考研数学(线性代数)知识点归纳
考研数学《线性代数》考点知识点总结

4.两行(列)元素成比例的行列式为零.记作: rj ri k ( cj ci k ) D 0 .
a11 a12 (a1i a1i ) a1n
a11 a12 a1i a1n a11 a12 a1i a1n
5. D
a21
a22
(a2i
a2i )a2n
D
a21
a22
a2i a2n
矩阵转置: 若 Α (aij ) ,则 ΑT (a ji ) (A B)T AT BT ,(AB)T BTAT 若 A AT , A 为对称阵
方阵的行列式: n 阶方阵 A 元素构成的行列式,记 A 或 det A .
伴随矩阵:
A11
A*
A12
A1n
A21 A22
二元线性 方程组:
aa1211xx
a12 y a22 y
b1 b2
第一章 行列式
D a11 a21
a12 a22
, D1
b1 b2
a12 a22
, D2
a11 a21
b1 b2
x D1 , y D2
D
D
排列的逆 序数:
n
t ti ( ti 为排列 p1 p2 pn 中大于 pi 且排于 pi 前的元素个数)
D1 D
, x2
D2 D
,, xn
Dn D
,其中 D j
a11
an1
a1, j1 b1 a1, j1
an, j1 bn an, j1
a1n
ann
( j 1,2,, n) .
定理 4: 若上线性方程组的系数行列式 D 0 ,则方程组一定有惟一解;若无解或有两个不同解,则 D 0 .
考研数学之线性代数讲义(考点知识点+概念定理总结)

考研数学之线性代数讲义(考点知识点+概念定理总结)线性代数讲义目录第一讲基本概念矩阵的初等变换与线性矩阵方程的消去完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第4讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的判别基本解系统和通解第6讲特征向量和特征值的相似性和对角化特征向量与特征值―概念,计算与应用相似对角化―判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量取代了实对称矩阵惯性指数正定二次型与正定矩阵的合同标准化与规范化附录二向量空间及其子空间附录III两个线性方程组的解集之间的关系附录四06,07年考题一第一讲基本概念1.线性方程组的基本概念。
线性方程组的一般形式是:a11x1+a12x2++a1nxn=b1,a21x1+a22x2+?+a2nxn=b2,????am1x1+am2x2+?+amnxn=bm,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2,k,kn)(称为解向量),它满足当每个方程中的未知数席被Ki替换时,它变成一个方程。
线性方程组的解的情况有三种:无解,唯一解,无穷多解.在线性方程组的讨论中有两个主要问题:(1)判断解(2)求解,特别是当存在无穷多个连接时求通解b1=b2=?=bm=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解。
因此,齐次线性方程组只有两种解:唯一解(即只要零解)和无限解(即非零解)把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.是M吗?一张表有M行和N列,以N个数字排列,两边用括号或方括号括起来,就变成了M?例如N型矩阵2-101111102254-29333-18是4吗?5矩阵对于上述线性方程组,它被称为矩阵a11a12?a1na11a12?a1nb1a=a21a22?a2n和(a|?)=a21a22?a2nb2??????? am1am2?amnam1am2?amnbm为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.矩阵中的数字称为其元素,第I行和第J列中的数字称为(I,J)位元素所有元素为0的矩阵称为零矩阵,通常记录为0两个矩阵a和b相等(记作a=b),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.N个数的有序数组称为N维向量,这些数称为其分量书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,?,an的向量可表示成二a1(a1,a2,?,an)或a2,┆an请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1?n矩阵,右边是n?1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个M?n的矩阵的每一行是一个n维向量,称为其行向量;每一列都是一个m维向量,称为它的列向量。
考研线代知识点总结

