线性规划知识总结

合集下载

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在实际生活中,很多问题都可以归结为线性规划问题,例如资源分配、生产计划、运输调度等。

下面我们将通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。

一、线性规划问题的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。

其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。

二、线性规划问题的求解方法1、图解法对于只有两个决策变量的线性规划问题,可以使用图解法来求解。

其步骤如下:(1)画出约束条件所对应的可行域。

(2)画出目标函数的等值线。

(3)根据目标函数的优化方向,平移等值线,找出最优解所在的顶点。

例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10\\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件所对应的可行域:对于$x + 2y \leq 8$,当$x = 0$时,$y = 4$;当$y = 0$时,$x =8$,连接这两点得到直线$x +2y =8$,并取直线下方的区域。

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结标题:线性规划知识点总结引言概述:线性规划是运筹学中的一种最基本的数学规划方法,广泛应用于生产、运输、金融等领域。

通过线性规划,可以优化资源分配,最大化利润或者最小化成本。

本文将对线性规划的基本概念、线性规划模型、解决方法、应用领域和优缺点进行总结。

一、基本概念1.1 线性规划的定义:线性规划是一种数学优化方法,其目标是在一组线性约束条件下,找到使目标函数取得最大值或者最小值的决策变量的取值。

1.2 决策变量和目标函数:线性规划中,决策变量是需要确定的未知数,而目标函数则是需要优化的目标,通常是最大化利润或者最小化成本。

1.3 约束条件:线性规划模型中的约束条件是对决策变量的限制,可以是等式约束或者不等式约束,用来限制决策变量的取值范围。

二、线性规划模型2.1 标准形式和非标准形式:线性规划模型可以分为标准形式和非标准形式,标准形式要求目标函数是最小化形式,约束条件是等式约束;非标准形式则没有这些限制。

2.2 线性规划的矩阵形式:线性规划可以用矩阵形式表示,目标函数和约束条件可以用矩阵的乘法来表示,这样可以简化问题的求解过程。

2.3 整数规划和混合整数规划:在实际应用中,有时需要考虑变量的取值只能是整数的情况,这时就需要用到整数规划或者混合整数规划。

三、解决方法3.1 单纯形法:单纯形法是解决线性规划问题的经典方法,通过不断挪移顶点来找到最优解,是一种高效的求解方法。

3.2 对偶理论:对偶理论是线性规划的重要理论基础,通过对原问题的对偶问题进行求解,可以得到原问题的最优解。

3.3 整数规划的分支定界法:对于整数规划问题,可以采用分支定界法来求解,通过不断分支和剪枝来逐步逼近最优解。

四、应用领域4.1 生产计划优化:线性规划可以用来优化生产计划,确定最佳生产量和资源分配,以最大化利润或者最小化成本。

4.2 运输网络优化:在物流领域,线性规划可以用来优化运输网络,确定最佳的运输路径和运输量,以提高运输效率。

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结线性规划(Linear Programming)是一种优化问题的数学方法,用于在一定的约束条件下,寻找一个线性目标函数的最优解。

