10分钟的概率;③同时抛掷两枚硬币,观察出现“两正”“两反”“一正一反”的次数;④从一桶水中取出100mL,观察是否含有大肠杆菌.A.1个B.2个C.3个D.4个2.任取两个不同的1位正整数,它们的和是8的概率是( )A. B.C. D.【补偿训练】一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( )A. B.C. D.3.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为( )A. B.C. D.4.任意抛掷两颗骰子,得到的点数分别为a,b,则点P(a,b)落在区域|x|+|y|≤3中的概率为( )A. B.C. D.5.在棱长为a的正方体ABCD A1B1C1D1中随机地取一点P,则点P与正方体各表面的距离都大于的概率为( )A. B.C. D.6.如图,两个正方形的边长均为2a,左边正方形内四个半径为的圆依次相切,右边正方形内有一个半径为a的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P1,P2,则P1,P2的大小关系是( )A.P1=P2B.P1>P2C.P1<P2D.无法比较二、填空题(每小题4分,共12分)7.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则a+b能被3整除的概率为.8.已知函数f(x0)=log2x,x∈,在区间上任取一点x0,使f(x0)≥0的概率为.【补偿训练】已知直线y=x+b,b∈[-2,3],则该直线在y轴上的截距大于1的概率是( )A. B.C. D.9.如图,利用随机模拟的方法可以估计图中由曲线y=与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组0~1的均匀随机数,a=RAND,b=RAND;②做变换,令x=2a,y=2b;③产生N个点(x,y),并统计满足条件y<的点(x,y)的个数N1,已知某同学用计算器做模拟试验结果,当N=1 000时,N1=332,则据此可估计S的值为.三、解答题(每小题10分,共20分)10.随意安排甲、乙、丙3人在3天假期中值班,每人值班1天,则:(1)这3人的值班顺序共有多少种不同的排列方法?(2)这3人的值班顺序中,甲在乙之前的排法有多少种?(3)甲排在乙之前的概率是多少?11.已知关于x的二次函数f(x)=ax2-4bx+1.(1)设集合A={-1,1,2,3,4,5}和B={-2,-1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(2)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.高中数学必修三第三章《概率》章节练习题(30分钟50分)一、选择题(每小题3分,共18分)1.下列试验属于古典概型的有( )①从装有大小、形状完全相同的红、黑、绿各一球的袋子中任意取出一球,观察球的颜色;②在公交车站候车不超过10分钟的概率;③同时抛掷两枚硬币,观察出现“两正”“两反”“一正一反”的次数;④从一桶水中取出100mL,观察是否含有大肠杆菌.A.1个B.2个C.3个D.4个【解析】选A.古典概型的两个基本特征是有限性和等可能性.①符合两个特征;对于②和④,基本事件的个数有无限多个;对于③,出现“两正”“两反”与“一正一反”的可能性并不相等.2.任取两个不同的1位正整数,它们的和是8的概率是( )A. B.C. D.【解析】选D.1位正整数是从1到9共9个数,其中任意两个不同的正整数求和有8+7+6+5+4+3+2+1=36种情况,和是8的共有3种情况,即(1,7),(2,6),(3,5),所以和是8的概率是.【补偿训练】一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( )A. B.C. D.【解析】选D.基本事件为(1,1),(1,2),…,(1,8),(2,1),(2,2),…,(8,8),共64种.两球编号之和不小于15的情况有三种,分别为(7,8),(8,7),(8,8),所以所求概率为.3.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为( )A. B.C. D.【解析】选A.从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),所以选出的火炬手的编号相连的概率为P=.4.任意抛掷两颗骰子,得到的点数分别为a,b,则点P(a,b)落在区域|x|+|y|≤3中的概率为( )A. B.C. D.【解析】选D.基本事件为6×6=36,P(a,b)落在区域|x|+|y|≤3中的有(1,1),(1,2),(2,1),所以P==.5.在棱长为a的正方体ABCD A1B1C1D1中随机地取一点P,则点P与正方体各表面的距离都大于的概率为( )A. B.C. D.【解析】选A.符合条件的点P落在棱长为的正方体内,根据几何概型的概率计算公式得P==.6.如图,两个正方形的边长均为2a,左边正方形内四个半径为的圆依次相切,右边正方形内有一个半径为a的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P1,P2,则P1,P2的大小关系是( )A.P1=P2B.P1>P2C.P1<P2D.无法比较【解析】选A.由题意知正方形的边长为2a.左图中圆的半径为正方形边长的,故四个圆的面积和为πa2,右图中圆的半径为正方形边长的一半,圆的面积也为πa2,故P1=P2.二、填空题(每小题4分,共12分)7.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则a+b能被3整除的概率为.【解析】把一颗骰子抛掷2次,共有36个基本事件.设“a+b能被3整除”为事件A,有(1,2),(2,1),(1,5),(2,4),(3,3),(4,2),(5,1),(3,6),(4,5),(5,4),(6,3),(6,6),共12个.P(A)==.答案:8.已知函数f(x0)=log2x,x∈,在区间上任取一点x0,使f(x0)≥0的概率为.【解题指南】由f(x0)≥0求出x0的取值范围,然后利用几何概型求解.【解析】因为f(x0)≥0,即log2x0≥0,得x0≥1,故使f(x0)≥0的x0的区域为[1,2],则P==.答案:【补偿训练】已知直线y=x+b,b∈[-2,3],则该直线在y轴上的截距大于1的概率是( )A. B.C. D.【解析】选B.区域Ω为区间[-2,3],子区域A为区间(1,3],而两个区间的长度分别为5,2.所以P=.9.(2015·嘉庆高一检测)如图,利用随机模拟的方法可以估计图中由曲线y=与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组0~1的均匀随机数,a=RAND,b=RAND;②做变换,令x=2a,y=2b;③产生N个点(x,y),并统计满足条件y<的点(x,y)的个数N1,已知某同学用计算器做模拟试验结果,当N=1 000时,N1=332,则据此可估计S的值为.【解析】根据题意:满足条件y<的点(x,y)的概率是,矩形的面积为4,则有=,所以S=1.328.答案:1.328三、解答题(每小题10分,共20分)10.随意安排甲、乙、丙3人在3天假期中值班,每人值班1天,则:(1)这3人的值班顺序共有多少种不同的排列方法?(2)这3人的值班顺序中,甲在乙之前的排法有多少种?(3)甲排在乙之前的概率是多少?【解析】(1)3个人值班的顺序所有可能的情况如图所示.由图知,所有不同的排列顺序共有6种.(2)由图知,甲排在乙之前的排法有3种.(3)记“甲排在乙之前”为事件A,则P(A)==.11.已知关于x的二次函数f(x)=ax2-4bx+1.(1)设集合A={-1,1,2,3,4,5}和B={-2,-1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(2)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【解析】要使函数y=f(x)在区间[1,+∞)上是增函数,则a>0且-≤1,即a>0即2b≤a.(1)所有(a,b)的取法总数为6×6=36个,满足条件的(a,b)有(1,-2),(1,-1),(2,-2),(2,-1),(2,1),(3,-2),(3,-1),(3,1),(4,-2),(4,-1),(4,1),(4,2),(5,-2),(5,-1),(5,1),(5,2)共16个,所以,所求概率P==.(2)如图,求得区域的面积为×8×8=32.由求得P(,),所以区域内满足a>0且2b≤a 的面积为×8×=.所以,所求概率P==.- 11 -。
高二数学上册第三章专项测试:概率

高二数学上册第三章专项测试:概率概率,又称或然率、机会率、机率(几率)或可能性,是概率论的差不多概念。
以下是查字典数学网为大伙儿整理的高二数学上册第三章单元测试,期望能够解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。
1.从一个不透亮的口袋中摸出红球的概率为1/5,已知袋中红球有3个,则袋中共有除颜色外完全相同的球的个数为( ).A.5个B.8个C.10个D.15个2.从数字1,2,3,4,5中任取三个数字,组成没有重复数字的三位数,则那个三位数大于400的概率是( ).A.2/5 B、2/3 C.2/7 D.3/43.从一副扑克牌(54张)中抽取一张牌,抽到牌K的概率是( ).A.1/54B.1/27C.1/18D.2/274.同时掷两枚骰子,所得点数之和为5的概率为( ).A.1/4B.1/9C.1/6D.1/125.在所有的两位数(10~99)中,任取一个数,则那个数能被2或3整除的概率是( ).A.5/6B.4/5C.2/3D.1/26.依照多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为( ).A.0.65B.0.55C.0.35D.0.757.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( ).A.60%B.30%C.10%D.50%8.一患者服用某种药品后被治愈的概率是95%,则患有相同症状的四位病人中至少有3人被治愈的概率为( )A.0.86B.0.90C.0.95D.0.999.(在10000张有奖明信片中,设有一等奖5个,二等奖10个,三等奖l00个,从中随意买l张.(1)P(获一等奖)= ,P(获二等奖)= ,P(获三等奖)= .家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情形及时传递给家长,要求小孩回家向家长朗诵儿歌,表演故事。
高中数学必修三第三章《概率》单元测试题