考研线代知识点总结摘要:一、考研线性代数知识点概述二、矩阵与线性方程组三、向量空间与线性变换四、特征值与特征向量五、二次型与矩阵的对称性六、复习与拓展建议正文:一、考研线性代数知识点概述考研线性代数作为数学一门重要学科,主要包括矩阵、线性方程组、向量空间、线性变换、特征值与特征向量、二次型与矩阵的对称性等内容。
这些知识点在考研数学中占有很大比重,因此,对于线性代数的掌握程度直接影响到考研成绩。
本文将对这些知识点进行总结,以帮助考生更好地复习和掌握线性代数。
二、矩阵与线性方程组1.矩阵的运算:加法、减法、数乘、矩阵乘法、逆矩阵、行列式等。
2.线性方程组的解法:高斯消元法、克莱姆法则、齐次线性方程组、非齐次线性方程组等。
3.矩阵的秩、行阶梯形式、简化阶梯形式等。
三、向量空间与线性变换1.向量空间的概念、基、维数、向量模等。
2.线性变换的概念、性质、矩阵表示、不变量等。
四、特征值与特征向量1.特征值、特征向量的概念及求解方法。
2.矩阵的对角化、相似矩阵等。
五、二次型与矩阵的对称性1.二次型的概念、标准型、正定二次型、负定二次型、半正定二次型、半负定二次型等。
2.矩阵的对称性:对称矩阵、反对称矩阵、正交矩阵、对称分量等。
六、复习与拓展建议1.熟练掌握考研线性代数大纲要求的知识点,做到深入理解、熟练应用。
2.针对自己的薄弱环节进行有针对性的练习,提高解题能力。
3.学习线性代数相关的拓展知识,如奇异值分解、广义逆矩阵、线性空间论等。
4.注重理论联系实际,熟练运用线性代数知识解决实际问题。
总之,考研线性代数知识点繁多,要想在考试中取得好成绩,就需要扎实掌握这些知识点,并不断提高自己的解题能力。
考研数学线性代数必背知识点

反对称矩阵 A = A 。
0 0 0 0 1 0 3 0 (A ) * 0 03 0 01 0 0* * *对称矩阵 A = A 。
考研数学知识点-线性代数第一讲 基本知识二.矩阵和向量1.线性运算与转置① A + B = B + A② (A + B ) + C = A + (B + C )③ c (A + B ) = cA + cB (c + d )A = cA + dA④ c (dA ) = (cd )A⑤ cA = 0 ™ c = 0 或 A = 0 。
向量组的线性组合〈 1 ,〈 2 ,⊄ ,〈 s ,T 三.矩阵的初等变换,阶梯形矩阵 ♣初等行变换 初等变换分 ♦ ♥初等列变换 三类初等行变换 ①交换两行的上下位置 A B ②用非零常数 c 乘某一行。
③把一行的倍数加到另一行上(倍加变换) 阶梯形矩阵 转置 c 1〈 1 + c 2〈 2 + ⊄ + c s 〈 s 。
A 的转置 A T (或 A 2 )4 1 0 1 0 2 0 0 25 2 0 0 1 2 1 4 3 T T= A①如果有零行,则都在下面。
②各非零行的第一个非 0 元素的列号自上而下严格 (A ± B )T = A T ± B T单调上升。
或各行左边连续出现的 0 的个数自上而下严格单调 (cA )T = c (A T )。
上升,直到全为 0 。
台角:各非零行第一个非 0 元素所在位置。
简单阶梯形矩阵: 3. n 阶矩阵3.台角位置的元素都为 1 n 行、 n 列的矩阵。
对角线,其上元素的行标、列标相等 a 11 , a 22 ,⊄对角矩阵 0 * 00 0 *4.台角正上方的元素都为 0。
每个矩阵都可用初等行变换化为阶梯形矩阵和简单 阶梯形矩阵。
如果 A 是一个 n 阶矩阵 A 是阶梯形矩阵 ® A 是上三角矩阵,反之不一定, 数量矩阵 0 3 0 = 3E0 0 3单位矩阵 0 1 0 E 或I0 0 1如 0 0 1 0 1 0 是上三角,但非阶梯形 0 0 1 四.线性方程组的矩阵消元法 用同解变换化简方程再求解 上(下)三角矩阵 0 * *0 0 *T 1 三种同解变换: ①交换两个方程的上下位置。
数学考研知识点总结归纳