线性规划常被应用于经济、生产、管理等领域,旨在优化资源的利用,实现目标的最大化或最小化。

本文将对线性规划的基本概念、问题建模、解决方法以及应用领域进行总结。

一、基本概念1.1 目标函数目标函数是线性规划的核心部分,通常用来衡量系统的效益。

它是一个关于决策变量的线性函数,其形式可以是最大化或最小化。

1.2 约束条件约束条件用来限制决策变量的取值范围,确保问题的解满足实际情况。

约束条件可以是等式约束或不等式约束,也可以包含多个条件。

1.3 决策变量决策变量是问题中的未知数,决策者需要根据实际情况确定其取值范围,以达到最优解。

二、问题建模2.1 目标函数的确定根据实际问题确定目标函数,并明确最大化或最小化的目标。

2.2 约束条件的设定根据问题的实际情况,将约束条件转化为线性等式或不等式,并将其表示成一组数学表达式。

2.3 决策变量的确定根据问题的要求,确定决策变量的取值范围,可用数学符号表示。

三、解决方法3.1 图形法图形法是线性规划中最直观的解法,适用于二维或三维线性规划问题。

通过绘制等式或不等式的图形,找出目标函数的最优解。

3.2 单纯形法单纯形法是一种高效的解法,适用于多维线性规划问题。

通过构建初始可行解,通过迭代计算,逐步接近最优解。

3.3 整数规划整数规划是线性规划的扩展,要求决策变量取值为整数。

其求解方法包括分支定界法、割平面法等。

四、应用领域4.1 生产与运作管理线性规划可用于生产计划、物流优化、资源调度等问题,通过最优化资源利用,降低成本、提高效益。

4.2 金融领域线性规划被广泛应用于证券组合优化、资产配置、风险管理等领域,帮助投资者做出最佳投资决策。

4.3 能源与环境管理线性规划用于能源生产、污染物排放控制等问题,通过均衡能源利用,降低环境影响。

线性规划例题和知识点总结

线性规划例题和知识点总结

线性规划例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

下面通过一些例题来帮助大家更好地理解线性规划,并对相关知识点进行总结。

一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值问题。

线性约束条件通常是由一组线性等式或不等式组成。

例如:$2x +3y ≤ 12$,$x y ≥ 1$等。

目标函数一般表示为$Z = ax + by$的形式,其中$a$、$b$为常数,$x$、$y$为决策变量。

可行解是满足所有约束条件的解,可行域是所有可行解构成的集合。

最优解则是使目标函数达到最大值或最小值的可行解。

二、线性规划的例题例 1:某工厂生产甲、乙两种产品,已知生产甲产品 1 件需消耗 A原料 3 千克、B 原料 2 千克;生产乙产品 1 件需消耗 A 原料 2 千克、B 原料 4 千克。

A 原料有 12 千克,B 原料有 16 千克。

甲产品每件利润为 5 元,乙产品每件利润为 8 元,问该工厂应如何安排生产,才能使利润最大?设生产甲产品$x$件,生产乙产品$y$件。

则约束条件为:$\begin{cases}3x +2y ≤ 12 \\ 2x +4y ≤ 16 \\x ≥ 0, y ≥0\end{cases}$目标函数为$Z = 5x + 8y$画出可行域,通过解方程组找到可行域的顶点坐标,分别代入目标函数计算,可得当$x = 2$,$y = 3$时,利润最大为$34$元。

例 2:某运输公司有两种货车,每辆大型货车可载货 8 吨,每辆小型货车可载货 5 吨。

现要运输 60 吨货物,且大型货车的使用成本为每次 100 元,小型货车的使用成本为每次 60 元,问如何安排车辆才能使运输成本最低?设使用大型货车$x$辆,小型货车$y$辆。

约束条件为:$\begin{cases}8x +5y ≥ 60 \\x ≥ 0, y ≥ 0\end{cases}$目标函数为$Z = 100x + 60y$画出可行域,计算顶点坐标代入目标函数,可知当$x = 5$,$y =4$时,成本最低为$740$元。