高中数学必修三第三章《概率》单元测试题(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.42.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P16.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.9.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-10.在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间[0,20) [20,40) [40,60) [60,80) [80,100) (分钟)人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A.0.5B.0.7C.0.8D.0.9二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.18.(12分)某地区的年降水量在下列范围内的概率如表所示:(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.20.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.高中数学必修三第三章《概率》单元测试题参考答案(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.4【解析】选C.①在某学校2015年的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4℃时结冰是不可能事件.2.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【解析】选B.因为A,B为互斥事件,故采用概率的加法公式P(A∪B)=P(A)+(B)=+=.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.【解析】A,B为互斥事件,故采用概率的加法公式得P(A∪B)=,所以出现的点数大于2的概率为1-P(A∪B)=.答案:3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.【解析】选D.基本事件总数Ω={甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲}.“甲、乙两人站在一起”的可能结果有“甲乙丙”“丙甲乙”“乙甲丙”“丙乙甲”4种.所以甲、乙两人站在一起的概率P==.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解析】选D.根据题意,从8个球中任取3个球包括事件事件5红3白一 3 0二 2 1三 1 2四0 3对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立.5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P1【解题指南】列出先后抛掷两枚骰子出现的点数的所有的基本事件个数,再分别求出点数之和是12,11,10的基本事件个数,进而求出点数之和是12,11,10的概率P1,P2,P3,即可得到它们的大小关系.【解析】选B.先后抛掷两枚骰子,出现的点数共有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共36种,其中点数之和是12的有1种,故P1=;点数之和是11的有2种,故P2=;点数之和是10的有3种,故P3=,故P1<P2<P3,故选B.6.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )【解题指南】增加中奖机会应选择概率高的对应的游戏盘.【解析】选A.P(A)=,P(B)=,P(C)=,P(D)=,所以P(A)>P(C)=P(D)>P(B).7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【解题指南】根据条件可用列举法列出所有基本事件和甲或乙被录用的基本事件,采用古典概型求概率.【解析】选D.所有被录用的情况有(甲乙丙),(甲乙丁),(甲乙戊),(甲丙丁),(甲丙戊),(甲丁戊),(乙丙丁),(乙丙戊),(乙丁戊),(丙丁戊)共10种,其中甲或乙被录用的基本事件有9种,故概率P=.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.【解析】选B.由于区间[1,6]的长度是6-1=5,由2x∈[2,4],则x∈[1,2],长度为2-1=1,故在区间[1,6]上随机取一实数,则该实数使得2x∈[2,4]的概率P=.9.(2015·东营高一检测)在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-【解析】选B.若使函数有零点,必须Δ=(2a)2-4(-b2+π2)≥0,即a2+b2≥π2.在坐标轴上将a,b的取值范围标出,如图所示.当a,b满足函数有零点时,以(a,b)为坐标的点位于正方形内、圆外的部分(如阴影部分所示),于是所求的概率为1-=1-.10.(2015·石家庄高一检测)在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【解析】选C.将3件一等品编号为1,2,3;2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=.11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.【解析】选A.区域Ω1为圆心在原点,半径为4的圆,区域Ω2为等腰直角三角形,两腰长为4,所以P===.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间(分钟)[0,20) [20,40) [40,60) [60,80) [80,100) 人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A.0.5B.0.7C.0.8D.0.9【解析】选D.当0≤t<60时,y≤300.记事件“公司1人每月用于路途补贴不超过300元”为事件A.则P(A)=++=0.9.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)【解析】由互斥事件概率公式得P(A∪B)=+=.答案:14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.【解析】从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P=.答案:15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.【解析】甲、乙两人每人摸出一个小球都有9种不同的结果,故基本事件为(1,1),(1,2),(1,3),…,(9,7),(9,8),(9,9),共81个.由不等式a-2b+10>0得2b<a+10,于是,当b=1,2,3,4,5时,每种情形a可取1,2,…,9中每个值,使不等式成立,则共有45种;当b=6时,a可取3,4…,9中每个值,有7种;当b=7时,a可取5,6,7,8,9中每个值,有5种;当b=8时,a可取7,8,9中每一个值,有3种;当b=9时,a只能取9,有1种.于是,所求事件的概率为=.答案:16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为. 【解析】假设两人分别在x时与y时到达,依题意:|x-y|≤才能相遇.显然到达时间的全部可能结果均匀分布在如图的单位正方形I内,而相遇现象,则发生在图中阴影区域G中,由几何概型的概率公式:P===.所以,两人相遇的可能性为.答案:三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.【解析】1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数.(1)大于400的三位数的个数为4,所以P==.(2)三位数为偶数的有156,516,共2个,所以所求的概率为P==.18.(12分)某地区的年降水量在下列范围内的概率如表所示:年降水量100~150 150~200 200~250 250~300 (单位:mm)概率0.12 0.25 0.16 0.14(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.【解析】记这个地区的年降水量在100~150(mm),150~200(mm),200~250(mm),250~300(mm)范围内分别为事件A,B,C,D.这四个事件是彼此互斥的,根据互斥事件的概率加法公式,有(1)年降水量在100~200(mm)范围内的概率是P(A∪B)=P(A)+P(B)=0.12+0.25=0.37.(2)年降水量在150~300(mm)范围内的概率是P(B∪C∪D)=P(B)+P(C)+P(D)=0.25+0.16+0.14=0.55.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.【解析】(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.则基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,所以P(A)=.故x,y∈Z,x+y≥0的概率为.(2)设“x+y≥0,x,y∈R”为事件B,因为x∈[0,2],y∈[-1,1],则基本事件为如图四边形ABCD区域,事件B包括的区域为其中的阴影部分.所以P(B)====,故x,y∈R,x+y≥0的概率为.20.(12分)(2015·山东高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)参加书法社团未参加书法社团参加演讲社团8 5未参加演讲社团 2 30(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【解题指南】将符合要求的基本事件一一列出.【解析】(1)记“该同学至少参加上述一个社团为事件A”,则P(A)==.所以该同学至少参加上述一个社团的概率为.(2)从5名男同学和3名女同学中各随机选1人的所有基本事件有(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(A4,B1),(A4,B2),(A4,B3),(A5,B1),(A5,B2),(A5,B3)共15个,其中A1被选中且B1未被选中的有(A1,B2),(A1,B3)共2个,所以A1被选中且B1未被选中的概率为P=.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.【解题指南】本题是几何概型.解题关键是充分理解题意,画出示意图,明确总的基本事件和符合条件的基本事件构成的空间,然后利用几何概型概率计算公式计算求解即可.【解析】设甲、乙到站的时间分别是x,y,则1≤x≤2,1≤y≤2.试验区域D为点(x,y)所形成的正方形,以16个小方格表示,示意图如图a所示.(1)如图b所示,约定见车就乘的事件所表示的区域如图b中4个加阴影的小方格所示,于是所求的概率为=.(2)如图c所示,约定最多等一班车的事件所示的区域如图c中的10个加阴影的小方格所示,于是所求的概率为=.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.【解析】(1)由题意可知:=,解得n=2.(2)①不放回地随机抽取2个小球的所有基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个.所以P(A)==.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4”,(x,y)可以看成平面中的点,则全部结果所构成的区域Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B所构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)===1-.。
(好题)高中数学必修三第三章《概率》检测题(包含答案解析)(3)

一、选择题1.在区间11,22⎡⎤-⎢⎥⎣⎦上随机取一个数x ,则cos x π的值介于2与2之间的概率为( ) A .13B .14C .15 D .162.一个不透明的袋中装有6个白球,4个红球球除颜色外,无任何差异.从袋中往外取球,每次任取1个,取出后记下颜色不放回,若为红色则停止,若为白色则继续抽取,停止时从袋中抽取的白球的个数为随机变量X ,则(P X ≤=( ).A .3B .512C .56D .5183.2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜潮举行,长三角城市群包括,上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市".现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游则恰有一个地方未被选中的概率为( ) A .2764B .916C .81256D .7164.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .355.若函数()201)((1)x lnx e x f x e x e ⎧+<<=⎨≤<⎩在区间()0,e 上随机取一个实数x ,则()f x 的值小于常数2e 的概率是( ) A .1eB .11e-C .2eD .21e-6.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A.1103156π-B.14π-C.17126π-D.681237π-7.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为()A.518B.13C.718D.498.已知三棱锥P﹣ABC的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为()A.815B.715C.45D.359.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。
(好题)高中数学必修三第三章《概率》测试卷(包含答案解析)(3)

一、选择题1.袋中有白球2个,红球3个,从中任取两个,则互斥且不对立的两个事件是( ) A .至少有一个白球;都是白球 B .两个白球;至少有一个红球 C .红球、白球各一个;都是白球D .红球、白球各一个;至少有一个白球2.已知0.5log 5a =、3log 2b =、0.32c =、212d ⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m ,使函数()32123x mx x f x =+++有极值点的概率为( ) A .14B .12 C .34D .13.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A .12B .14C .13D .164.已知点A 是圆M 的圆周上一定点,若在圆M 的圆周上的其他位置任取一点B ,连接AB ,则“线段AB 的长度大于圆M 的半径”的概率约为( )A .12 B .16 C .13D .23 5.假设△ABC 为圆的内接正三角形,向该圆内投一点,则点落在△ABC 内的概率为( ) A 33B .2πC .4πD 33π6.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A.1636B.1736C.12D.19367.我国魏晋时期的数学家刘徽,创立了用圆内接正多边形面积无限逼近圆面积的方法,称为“割圆术”,为圆周率的研究提供了科学的方法.在半径为1的圆内任取一点,则该点取自圆内接正十二边形外的概率为A 3B.31π-C.3πD.31π-8.连续掷两次骰子,先后得到的点数,m n为点(,)P m n的坐标,那么点P在圆2217x y+=内部的概率是()A.13B.25C.29D.499.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n个人说“能”,而有m个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为()A.mm n+B.nm n+C.4mm n+D.4nm n+10.在二项式42nxx的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为()A.16B.14C.512D.1311.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为()A.12B.1C.56D.111212.斐波那契螺旋线,也称“黄金螺旋线”,是根据斐波那契数列(1,1,2,3,5,8…)画出来的螺旋曲线,由中世纪意大利数学家列奥纳多•斐波那契最先提出.如图,矩形ABCD是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD内任取一点,该点取自阴影部分的概率为( )A .14B .8π C .34D .4π 二、填空题13.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.14.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球至少有一个白球”,D “取出的两球不同色”,E =“取出的2球中至多有一个白球”.下列判断中正确的序号为________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件:④()1P CE =;⑤()()P B P C =.15.已知函数2()22f x x =-M ,(())y f f x =的定义域为P ,在M 上随机取一个数x ,则x P ∈的概率是____________.16.中国文化中有很多东西喜欢9或9的倍数.如:九连环、九阴白骨爪、降龙十八掌(1892=⨯)、三十六计(3694=⨯)、孙悟空七十二变(8972⨯=)、八十一难(9981⨯=)等.若一个三位数的各位数字之和为9,如207,126,则这样的三位数共有________.17.过点(0,0)O 作直线与圆22(5)(8)169x y -+-=相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为______________. 18.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈.若||1a b -,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______.19.一只口袋中装有形状、大小都相同的6只小球,其中有3只红球、2只黄球和1只蓝球.若从中1次随机摸出2只球,则2只球颜色相同的概率为____.20.袋中有2个白球,1个红球,这些球除颜色外完全相同.现从袋中往外取球,每次任取1个记下颜色后放回,直到红球出现2次时停止,设停止时共取了X 次球,则(4)P X ==_______. 三、解答题21.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15 ,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?22.党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间[80,100]的为优等品;指标在区间[60,80)的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下:甲种生产方式:指标区间[65,70)[70,75)[75,80)[80,85)[85,90)[90,95]频数51520301515乙种生产方式:指标区间[70,75)[75,80)[80,85)[85,90)[90,95)[95,100]频数51520302010(1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出5件产品,①求这5件产品中,优等品和合格品各多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?23.追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如下:AQI[0,50](50,100](100,150](150,200](200,250](250,300]空气质量优良轻度污染中度污染重度污染严重污染天数61418272510(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率.(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为0,0100,220,100250,1480,250300.xy xx⎧⎪=<⎨⎪<⎩假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为16,13,16,112,112,16,9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;(ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.24.为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.