线性规划知识点总结

线性规划知识点总结

线性规划知识点总结一、概述线性规划是一种数学优化方法,用于在给定的约束条件下最大化或最小化线性目标函数。

它在各个领域中都有广泛的应用,包括经济学、管理科学、工程等。

本文将对线性规划的基本概念、模型构建、解法以及应用进行详细总结。

二、基本概念1. 可行解:满足所有约束条件的解称为可行解。

2. 最优解:在所有可行解中,使目标函数达到最大或最小值的解称为最优解。

3. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。

4. 约束条件:线性规划的变量需要满足一系列线性等式或不等式,称为约束条件。

三、模型构建1. 决策变量:线性规划中需要决策的变量,通常用x1, x2, ..., xn表示。

2. 目标函数:根据问题的要求,构建一个线性函数作为目标函数。

3. 约束条件:根据问题的限制条件,构建一系列线性等式或不等式作为约束条件。

四、解法1. 图形法:适用于二维线性规划问题,通过绘制约束条件的图形,找出目标函数的最优解。

2. 单纯形法:适用于多维线性规划问题,通过迭代计算,找出最优解。

3. 整数规划法:适用于决策变量需要为整数的线性规划问题,通过限制变量的取值范围,找出最优解。

4. 网络流法:适用于网络优化问题,通过建立网络模型,找出最优解。

五、应用1. 生产计划:线性规划可以帮助企业制定最优的生产计划,以最小化成本或最大化利润。

2. 资源分配:线性规划可以帮助政府或组织合理分配资源,以满足各方面的需求。

3. 运输问题:线性规划可以帮助解决物流运输问题,以最小化运输成本。

4. 投资组合:线性规划可以帮助投资者选择最优的投资组合,以最大化收益或最小化风险。

六、案例分析以生产计划为例,假设某公司有两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为15元。

公司有两个工厂,分别生产产品A和产品B。

工厂1每天生产产品A需要耗费2小时,生产产品B需要耗费1小时;工厂2每天生产产品A需要耗费1小时,生产产品B需要耗费3小时。

线性规划的约束条件与解的存在性知识点总结

线性规划的约束条件与解的存在性知识点总结

线性规划的约束条件与解的存在性知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在解决各种实际问题中,线性规划发挥着重要作用,而理解线性规划的约束条件与解的存在性是掌握这一方法的关键。

一、线性规划的基本概念线性规划问题通常是在一组线性约束条件下,求一个线性目标函数的最大值或最小值。

这些约束条件和目标函数都是由线性方程或线性不等式组成。

目标函数可以表示为:Z = c₁x₁+ c₂x₂+… + cnxn ,其中 cj(j =1, 2, …, n)是常数,xj(j =1, 2, …, n)是决策变量。

约束条件则可以写成:a₁₁x₁+ a₁₂x₂+… + a₁nxn ≤(≥、=)b₁;a₂₁x₁+ a₂₂x₂+… + a₂nxn ≤(≥、=)b₂;…… ;am₁x₁+ am₂x₂+… +amnxn ≤(≥、=)bm 。

二、约束条件约束条件是对决策变量取值的限制。

它们决定了可行解的范围。

1、不等式约束不等式约束可以分为小于等于(≤)、大于等于(≥)两种情况。

例如,3x +2y ≤ 12 表示了一个约束条件,意味着变量 x 和 y 的取值组合必须使得 3x + 2y 的值不超过 12 。

2、等式约束等式约束形如 ax + by = c ,表示变量 x 和 y 的取值组合必须满足该等式。

3、非负约束在许多实际问题中,决策变量通常要求是非负的,即x ≥ 0 ,y ≥ 0 。

这是因为某些资源或数量不能为负数。

三、可行解与可行域满足所有约束条件的解称为可行解。

所有可行解的集合构成可行域。

例如,对于约束条件:x +y ≤ 5 ,x ≥ 0 ,y ≥ 0 ,点(2, 2) 是一个可行解,因为 2 + 2 =4 ≤ 5 ,且2 ≥ 0 ,2 ≥ 0 。

而所有满足这些条件的点(x, y) 构成的区域就是可行域。

可行域通常是一个凸多边形或凸多面体。

凸的性质意味着如果在可行域中取两个点,那么连接这两个点的线段上的所有点也都在可行域内。

线性规划例题和知识点总结

线性规划例题和知识点总结

线性规划例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在实际生活中,有很多问题都可以通过线性规划来解决,比如资源分配、生产计划、运输调度等。

下面我们通过一些具体的例题来深入理解线性规划,并对相关知识点进行总结。

一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值。

线性规划的数学模型通常可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_i$是约束条件的右端项。

二、线性规划的解题步骤1、建立数学模型:根据实际问题,确定决策变量、目标函数和约束条件。

2、画出可行域:将约束条件在直角坐标系中表示出来,得到可行域。

3、求出最优解:在可行域内,通过寻找目标函数的等值线与可行域边界的交点,求出最优解。

三、例题分析例 1:某工厂生产甲、乙两种产品,已知生产 1 单位甲产品需要消耗 A 资源 2 单位,B 资源 3 单位,可获利 5 万元;生产 1 单位乙产品需要消耗 A 资源 3 单位,B 资源 2 单位,可获利 4 万元。