节排器等级及利润如表格表示,其中11 107a<<综合得分k的范围节排器等级节排器利润率85k≥一级品a7585k≤<二级品25a7075k≤<三级品2a(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率; (2)视频率分布直方图中的频率为概率,用样本估计总体,则①若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望()E ξ; ②从长期来看,骰子哪种型号的节排器平均利润较大?25.将一枚六个面的编号为1,2,3,4,5,6的质地均匀的正方体骰子先后掷两次,记第一次出的点数为a ,第二次出的点数为b ,且已知关于x 、y 的方程组322ax by x y +=⎧⎨+=⎩.(1)求此方程组有解的概率;(2)若记此方程组的解为00x x y y =⎧⎨=⎩,求00x >且00y >的概率.26.为了解中学生课余观看热门综艺节目“爸爸去哪儿”是否与性别有关,某中学一研究性学习小组从该校学生中随机抽取了n 人进行问卷调查.调查结果表明:女生中喜欢观看该节目的占女生总人数的34,男生喜欢看该节目的占男生总人数的13.随后,该小组采用分层抽样的方法从这n 份问卷中继续抽取了5份进行重点分析,知道其中喜欢看该节目的有3人.(1) 现从重点分析的5人中随机抽取了2人进行现场调查,求这两人都喜欢看该节目的概率;(2) 若有99%的把握认为“爱看该节目与性别有关”,则参与调查的总人数n 至少为多少? 参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生,结合所给的选项,逐一进行判断,从而得出结论.【详解】从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生,对于A,至少有1个白球;都是白球,不是互斥事件.故不符合.对于B两个白球;至少有一个红球,是互斥事件,但也是对立事件,故不符合.对于C红球、白球各一个;都是白球是互斥事件,但不是对立事件,故符合.对于D红球、白球各一个;至少有一个白,不是互斥事件.故不符合.故选:C.【点睛】本题主要考查互斥事件与对立事件的定义,意在考查学生对这些知识的理解掌握水平.2.B解析:B【分析】求出函数的导数,根据函数的极值点的个数求出m的范围,通过判断a,b,c,d的范围,得到满足条件的概率值即可.【详解】f′(x)=x2+2mx+1,若函数f(x)有极值点,则f′(x)有2个不相等的实数根,故△=4m2﹣4>0,解得:m>1或m<﹣1,而a=log0.55<﹣2,0<b=log32<1、c=20.3>1,0<d=(12)2<1,满足条件的有2个,分别是a,c,故满足条件的概率p21 42 ==,故选:B.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.3.C解析:C【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解.【详解】联立2y y x⎧=⎪⎨=⎪⎩(1,1)C . 由图可知基本事件空间所对应的几何度量1OBCA S =正方形, 满足所投的点落在叶形图内部所对应的几何度量:S (A)3123120021)()|33x dx x x ==-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.4.D解析:D 【分析】求出B 点位置所有基本事件的弧长,再求出满足条件AB 长度大于圆半径的基本事件对应的弧长,根据几何概型概率的计算公式,即可得到答案. 【详解】设圆M 的半径为R ,B 为圆上的任意一点, 则B 点位置所有情况对应的弧长为圆的圆周长2R π, 其中满足条件AB 长度大于圆半径长对应的弧长为223R π⋅, 则“线段AB 的长度大于圆M 的半径”的概率约为222323RR ππ⋅=. 故选:D 【点睛】本题考查几何概型概率的求法,其中根据条件计算出所有基本事件的几何量和满足条件的基本事件对应的几何量是解题的关键,属于中档题.5.A解析:A 【分析】设圆的半径为R,且由题意可得是与面积有关的几何概率构成试验的全部区域的面积及正三角形的面积代入几何概率的计算公式可求. 【详解】解:设圆的半径为R构成试验的全部区域的面积:2S R π=记“向圆O 内随机投一点,则该点落在正三角形内”为事件A , 则构成A22) 由几何概率的计算公式可得, ()224P A R π==故选:A . 【点睛】本题主要考查了与面积有关的几何概型概率的计算公式的简单运用,关键是明确满足条件的区域面积,属于基础试题.6.C解析:C 【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率. 【详解】根据题意,两次取出的成绩一共有36种情况;分别为()67,68、()67,72、()67,73、()67,85、()67,89、()67,93()76,68、()76,72、()76,73、()76,85、()76,89、()76,93 ()78,68、()78,72、()78,73、()78,85、()78,89、()78,93 ()82,68、()82,72、()82,73、()82,85、()82,89、()82,93 ()85,68、()85,72、()85,73、()85,85、()85,89、()85,93 ()92,68、()92,72、()92,73、()92,85、()92,89、()92,93满足条件的有18种,故183126p ==, 故选C 【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.7.D解析:D 【分析】由半径为1的圆内接正十二边形,可分割为12个顶角为6π,腰为1的等腰三角形,求得十二边形的面积,利用面积比的几何概型,即可求解. 【详解】由题意,半径为1的圆内接正十二边形,可分割为12个顶角为6π,腰为1的等腰三角形,所以该正十二边形的面积为21121sin 326S π=⨯⨯⨯=, 由几何概型的概率计算公式,可得所求概率31P π=-,故选D. 【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量()N A ”,再求出总的基本事件对应的“几何度量N ”,然后根据()N A PN求解,着重考查了分析问题和解答问题的能力. 8.C解析:C 【分析】所有的点(,)P m n 共有6636⨯=个,用列举法求得其中满足2217x y +<的点(,)P m n 有8个,由此求得点P 在圆2217x y +=内部的概率.【详解】所有的点(,)P m n 共有6636⨯=个,点P 在圆2217x y +=内部,即点(,)P m n 满足2217x y +<,故满足此条件的点(,)P m n 有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个,故点P 在圆2217x y +=内部的概率是82369=, 故选C. 【点睛】该题考查的是有关古典概型概率的求解问题,涉及到的知识点有古典概型概率公式,在解题的过程中,正确找出基本事件的个数以及满足条件的基本事件数是关键.9.C解析:C 【分析】把每一个所写两数作为一个点的坐标,由题意可得与1不能构成一个锐角三角形是指两个数构成点的坐标在圆221x y +=内,进一步得到211411+m m nπ⨯=⨯,则答案可求。
北师版九年级数学 第三章 概率的进一步认识(单元综合测试卷)

第三章概率的进一步认识(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时6点朝上的概率是()A.1B.56C.23D.162.关于频率和概率的关系,下列说法正确的是().A.频率等于概率B.当实验次数很大时,频率稳定在概率附近C.当实验次数很大时,概率稳定在频率附近D.实验得到的频率与概率不可能相等3.从某班学生中随机选取一名学生是女生的概率为35,则该班女生与男生的人数比是()A.32B.35C.23D.254.一个不透明的箱子中有2个白球,3个黄球和4个红球,这些球除颜色不同外,其他完全相同.从箱子中随机摸出一个球,则它是红球的概率是()A.14B.13C.49D.295.如图,在4×4正方形网格中,任意选取一个白色的小正方形并涂上阴影,使图中阴影部分的图形构成一个轴对称图形的概率是()A.16B.14C.13D.1126.一个盒子里有完全相同的三个小球,球上分别标有数“-1”“1”“2”.随机摸出一个小球(不放回),其数记为p,再随机摸出另一个小球,其数记为q,则满足关于x的方程x2-px+q=0有实数根的概率是()A.12B.13C.23D.567.在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回.经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为()A .12B .15C .18D .238.如图所示,一张纸片上有一个不规则的图案(图中画图部分),小雅想了解该图案的面积是多少,她采取了以下的办法:用一个长为5m ,宽为3m 的长方形,将不规则图案围起来,然后在适当位置随机地向长方形区域扔小球,并记录小球在不规则图案上的次数(球扔在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图②所示的折线统计图,由此她估计此不规则图案的面积大约为()A .26mB .25mC .24mD .22m 9.小敏购买了一套“龙行龘龘”艺术书签(外包装完全相同),分别为“招财祥龙”“瑞狮福龙”“龙凤呈祥”“锦鲤旺龙”四种不同的主题.小敏从中拿两个送给同学,先随机抽取一个(不放回),再从中随机抽取一个,则恰好抽到书签“招财祥龙”和“龙凤呈祥”的概率为()A .12B .14C .18D .1610.在大力发展现代化农业的形势下,现有A 、B 两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10030050010003000A 出芽率0.990.940.960.980.97B出芽率0.990.950.940.970.96下面有三个推断:①当实验种子数量为100时,两种种子的出芽率均为0.99,所以A、B两种新玉米种子出芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是()A.①②③B.①②C.①③D.②③二、填空题(本大题共8小题,每小题3分,共24分)11.开学后,李老师采用抽签的方式决定本班四个卫生小组的分组名单,王朝与好朋友马汉分在同一组的概率是.12.在学校举行的“读书节”活动中,提供了四类适合学生阅读的书籍:A.文学类,B.科幻类,C.漫画类,D.数理类.小文同学从A,B,C,D四类书籍中随机选择一类,则选中A类书籍的概率为.13.小军和小红用2、3、4三张数字卡片做游戏,如果摆出的三位数是偶数,算小红赢,否则算小军赢,这个游戏规则(填“公平“或“不公平”).14.如图,两个转盘分别被分成面积相等的几个扇形,同时转动两个转盘一次,转盘停止时指针所指扇形的颜色即为转出的颜色,则转盘停止时,两个转盘均停在红色区域的概率是.15.一个不透明的袋中有若干个除颜色外完全相同的小球,其中黄球有6个,将袋中的球摇匀后,从中随机摸出一个球,记下它的颜色后再放回袋中,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.4左右,则袋中小球的个数为.16.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上,如果每块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是.17.如表是小明做“抛掷图钉试验”获得的数据,则可估计“钉尖不着地”的概率为.抛掷次数1003005006008009001000针尖不着地的频数64180310360488549610针尖不着地的频率0.640.600.620.60.610.610.6118.若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为.三、解答题(本大题共9小题,共66分)19.小明参加某网店的“翻牌抽奖”活动.如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,求抽中20元奖品的概率;(2)如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,求所获奖品总值不低于30元的概率.20.如图,是由转盘和箭头组成的两个装置,装置A,B的转盘分别被分成四、三个面积相等的扇形,装置A上的数字分别是1,2,3,4,装置B上的数字分别是3,4,5,这两个装置除了表面数字不同外,其它构造完全相同.现在分别同时用力转动A,B两个转盘.(1)A转盘指向偶数的概率是.(2)请用列表法或画树状图的方法,求A、B转盘指向的数字之和不小于6的概率.21.对一批家电进行抽检、统计合格的数量,列表如下:抽检数量/台300400500600700合格频数282352445546a合格频率b0.880.890.910.9(1)求a,b的值.(2)估计这批家电的合格率.(3)若售出了3000台家电,其中存在质量问题的大约有几台?22.“石头、剪子、布”是一个广为流传的游戏,规则是:小赵、小张两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设小赵、小张两人每次都随意并且同时做出3种手势中的1种.(1)小赵每次做出“石头”手势的概率为________;(2)用画树状图或列表的方法,求小赵赢的概率.23.“双减”政策实施后,某校为丰富学生的课余生活,开设了A书法,B绘画,C舞蹈,D乐器,E武术共五类兴趣班.为了解学生对这五类兴趣班的喜爱情况,随机抽取该校部分学生进行了问卷调查,并将调查结果整理后绘制成两幅不完整的统计图.请根据统计图信息回答下列问题.(1)本次抽取调查的学生共有______人,m=______,n=______,并补全条形统计图;(2)估计该校2600名学生中喜爱“乐器”兴趣班的人数约为______人;(3)九(1)班有王红和李明等五人参加了“乐器”兴趣班,在班级联欢会上,班主任从他们中随机抽取两人上台共奏一曲,请用“列表法”或“画树状图法”,求出王红和李明至少有一人参与演奏的概率.24.近年来,西安充分挖掘传统文化,不断推陈出新,着力打造文化旅游“金字招牌”,将文化底蕴和流行时尚元素融合,设计出了众多的爆款文创产品.小华在西安旅游时购买了四件文创产品:A.唐妞徽章领针,B.不倒翁小姐姐摆件,C.华清宫彩色金属书签,D.秦将军兵马俑手办.她想让好友晶晶和萱萱分别选一件作为礼物.每件都很精美,一时之间不知如何选择,于是她用抓阄的方式来确定礼物的归属,将分别写有A、B、C、D的四张纸片(上面的字母分别代表对应的文创产品),折叠成外表完全一样的纸团搅匀,她先让晶晶从这4个纸团中随机抽取一个,搅匀后,再让从剩下的3个纸团中随机抽取一个.(1)晶晶抽到华清宫彩色金属书签的概率是___________;(2)利用画树状图或列表法求晶晶和萱萱有一人抽到唐妞徽章领针的概率.25.为加强“生态优先,绿色发展”的理念,某校组织学生参加植树活动,活动地点有秦岭植物园,朱雀森林公园两个,每位同学可以在这两个地点中任选一个.小明和小军是好朋友,约定去同一个地方植树,但到底去哪一个地方两个人意见不统一,于是设计了如下游戏决定植树地点.游戏规则是:在一个不透明的袋子里装有4个小球,上面分别标有数字1,2,3,4,这些小球除数字以外其它均相同.小明先从袋中随机摸出一个小球,记下数字后,放回并搅匀;小军再从袋中随机摸出一个小球,记下数字.若两人摸出的小球上的数字之和是偶数,则去秦岭植物园植树,否则,去朱雀森林公园植树.(1)求小明摸出的小球上的数字是奇数的概率;(2)已知小军的理想植树地点是朱雀森林公园,请你用画树状图或列表的方法求他们去朱雀森林公园植树的概率.26.2024年3月22日至28日是第三十二届“中国水周”,某学校组织开展主题为“节约用水,共护母亲河”的社会实践活动.A 小组在甲,乙两个小区各随机抽取30户居民,统计其3月份用水量,分别将两个小区居民的用水量()3m x 分为5组,第一组:57x ≤<,第二组:79x ≤<,第三组:911x ≤<,第四组:1113≤<x ,第五组:1315x ≤<,并对数据进行整理、描述和分析,得到如下信息:信息一:甲小区3月份用水量频数分布表用水量()3/mx 频数(户)57x ≤<479x ≤<9911x ≤<101113≤<x 51315x ≤<2信息二:甲、乙两小区3月份用水量数据的平均数和中位数如下:甲小区乙小区平均数9.09.1中位数9.2a信息三:乙小区3月份用水量在第三组的数据为:9,9.2,9.4,9.5,9.6,9.7,10,10.3,10.4,10.6根据以上信息,回答下列问题:(1)=a __________;(2)若甲小区共有600户居民,乙小区共有750户居民,估计两个小区3月份用水量不低于313m 的总户数;(3)因任务安排,需在B 小组和C 小组分别随机抽取1名同学加入A 小组,已知B 小组有3名男生和1名女生,C 小组有2名男生和2名女生,请用列表或画树状图的方法,求抽取的两名同学都是男生的概率.27.“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马111,,A B C ,田忌也有上、中、下三匹马222,,A B C ,且这六匹马在比赛中的胜负可用不等式表示如下:121212A A B B C C >>>>>(注:A B >表示A 马与B 马比赛,A 马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(212121,,C A A B B C )获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;(2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.第三章概率的进一步认识(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题1.掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时6点朝上的概率是()A.1B.56C.23D.162.关于频率和概率的关系,下列说法正确的是().A.频率等于概率B.当实验次数很大时,频率稳定在概率附近C.当实验次数很大时,概率稳定在频率附近D.实验得到的频率与概率不可能相等【答案】B【解析】A、当实验次数很大时,频率稳定在一个常数附近,可作为概率的估计值,不一定与概率相等,故A错误;B、正确;C、当实验次数很大时,随机事件发生的概率是一个固定值,不会改变,故C错误;D、可以相同,如“抛硬币实验”,抛两次,其中一次正面向上,可得到正面向上的频率为0.5,与概率相同.故选:B.3.从某班学生中随机选取一名学生是女生的概率为35,则该班女生与男生的人数比是()A.32B.35C.23D.254.一个不透明的箱子中有2个白球,3个黄球和4个红球,这些球除颜色不同外,其他完全相同.从箱子中随机摸出一个球,则它是红球的概率是()A.14B.13C.49D.295.如图,在4×4正方形网格中,任意选取一个白色的小正方形并涂上阴影,使图中阴影部分的图形构成一个轴对称图形的概率是()A.16B.14C.13D.112【答案】A【解析】解:∵白色的小正方形有12个,能构成一个轴对称图形的有2个情况,∴使图中红色部分的图形构成一个轴对称图形的概率是:212=16.故选A.点睛:此题考查了概率公式的应用与轴对称.注意概率=所求情况数与总情况数之比.6.一个盒子里有完全相同的三个小球,球上分别标有数“-1”“1”“2”.随机摸出一个小球(不放回),其数记为p,再随机摸出另一个小球,其数记为q,则满足关于x的方程x2-px+q=0有实数根的概率是()A.12B.13C.23D.56【答案】A【分析】首先画树状图,然后求得所有等可能的结果与满足关于x的方程x2-px+q=0有实数根的情况,再利用概率公式即可求得答案.【解析】解:画树状图得:∵x2+px+q=0有实数根,∴Δ=b2-4ac=p2-4q≥0,∵共有6种等可能的结果,满足关于x的方程x2+px+q=0有实数根的有(1,-1),(2,-1),(2,1)共3种情况,7.在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回.经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为()A.12B.15C.18D.238.如图所示,一张纸片上有一个不规则的图案(图中画图部分),小雅想了解该图案的面积是多少,她采取了以下的办法:用一个长为5m,宽为3m的长方形,将不规则图案围起来,然后在适当位置随机地向长方形区域扔小球,并记录小球在不规则图案上的次数(球扔在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图②所示的折线统计图,由此她估计此不规则图案的面积大约为()A .26mB .25mC .24mD .22m 【答案】A【分析】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意.首先假设不规则图案面积为2m x ,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.【解析】解:假设不规则图案面积为2m x ,由已知得:长方形面积为215m ,根据几何概率公式小球落在不规则图案的概率为:15x ,当事件A 试验次数足够多,即样本足够大时,故由折线图可知,综上有:0.415x=,解得6x =.故选:A .9.小敏购买了一套“龙行龘龘”艺术书签(外包装完全相同),分别为“招财祥龙”“瑞狮福龙”“龙凤呈祥”“锦鲤旺龙”四种不同的主题.