现有 A 资源12 单位,B 资源 10 单位,问如何安排生产,才能使工厂获得最大利润?解:设生产甲产品$x_1$单位,生产乙产品$x_2$单位。

运筹学知识点总结

运筹学知识点总结

运筹学知识点总结一、线性规划线性规划是运筹学中最基础、最重要的一个分支。

它的基本形式可以表示为:Max cxs.t. Ax ≤ bx ≥ 0其中,c是一个n维的列向量,x是一个n维的列向量,A是一个m×n的矩阵,b是一个m维的列向量。

线性规划的目标是找到满足约束条件的x,使得目标函数cx取得最大值。

而当目标是最小化cx时,则是最小化问题。

线性规划问题有着很好的性质,它的最优解一定存在且一定在可行域边界上。

而且,很多非线性规划问题也可以通过线性化转化成线性规划问题,因此线性规划具有广泛的适用范围。

二、整数规划整数规划是线性规划的一个扩展,它在线性规划的基础上增加了对决策变量的整数取值限制。

这样的问题往往更加接近实际情况。

整数规划问题的一般形式可以表示为:Max cxs.t. Ax ≤ bx ∈ Zn整数规划问题的求解难度要比线性规划问题高很多。

因为整数规划问题是NP-hard问题,也就是说它没有多项式时间的算法可以解决。

但是对于特定结构的整数规划问题,可以设计专门的算法来求解。

比如分枝定界法、动态规划等。

整数规划问题在许多领域都有着广泛的应用,比如生产调度、设备配置、网络设计等。

三、动态规划动态规划是一种用来求解具有重叠子问题结构的最优化问题的方法。

它的核心思想是将原问题分解成一系列相互重叠的子问题,然后利用子问题的最优解来构造原问题的最优解。

动态规划问题的一般形式可以表示为:F(n) = max{F(n-1), F(n-2)+cn}其中,F(n)是问题的最优解,cn是问题的参数,n是问题的规模。

动态规划问题的求解是一个自底向上的过程,它依赖于子问题的最优解,然后通过递推关系来求解原问题的最优解。

动态规划在资源分配、路径优化、排程问题等方面有着广泛的应用。

四、决策分析决策分析是一种用来帮助人们做出最佳决策的方法。

它可以应用在各种风险决策、投资决策、生产决策等方面。

决策分析的一般形式可以表示为:Max E(u(x))其中,E(u(x))是对决策结果的期望效用,u(x)是决策结果的效用函数,x是决策变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划知识总结1. 二元一次不等式(组)表示的平面区域(1)直线0:=++C By Ax l 把平面内不在直线上的点分成两部分,对于同一侧所有点的坐标代入Ax +By +C 中所得的值的符号都相同,异侧所有点的坐标代入Ax +By +C 所得的值的符号都相反。

(2)对于直线:l Ax +By +C =0,当B ≠0时,可化为:y =kx +b 的形式。

对于二元一次不等式b kx y +≥表示的平面区域在直线y =kx +b 的上方(包括直线y =kx +b )。

对于二元一次不等式b kx y +≤表示的平面区域在直线y =kx +b 的下方(包括直线y =kx +b )。

注意:二元一次不等式)0(0<>++或C By Ax 与二元一次不等式)0(0≤≥++C By Ax 所表示的平面区域不同,前者不包括直线Ax +By +C =0,后者包括直线Ax +By +C =0。

2. 线性规划我们把求线性目标函数在线性目标条件下的最值问题称为线性规划问题。

解决这类问题的基本步骤是:(1)确定好线性约束条件,准确画出可行域。

(2)对目标函数z =ax +by ,若b >0,则bz取得最大值(或最小值)时,z 也取得最大值(或最小值);若b <0,则反之。

(3)一般地,可行域的边缘点有可能是最值点,有些问题可直接代入边缘点找最值。

(4)注意实际问题中的特殊要求。

说明:1. 线性目标函数的最大值、最小值一般在可行域的顶点处取得;2. 线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数个。

知识点一:二元一次不等式(组)表示的平面区域 例1:基础题1. 不等式组201202y x x y -->⎧⎪⎨-+≤⎪⎩表示的平面区域是( )A B C D2. 如图,不等式组5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩表示的平面区域面积是________________。