小敏从中拿两个送给同学,先随机抽取一个(不放回),再从中随机抽取一个,则恰好抽到书签“招财祥龙”和“龙凤呈祥”的概率为()A .12B .14C .18D .16【答案】D【分析】本题考查了概率,解题的关键是利用树形图分析出所有等可能结果.【解析】解:设“招财祥龙”为①,“瑞狮福龙”为②,“龙凤呈祥”为③,“锦鲤旺龙”为④,树形图如下:共有12种等可能结果,其中同时抽到①③的结果有率为21 126,故选:D.10.在大力发展现代化农业的形势下,现有A、B两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10030050010003000A出芽率0.990.940.960.980.97B出芽率0.990.950.940.970.96下面有三个推断:①当实验种子数量为100时,两种种子的出芽率均为0.99,所以A、B两种新玉米种子出芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是()A.①②③B.①②C.①③D.②③【答案】D【分析】大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,据此解答可得.【解析】①在大量重复试验时,随着试验次数的增加,可以用一个事件出现的概率估计它的概率,实验种子数量为100,数量太少,不可用于估计概率,故①推断不合理;②随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97,故(②推断合理;③在同样的地质环境下播种,A种子的出芽率约为0.97,B种子的出芽率约为0.96,A种子的出芽率可能会高于B种子,故正确,故选:D.【点睛】此题考查利用频率估计概率,理解随机事件发生的频率与概率之间的关系是解题的关键.二、填空题11.开学后,李老师采用抽签的方式决定本班四个卫生小组的分组名单,王朝与好朋友马汉分在同一组的概率是.共有16种等可能结果,其中王朝与好朋友马汉分在同一组的结果有∴王朝与好朋友马汉分在同一组的概率是41 164=;故答案:1 4.12.在学校举行的“读书节”活动中,提供了四类适合学生阅读的书籍:A.文学类,B.科幻类,C.漫画类,D.数理类.小文同学从A,B,C,D四类书籍中随机选择一类,则选中A类书籍的概率为.13.小军和小红用2、3、4三张数字卡片做游戏,如果摆出的三位数是偶数,算小红赢,否则算小军赢,这个游戏规则(填“公平“或“不公平”).14.如图,两个转盘分别被分成面积相等的几个扇形,同时转动两个转盘一次,转盘停止时指针所指扇形的颜色即为转出的颜色,则转盘停止时,两个转盘均停在红色区域的概率是.15.一个不透明的袋中有若干个除颜色外完全相同的小球,其中黄球有6个,将袋中的球摇匀后,从中随机摸出一个球,记下它的颜色后再放回袋中,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.4左右,则袋中小球的个数为.【答案】15【分析】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用黄球的个数除以摸到黄球频率即可得出球的总个数.【解析】解: 通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.4左右,口袋中黄球有6个,∴袋中小球的个数为60.415¸=(个).故答案为:15.16.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上,如果每块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是.17.如表是小明做“抛掷图钉试验”获得的数据,则可估计“钉尖不着地”的概率为.抛掷次数1003005006008009001000针尖不着地的频数64180310360488549610针尖不着地的频率0.640.600.620.60.610.610.61【答案】0.61【分析】本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解析】解:观察表格发现:随着实验次数的增多,顶尖着地的频率逐渐稳定到0.61附近,所以可估计“钉尖不着地”的概率为0.61,故答案为:0.61.18.若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为.三、解答题19.小明参加某网店的“翻牌抽奖”活动.如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,求抽中20元奖品的概率;(2)如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,求所获奖品总值不低于30元的概率.【答案】(1)14;(2)13.【分析】(1)随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,据此用1除以4,求出抽中20元奖品的概率为多少即可.(2)首先应用树状图法,列举出随机翻2张牌,所获奖品的总值一共有多少种情况;然后用所获奖品总值不低于30元的情况的数量除以所有情况的数量,求出所获奖品总值不低于30元的概率为多少即可.【解析】(1)抽中20元奖品的概率为14;(2)设分别对应着5,10,15,20(单位:元)奖品的四张牌分别为A 、B 、C 、D.画树状图如下:由树状图知,共有12种可能的结果:AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC ,其中所获奖品总值不低于30元有4种:BD 、CD 、DB 、DC ,所以,P(所获奖品总值不低于30元)=412=13.所以,所获奖品总值不低于30元的概率为13.【点睛】(1)此题主要考查了概率公式,要熟练掌握,解答此题的关键是要明确:随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.(2)此题还考查了列举法与树状图法求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.20.如图,是由转盘和箭头组成的两个装置,装置A ,B 的转盘分别被分成四、三个面积相等的扇形,装置A 上的数字分别是1,2,3,4,装置B 上的数字分别是3,4,5,这两个装置除了表面数字不同外,其它构造完全相同.现在分别同时用力转动A,B两个转盘.(1)A转盘指向偶数的概率是.(2)请用列表法或画树状图的方法,求A、B转盘指向的数字之和不小于6的概率.21.对一批家电进行抽检、统计合格的数量,列表如下:抽检数量/台300400500600700合格频数282352445546a合格频率b0.880.890.910.9(1)求a,b的值.(2)估计这批家电的合格率.(3)若售出了3000台家电,其中存在质量问题的大约有几台?22.“石头、剪子、布”是一个广为流传的游戏,规则是:小赵、小张两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设小赵、小张两人每次都随意并且同时做出3种手势中的1种.(1)小赵每次做出“石头”手势的概率为________;(2)用画树状图或列表的方法,求小赵赢的概率.共有9种等可能的情况数,其中小赵赢的有3种,则小赵赢的概率是1 3.【点睛】本题考查了列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.“双减”政策实施后,某校为丰富学生的课余生活,开设了A书法,B绘画,C舞蹈,D乐器,E武术共五类兴趣班.为了解学生对这五类兴趣班的喜爱情况,随机抽取该校部分学生进行了问卷调查,并将调查结果整理后绘制成两幅不完整的统计图.请根据统计图信息回答下列问题.(1)本次抽取调查的学生共有______人,m=______,n=______,并补全条形统计图;(2)估计该校2600名学生中喜爱“乐器”兴趣班的人数约为______人;(3)九(1)班有王红和李明等五人参加了“乐器”兴趣班,在班级联欢会上,班主任从他们中随机抽取两人上。
高二数学必修3第三章概率测试题卷(附解析)

高二数学必修 3 第三章概率测试题卷(附分析)数学,作为人类思想的表达形式,反应了人们踊跃进步的意志、周密周详的逻辑推理及对完满境地的追求。
小编准备了高二数学必修 3 第三章概率测试题卷,希望你喜爱。
一、选择题:在每题给出的四个选项中,只有一项为哪一项切合题目要求的,请把正确答案的代号填在题后的括号内(每题5 分,共 50 分).1.以下事件:①假如a,b 是实数,那么b+a=a+b;②某地 1 月1 日刮西寒风 ;③当 x 是实数时, x2④一个电影院某天的上座率超出 50%.此中是随机事件的有()A.1 个B.2 个C.3 个D.4 个2.以下试验是古典概型的是()A. 从装有大小完整同样的红、绿、黑各一球的袋子中随意拿出一球,察看球的颜色B.在适合条件下,种下一粒种子,察看它能否抽芽C.连续扔掷两枚质地平均的硬币,察看出现正面、反面、一正面一反面的次数D.从一组直径为 (1200.3)mm 的部件中拿出一个,丈量它的直径3.红、黑、蓝、白 4 张牌随机地散发给甲、乙、丙、丁 4 个人,每人分得 1 张,事件甲分得红牌与事件乙分得红牌是()A. 对峙事件B.不行能事件C.互斥事件但不是对峙事件D. 以上答案都不对4.从一箱产品中随机地抽取一件,设事件A={ 抽到一等品 } ,事件 B={ 抽到二等品 } ,事件 C={ 抽到三等品 } ,且已知P(A)=0.65 , P(B)=0.2 , P(C)=0.1.则事件抽到的是二等品或三等品的概率为 ()5.甲乙两人下棋,和棋的概率是12,乙获胜的概率是13,则甲不输的概率是( )A.16B.13C.12D.236.某人向一个半径为 6 的圆形标靶射击,假定他每次射击必定会中靶,且射中靶内各点是随机的,则这人射击中靶点与靶心的距离小于 2 的概率为()A.113B. 19 C .14 D.127.某人睡午觉悟来,发现表停了,他翻开收音机,想听电台报时,则他等候时间不多于15 分钟的概率为 ()A.12B.14C.23D.348.在区间 (0,1)内任取两个实数,则这两个实数的和大于13 的概率为()A.1718B.79C.29D.1189.下课后教室里最后科学实验剩下 2 位男同学和 2 位女同学,四位同学先后走开,则第二位走的是男同学的概率是()A.12B.13C.14 D .1510.为了检查某厂 2 000 名工人生产某种产品的能力,随机抽查了 20 位工人某天生产该产品的数目,产品数目的分组区间为 [10,15) , [15,20) , [20,25) ,[25,30) , [30, 35] ,频次散布直方图以下图 .工厂规定从生产低于 20 件产品的工人中随机地选用 2 位工人进行培训,则这 2 位工人不在同一组的概率是 ()A.110B.715C.815D.1315二、填空题 (每题 6 分,合计 24 分 ).11.在区间 [-2,2] 上随机取一个数x ,则 x[0,1] 的概率为 ______ __.12.从 1,2,3,4 这四个数中一次随机取两个数,则此中一个数是另一个的两倍的概率是________.13.为了测算如图的暗影部分的面积,作一个边长为 6 的正方形将其包括在内,并向正方形内随机扔掷800 个点 .已知恰有200个点落在暗影部分,据此,可预计暗影部分的面积是________.14.有五根细木棒,长度分别为1,3,5,7,9(cm).从中任取三根,能搭成三角形的概率是三、解答题 ( 共 76 分 ).15.(此题满分 12 分)某种日用品上市此后求过于供,为知足更多的花费者,某商场在销售的过程中要求购置这类产品的顾客一定参加以下活动:摇动如右图所示的游戏转盘(上边扇形的圆心角都相等),依据指针所指地区的数字购置商品的件数,每人只好参加一次这个活动.(1)某顾客参加活动,求购置到许多于 5 件该产品的概率;(2)甲、乙两位顾客参加活动,求购置该产品件数之和为10的概率 .16.(此题满分 12 分) 甲、乙两人玩一种游戏,每次由甲、乙各出 1 到 5 根手指头,若和为偶数则算甲赢,不然算乙赢.(1)若以 A 表示和为 6 的事件,求P(A);(2)现连玩三次,以 B 表示甲起码赢一次的事件, C 表示乙起码赢两次的事件,则 B 与 C 能否为互斥事件?试说明原因 ;(3)这类游戏规则公正吗?试说明原因 .17.(此题满分 12 分)某××局对 1 000 株树木的生长状况进行检查,此中槐树 600 株,银杏树 400 株 .现用分层抽样方法从这1 000 株树中随机抽取100 株,此中银杏树树干周长(单位:cm)的抽查结果以下表:树干周长 [30,40)[40,50)[50,60)[60,70)株数 418x6(1)求 x 的值 ;(2)若已知树干周长在30~ 40 cm 之间的 4 株银杏树中有 1 株患有虫害,现要对这 4 株树逐个进行排查直至找出患虫害的树木为止 .求排查的树木恰巧为 2 株的概率 .18.(此题满分 12 分)将一枚骰子先后扔掷两次,察看向上的点数,(1)求点数之和是 5 的概率 ;(2)设 a, b 分别是将一枚骰子先后扔掷两次向上的点数,求等式 2a-b=1 成立的概率 .19.(此题满分 14 分)已知甲袋中有 1 只白球、 2 一只红球,乙袋中有 2 只白球、 2 只红球,现从两袋中各取一球.(1)两球颜色同样的概率;(2)起码有一个白球的概率,20.(此题满分 14 分)PM2.5 是指大气中直径小于或等于 2.5 微米的颗粒物,也称为可人肺颗粒物,我国 PM2.5 标准采纳世卫组织设定的最宽容值,PM2.5 日均值在 35 微克 /立方米以下空气质量为一级;在 35 微克 /立方米~ 75 微克 /立方米之间空气质量为二级;在 75 微克 /立方米及其以上空气质量为超标.某试点城市××局从该市市里 2019 年整年每日的 PM2.5 监测数据中随机抽取6 天的数据作为样本,监测值茎叶图如图(十位为茎,个位为叶 ),若从这 6 天的数据中随机抽出 2 天,(1)求恰有一天空气质量超标的概率;(2)求至多有一天空气质量超标的概率.参照答案一、选择题1. [答案] B[ 分析 ] 由随机事件的观点得:①③是必定事件,②④是随机事件 .2. [答案] A[ 分析 ] 依据古典概型拥有有限性和等可能性进行判断.3. [答案] C[ 分析 ] 记事件 A= 甲分得红牌,记事件B=乙分得红牌,它们不会同时发生,因此是互斥事件,但事件 A 和事件 B 也可能都不发生,因此他们不是对峙事件,应选 C.4. [答案] D[ 分析 ] 由题意知事件 A 、 B、 C 互为互斥事件,记事件D=抽到的是二等品或三等品,则P(D)=P(BC)=P(B)+P(C)=0.2+0.1=0.3 ,应选 D.5. [答案] D[ 分析 ] 记事件 A= 乙获胜,记事件B=甲不输,由题意知:事件 A 与事件 B 为对峙事件, P(A)=13 ,因此 P(B)=1-13=23 ,应选 D.6. [答案] B[ 分析 ] 这人射击击中靶点与靶心的距离小于 2 的概率为2262=19.7. [答案] B[ 分析 ] 该人在 0~60 分钟内随意时辰醒来是等可能的,且电台是整点报时,记事件 A= 等候时间不多于15 分钟,则满足事件 A 的地区为: [45,60] ,因此 P(A)=1560=14 ,应选 B.8. [答案] A[ 分析 ] 在区间 (0, 1) 内任取两个实数分别为x ,y,则 013,则其所表示地区为图中暗影响部分.因此 P(A)=S 暗影 SM=1-12131311=1718.9. [答案] A[ 分析 ] 设 2 位男同学分别用a,b 表示,2 位女同学分别用c,d表示,则可用树状图将四位同学先后走开教室的全部可能结果表示为以下图的形式 .共 24 种.记事件 A= 第二位走的是男同学,则事件 A 所含基本领件个数为12 个,因此 P(A)=1224=12 ,应选 A.10. [答案 ] C[ 分析 ] 依据频次散布直方图可知产品件数在[10,15) ,[15,20)内的人数分别为50.0220=2,50.0420=4 ,设生产产品件数在[10,15) 内的 2 人分别是 A , B,设生产产品件数在[15,20) 内的 4 人分别为 C,D , E, F,则从生产低于 20 件产品的工人中随机地选用 2 位工人的结果有 (A ,B) ,(A ,C),(A ,D) ,(A , E), (A , F), (B , C), (B , D), (B , E), (B , F), (C,D),(C,E),(C, F),(D,E),(D, F), (E, F),共 15 种 . 2位工人不在同一组的结果有(A ,C),(A ,D),(A ,E),(A ,F),(B,C),(B ,D) ,(B ,E),(B ,F),共 8 种. 则选用这2人不在同一组的概率为815.二、填空题11. [答案 ] 14[ 分析 ] x[0,1] 的概率为 1-02--2=14.12. [答案 ] 13[ 分析 ] 1,2,3,4 这四个数中一次随机取两个数,全部可能的取法有 6 种,知足此中一个数是另一个的两倍的全部可能的结果有 (1,2), (2,4) 共 2 种取法,因此此中一个数是另一个的两倍的概率是26=13.13. [答案 ] 9[ 分析 ] 设暗影部分的面积为S,向正方形内随机扔掷 1 个点,落在暗影部分的概率的预计值是201900=14,则 SS 正方形=14,又正方形的面积是36,则 S=1436=9.14. [ 答案 ] 310[ 分析 ] 该试验全部可能结果为: (1,3,5) ,(1,3,7) , (1,3,9) ,(1,5,7),(1,5,9), (1,7,9) ,(3,5,7) , (3,5,9) ,(3,7,9), (5,7,9)共10 种,记事件A= 三根细木棒能搭成三角形,则事件A所含的基本领件为:(3,5,7) , (3,7,9) , (5,7,9) 共 3 种,因此P( A)=310.三、解答题15.[ 分析 ] (1) 设购置到许多于 5 件该产品为事件 A ,则P(A)=812=23.(2)设甲、乙两位顾客参加活动,购置该产品数之和为10 为事件 B,甲、乙购置产品数的状况共有1212=144 种,则事件 B 包括 (1,9) ,(2,8),(3,7) ,(4,6) ,(5,5) ,(6,4) ,(7,3) ,(8,2),(9,1) ,共 9 种状况,故P(B)=9144=116.16.[ 分析 ] (1) 令 x ,y 分别表示甲、乙出的手指数,则基本领件空间可表示为 S={(x , y)|xN* , yN*,15,15}.由于 S 中点的总数为55=25,因此基本领件总数n=25.事件 A 包括的基本领件为(1,5), (2,4), (3,3), (4,2) ,(5,1) ,共 5 个,因此 P(A)=525=15.(2)B 与 C 不是互斥事件,如甲赢一次,乙赢两次的事件中,事件 B 与 C 是同时发生的 .(3)由 (1)知,和为偶数的基本领件数为13,即甲赢的概率为1325,乙赢的概率为1225,因此这类游戏规则不公正.17. [ 分析 ] (1) 由于用分层抽样方法从这 1 000 株树木中随机抽取 100 株,因此应当抽取银杏树1004001 000=40( 株 ),故4+18+x+6=40 ,因此 x=12.(2)记这 4 株树为树1,树 2,树 3,树 4,不如设树 4 就是那株患虫害的树 .设恰幸亏排查到第二株时发现树 4 为事件 A.基本领件空间为 ={( 树 1,树 2), (树 1,树 3), (树 1,树 4),(树2,树 1), (树 2,树 3), (树 2,树 4), (树 3,树 1),(树3,树2),( 树 3,树 4),(树 4,树 1),(树 4,树 2), (树 4,树 3), } 共 12 个基本领件,此中事件 A 中包括的基本领件有 (树 1,树 4),(树 2,树 4),(树 3,树 4),共 3 个,因此恰幸亏排查到第二株时发现患虫害树的概率为P(A)=312=14.18. [ 解] (1) 该试验全部可能的结果为:(1,1),(1,2),(1,3),(1,4) ,(1,5),(1,6) ,(2,1) , (2,2) ,(2,3) ,(2,4) ,(2,5) ,(2,6) ,(3,1) ,(3,2),(3,3) ,(3,4) ,(3,5) ,(3,6), (4,1), (4,2), (4,3), (4,4),(4,5),(4,6) ,(5,1) ,(5,2) ,(5,3) ,(5,4) ,(5,5) ,(5,6) ,(6,1) ,(6,2),(6,3) ,(6,4),(6,5) ,(6,6),基本领件总数为 36,记事件 A= 点数之和是5,则事件 A ,所含的基本领件为: (1,4),(2,3),(3,2) ,(4,1),基本领件总数为 4,因此 P(A)=436=19. (2)要使等式 2a-b=1 成立,则须 a-b=0,即先后扔掷两次向上的点数相等,记事件 B= 向上的点数相等,则事件 B 所含的基本领件为: (1,1), (2,2), (3, 3), (4,4),(5,5) ,(6,6) ,基本领件总数为 6,因此 P(B)=636=16.19.[ 分析 ] 设甲袋中 1 只白球记为 a1,2 只红球记为 b1,b2;乙袋中 2 只白球记为 a 2,a3,2 只红球记为b3,b4.因此从两袋中各取一球包括基本领件(a1, a2), (a1, a3), (a1, b3),(a1,b4),(b1,a2),(b1,a3),(b1,b3),(b1,b4),(b2,a2),(b2,a3),(b2,b3),(b2, b4),共有 12 种 .(1)设 A 表示从两袋中各取一球,两球颜色同样,因此事件A包括基本领件 (a1,a2),(a1,a3),(b1,b3),(b1,b4),(b2,b3),(b2,b4) ,共有 6 种.因此 P(A)=612=12.(2)设 B 表示从两袋中各取一袋,起码有一个白球,因此事件B 包括基本事件(a1,a2),(a1,a3),(a1,b3),(a1,b4),(b1,a2),(b1,a3),(b2,a2),(b2 , a3),共有 8 种.因此P(B)=812=23.20. [ 解] 由茎叶图知: 6 天中有 4 天空气质量未超标,有2天空气质量超标.