3. 如图所示的△ABC ,其平面区域对应的不等式组是________________。

(其中A 、B 、C 三点坐标分别是A (1,2),B (4,1),C (-2,-3))【思路分析】1. 表示的平面区域在直线02>--x y 02=--x y 的上方,不包括直线2--x y =002210221≤+-≤+-y x y x 表示的平面区域在直线的上方,包括直线221+-y x =0,故不等式组表示的平面区域是其公共部分。

2. 先画出不等式组表示的平面区域,再根据区域的形状,计算出面积。

3. 分别写出AB ,AC ,BC 的直线方程,根据对应的区域写出不等式组,注意分析是否包括AB 、AC 、BC 这三条直线。

【解题过程】 1. 不等式组表示的平面区域是不等式02x 2102-x -y ≤+->y ,的公共部分,故选D 。

2. 求出A (3,8)B (3,-3),C )25,25(-。

,11||=AB C 点到AB 的距离是211。

41212111121=⨯⨯=∴∆ABC S 3. AB 的直线方程是:x +3y -7=0,AC 的直线方程是:3y -5x -1=0,BC 的直线方程是:3y -2x +5=0。

故平面区域对应的不等式组是⎪⎩⎪⎨⎧≥+-<--≤-+0523*******x y x y y x 。

【解题后的思考】画不等式组表示的平面区域时应注意是否包括此直线,求平面区域的面积时可根据区域的形状,采用适宜的方法求解。

例2:中档题1. 点P (a ,4)在不等式033>-+y x 表示的平面区域内,且到直线022=+-y x 的距离是5,则点P 的坐标是________。

2. 如图,若不等式组⎪⎩⎪⎨⎧≤+≥+≥43430y x y x x 所表示的平面区域被直线34+=kx y 分为面积相等的两部分,则k =___________。

3. 如图,在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥+-≤-≥-+010101y ax x y x (a >-1为常数)表示的平面区域面积等于2,则a =________。

【思路分析】1. 根据点P 到直线022=+-y x 的距离建立关于a的方程,再根据P 点在不等式033>-+y x 表示的区域内求出a 的取值范围,进而决定a 的取舍。

2. 画出不等式组表示的平面区域,根据直线34+=kx y 过定点34,0()再确定直线所通过的区域内的某一定点,才能保证此直线平分该区域。

然后把区域内的定点坐标代入直线方程,即可求k 的值。

3. 根据区域面积建立等量关系,进而求a 的值。

【解题过程】 1. 310343->⇒>-+a a Θ.1115)2(1|28|22==⇒=-++-a a a 或)或(,411)4,1(P ∴2. 由图得:不等式组表示的平面区域是ABC ∆的边界内部,且包括边界,直线34+=kx y 过定点A 34,0()(即直线x +3y =4与y 轴的交点),要使直线34+=kx y 平分该区域,则直线过BC 的中点,易求BC 的中点坐标为)25,21(。

故37342125=⇒+⨯=k k3. 由已知,得:)1,1(11+⇒⎩⎨⎧=+=a A x ax y由)0,1(011B y x x ⇒⎩⎨⎧=-+=,)1,0(011C y x ax y ⇒⎩⎨⎧=-++=32)1(21|1|21=⇒=+=+=∴∆a a a S ABC 。

【解题后的思考】解决与本例题型相关问题的关键在于:一是理解点在平面区域内的含义(即点的坐标满足不等式),二是准确地画出平面区域,判断可行域的形状。

例3:应用与创新题 1. 已知复数yi x z +=,(),R y x ∈,在复平面内对应的点是M ,若]4,0[],3,0[∈∈y x ,则点M ),(y x 的坐标满足不等式组⎪⎩⎪⎨⎧≥≥≤-+00032y x y x 的概率是_____________。

2. 实数n m ,满足条件⎪⎩⎪⎨⎧≤≤-<≤-≤-+111101n m n m ,则函数n mx y +=的图像经过第一、二、三象限的概率是_______。

【思路分析】1. 点M 的坐标满足不等式组⎪⎩⎪⎨⎧≥≥≤-+00032y x y x ,等价于点M 落在不等式组表示的平面区域内,而对任意的点M 的坐标满足]4,0[],3,0[∈∈y x 是一个矩形区域,故点M 的坐标满足不等式组的概率是不等式组表示的区域面积1S 与矩形区域面积2S 的比。