记未超标:的 4 天为 a, b,c,d,超标的两天为e,f,则从6天中抽取 2 天的全部状况为: ab,ac,ad,ae,af,bc,bd,be, bf, cd,ce, cf, de, df ,ef,基本领件数为 15.(1)记 6 天中抽取 2 天,恰有 1 天空气质量超标为事件 A ,可能结果为: ae,af,be, bf, ce,cf ,de, df,基本领件数为8, P(A)=815.察看内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与少儿生活靠近的,能理解的察看内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 概 率 练 习 一一、选择题(本大题共12小题,每小题5分,共60分)1.下列事件中不是随机事件的是( )A .某人购买福利彩票中奖B .从10个杯子(8个正品,2个次品)中任取2个,2个均为次品C .在标准大气压下,水加热到100℃沸腾D .某人投篮10次,投中8次2.某班有男生25人,其中1人为班长,女生15人,现从该班选出1人,作为该班的代表参加座谈会,下列说法中正确的是( )①选出1人是班长的概率为140; ②选出1人是男生的概率是125; ③选出1人是女生的概率是115; ④在女生中选出1人是班长的概率是0. A .①② B .①③C .③④D .①④3.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是( )A .12B .13C .14D .184.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )A .对立事件B .不可能事件C .互斥但不是对立事件D .以上答案都不对5.在2010年广州亚运会火炬传递活动中,在编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为( )A .110B .310C .710D .9106.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的哪几个?( )A .①②B .①③C .②③D .①②③7.矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在阴影部分内的黄豆数为204颗,以此实验数据为依据可以估计出阴影部分的面积约为( )A .16B .16.32C .16.34D .15.968.在区间(15,25]内的所有实数中随机取一个实数a ,则这个实数满足17<a<20的概率是( ) A .13 B .12C .310D .7109.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( )A .0.45B .0.67C .0.64D .0.3210.一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为( )A .9100B .350C .3100D .2911.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m>n 的概率为( ) A .710 B .310C .35D .2512.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A . π4B . π12C .1-πD .1-π 题号1 2 3 4 5 6 7 8 9 10 11 12 答案13.从一箱苹果中任取一个,如果其重量小于200克的概率为0.2,重量在[200,300]内的概率为0.5,那么重量超过300克的概率为________.14.在抛掷一颗骰子的试验中,事件A 表示“不大于4的偶数点出现”,事件B 表示“小于5的点数出现”,则事件A +B 发生的概率为________.(B 表示B 的对立事件)15.先后两次抛掷同一枚骰子,将得到的点数分别记为a ,b.将a ,b,5分别作为三条线段的长,则这三条线段能构成等腰三角形的概率是________.16.设b 和c 分别是先后抛掷一颗骰子得到的点数,则方程x 2-bx +c =0有实根的概率为________.三、解答题(本大题共6小题,共70分)17.(10分)经统计,在某储蓄所一个营业窗口排队等候的人数及相应概率如下:排队人数 01 2 3 4 5人及5人以上 概率0.1 0.16 0.3 0.3 0.1 0.04 (1)至多2(2)至少3人排队等候的概率是多少?18.(12分)为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂.(1)求从A,B,C区中分别抽取的工厂个数;(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率.19.(12分)在区间(0,1)上随机取两个数m,n,求关于x的一元二次方程x2-nx+m=0有实根的概率.20.(12分)某市地铁全线共有四个车站,甲、乙两人同时在地铁第一号车站(首发站)乘车.假设每人自第2号车站开始,在每个车站下车是等可能的.约定用有序实数对(x,y)表示“甲在x号车站下车,乙在y号车站下车”.(1)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;(2)求甲、乙两人同在第3号车站下车的概率;(3)求甲、乙两人在不同的车站下车的概率.21.(12分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完全相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一天能赚多少钱?22.(12分)汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):10辆.(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.第三章 概 率 练 习 二一、选择题(本大题共12小题,每小题5分,共60分)1.从一批产品(其中正品、次品都多于2件)中任取2件,观察正品件数和次品件数,下列事件是互斥事件的是( )①恰好有1件次品和恰好有两件次品;②至少有1件次品和全是次品;③至少有1件正品和至少有1件次品;④至少1件次品和全是正品.A .①②B .①③C .③④D .①④2.平面上有一组平行线,且相邻平行线间的距离为3 cm ,把一枚半径为1 cm 的硬币任意抛掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( )A .14B .13C .12D .233.某班有50名学生,其中男、女各25名,若这个班的一个学生甲在街上碰到一位同班同学,假定每两名学生碰面的概率相等,那么甲碰到异性同学的概率大还是碰到同性同学的概率大( )A .异性B .同性C .同样大D .无法确定4.在区间⎣⎡⎦⎤-π2,π2上随机取一个数x ,cos x 的值介于0到12之间的概率为( ) A .13 B .2π C .12 D .235.已知某运动员每次投篮命中的概率低于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458569 683 431 257 393 027 556 488730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A .0.35B .0.25C .0.20D .0.156.12本相同的书中,有10本语文书,2本英语书,从中任意抽取3本的必然事件是( )A .3本都是语文书B .至少有一本是英语书C .3本都是英语书D .至少有一本是语文书7.某人射击4枪,命中3枪,3枪中有且只有2枪连中的概率是( )A .34B .14C .13D .128.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为( ) A .15 B .25C .35D .459.已知集合A ={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A 中选取不相同的两个数,构成平面直角坐标系上的点,观察点的位置,则事件A ={点落在x 轴上}与事件B ={点落在y 轴上}的概率关系为( )A .P(A)>P(B)B .P(A)<P(B)C .P(A)=P(B)D .P(A)、P(B)大小不确定10.如图所示,△ABC 为圆O 的内接三角形,AC =BC ,AB 为圆O 的直径,向该圆内随机投一点,则该点落在△ABC 内的概率是( )A .1B .2C .4πD .12π11.若以连续两次掷骰子分别得到的点数m ,n 作为点P 的坐标(m ,n),则点P 在圆x 2+y 2=25外的概率是( )A .536B .712C .512D .1312.如图所示,两个圆盘都是六等分,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A .49B .29C .23D .1313.已知半径为a 的球内有一内接正方体,若球内任取一点,则该点在正方体内的概率为________.14.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为________.15.在半径为1的圆的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________.16.在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V 3的概率是____________.三、解答题(本大题共6小题,共70分)17.(10分)已知函数f(x)=-x 2+ax -b.若a ,b 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率.18.(12分)假设向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,求军火库发生爆炸的概率.19.(12分)如右图所示,OA =1,在以O 为圆心,OA 为半径的半圆弧上任取一点B ,求使△AOB 的面积大于等于14的概率.20.(12分)甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i ,j)分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.21.(12分)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A 1被选中的概率;(2)求B 1和C 1不全被选中的概率.22.(12分)已知实数a ,b ∈{-2,-1,1,2}.(1)求直线y =ax +b 不经过第四象限的概率;(2)求直线y =ax +b 与圆x 2+y 2=1有公共点的概率.。