(几何概率) 2. 画出不等式组⎪⎩⎪⎨⎧≤≤-≤≤-≤-+111101n m n m 表示的平面区域,函数n mx y +=的图像经过第一、二、三象限0,0>>⇔n m ,即满足条件的区域是第一象限的部分。

故所求的概率是第一象限的区域面积与不等式组表示的平面区域面积的比。

【解题过程】 1. 任意点M (x ,y )落在矩形区域ABCD 内,区域面积122=S ,满足条件的区域OAD ∆(如图)的面积49233211=⨯⨯=S 。

故所求的概率是1631249==P2. 画出不等式组⎪⎩⎪⎨⎧≤≤-≤≤-≤-+111101n m n m 表示的平面区域(如图),函数n mx y +=图像经过第一、二、三象限0,0>>⇔n m ,故满足条件的区域是第一象限的阴影部分。

故所求的概率是712721==p【解题后的思考】 解题过程中,几何概率知识常与平面区域面积问题联系在一起,解决此类问题的关键是准确地画出基本事件总数(无限个)对应的区域和某一事件A 发生所对应的区域,设它们的面积分别是S 、1S ,则事件A 发生的概率SS P 1=。

知识点二:求目标函数的最值及线性规划知识的实际应用 例4:基础题1. 设变量x ,y 满足不等式组:⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x则y x z +=2的最大值是____________,最小值是_____________。

2. 已知点P (x ,y )满足条件:k k y x xy x (020⎪⎩⎪⎨⎧≤++≤≥是常数) 若y x z 3+=取得最大值是8,则k =_______________。

【思路分析】1. 先画出不等式组表示的平面区域,(如图)目标函数2z x y =+z x y +-=⇒2,此时z 是直线z x y +-=2在y 轴上的截距。

故z 的最值就是直线z x y +-=2在y 轴上的截距的最值。

作直线:0l x y 2-=(此时z =0,即x =0,y =0),然后作与直线0l 平行的直线。

找到通过区域上某一点,能使直线z x y +-=2在y 轴上的截距的最大、最小值的点(x ,y 的值)就是目标函数的最优解。

最后把点的坐标代入目标函数方程即可求z 的最值。

2. 画出不等式组表示的平面区域,在区域内找出使目标函数y x z 3+=取得最大值的点,即可求出k 的值。

【解题过程】1. 作出不等式组表示的平面区域(如图)作直线:0l x y 2-=(此时z =0,即x =0,y =0),然后作与直线0l 平行的直线,当该直线通过B 点时直线z x y +-=2在y 轴上的截距最小。

该直线通过A 点时,直线z x y +-=2在y 轴上的截距最大。

易求A (5,2),B (1,1)。

故max 25212z =⨯+=min 2113z =⨯+=2. 画出不等式组表示的平面区域目标函数y x z 3+=在点B ()3,3kk --处取得最大值是868)3(33-=⇒=-⨯+-∴k kk 【解题后的思考】对于求线性目标函数的最值问题仍是先要准确地画出可行域,作出目标函数通过原点的直线0l ,然后作平行于直线0l 的直线,在可行域内找到最优解,一般来说,可行域的边缘点有可能就是最值点,有些问题可直接代入边缘点找最值。

例5:中档题。

已知不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求下列目标函数的最值或取值范围。

(1)求z =x +2y -4的最大值。

(2)求2510z 22+-+=y y x 的最小值。

(3)求112++=x y z 的取值范围。

【思路分析】(1)只要求出线性目标函数P =x +2y 的最大值就可以求出z 的最大值。

(2)2510z 22+-+=y y x =(x -0)2+(y -5)2,故z 可以看作是可行域内任意一点P (x ,y )到定点Q (0,5)的距离的平方。

即要求z 的最小值,只要求出|PQ|2的最小值即可。

(3)由112++=x y z =)1()21(2----⨯x y 可知:z 表示可行域内的任意一点P (x ,y )与定点T )21,1(--的连线的斜率的2倍,故要求z 的取值范围,只要求出斜率)1()21(----=x y k 的取值范围即可。

相关文档
最新文档