数学考研知识点总结归纳一、线性代数1. 行列式行列式是数学中一个重要的概念,它在代数和几何学等领域有着广泛的应用。
在考研数学中,行列式的计算和性质是一个非常基础但又重要的知识点。
考生们需要熟练掌握行列式的定义、计算方法以及性质,如行列式的性质有行变换性质、行列式的性质等等。
2. 矩阵矩阵是线性代数中的一个重要概念,它是一种方便用来描述多项式、线性方程组等的数学工具。
在考研数学中,矩阵的运算和性质是一个需要掌握的基础知识点。
考生们需要熟练掌握矩阵的加法、减法、数乘、矩阵乘法等运算规则,以及矩阵的转置、逆矩阵、伴随矩阵等性质。
3. 向量向量是线性代数中的一个重要概念,它是一个既有大小又有方向的物理量。
在考研数学中,向量的性质和运算是一个非常基础但又重要的知识点。
考生们需要熟练掌握向量的加法、减法、数乘、点积、叉积、向量的模、向量的夹角等运算规则和性质。
4. 线性方程组线性方程组是线性代数中的一个重要概念,它是一个方程组,其中每个方程都是关于未知数的一次方程。
在考研数学中,线性方程组的解法是一个需要掌握的基础知识点。
考生们需要熟练掌握线性方程组的解的方法,如消元法、矩阵法、克莱姆法则等。
5. 特征值和特征向量特征值和特征向量是线性代数中的一个重要概念,它在矩阵的对角化、矩阵的相似性等方面有着重要的应用。
在考研数学中,特征值和特征向量的求解和性质是一个需要掌握的重要知识点。
考生们需要熟练掌握特征值和特征向量的定义、求解方法以及性质,如特征值的性质、特征向量的性质等。
二、概率论和数理统计1. 随机事件及其概率随机事件及其概率是概率论和数理统计中的一个重要概念,它在随机试验、事件的概率计算等方面有着重要的应用。
在考研数学中,随机事件及其概率的计算和性质是一个需要掌握的基础知识点。
考生们需要熟练掌握随机事件的定义、事件的概率计算方法、事件的互斥事件、对立事件等性质。
2. 随机变量及其分布随机变量及其分布是概率论和数理统计中的一个重要概念,它在随机变量的分布、数学期望、方差等方面有着重要的应用。
考研数学一详细知识点总结

考研数学一详细知识点总结一、线性代数1. 行列式行列式是线性代数中的一个重要概念,它是一个具有特定数学性质的标量函数,它可以对矩阵进行某种代数计算,得到一个数。
通过行列式的性质和运算法则,我们可以求解线性方程组的解,判断矩阵的逆矩阵是否存在等。
行列式的基本定义、性质和运算法则是线性代数中的重要基础知识点。
2. 矩阵与向量空间矩阵是线性代数中的另一个重要概念,它是一个矩形数组,它是向量空间的一种表达形式。
矩阵的定义、运算法则、转置矩阵、伴随矩阵、特征值和特征向量等都是线性代数中的重要知识点。
3. 线性变换与矩阵的相似变换线性变换是线性代数中的一个重要概念,它是定义在向量空间上的一个运算,将一个向量空间中的一个向量映射到另一个向量空间中的一个向量。
线性变换与矩阵的相似变换在数学和工程中有着广泛的应用,对于理解线性代数的基本概念和运用都具有重要意义。
4. 线性方程组线性方程组是线性代数中的一个重要概念,它是由一系列线性方程构成的方程组。
通过行列式和矩阵的知识可以求解线性方程组的解,判断矩阵的逆矩阵是否存在等。
5. 向量的线性相关性向量的线性相关性是线性代数中的另一个重要概念,它是判断向量空间中向量之间的线性组合是否有零解的一个关键概念。
向量的线性相关性的性质、判断方法和应用是线性代数中的重要知识点之一。
6. 最小二乘法最小二乘法是线性代数中的另一个重要概念,它是一种用于数据拟合和参数估计的数学方法。
通过最小二乘法可以得到一个最优的拟合曲线或者参数估计,它在数学、统计学和工程领域中都有着广泛的应用。
二、概率统计1. 随机事件与概率随机事件是概率统计中的一个重要概念,它是指在一定条件下,结果是不确定的事件。
概率是描述随机事件发生可能性的一种数学方法,它是随机事件发生可能性的度量标准。
随机事件的基本性质和概率的基本性质是概率统计中的基础知识点。
2. 条件概率与独立性条件概率是指在已知一件事情发生的情况下,另一件事情发生的可能性。
数学二考研知识点总结

数学二考研知识点总结一、线性代数1.1 行列式1.2 矩阵1.3 矩阵的秩1.4 线性方程组1.5 特征值与特征向量1.6 正交性1.7 线性空间1.8 相似矩阵1.9 二次型1.10 线性变换1.11 线性代数的基本定理二、概率论与数理统计2.1 随机事件与概率2.2 随机变量及其分布2.3 多维随机变量及其分布2.4 随机变量的数字特征2.5 大数定理与中心极限定理2.6 参数估计与假设检验2.7 回归分析2.8 方差分析2.9 多元统计方法2.10 数理统计的基本定理三、数学分析3.1 实数及其性质3.2 极限3.3 连续性3.4 导数与微分3.5 不定积分3.6 定积分3.7 无穷级数3.8 函数的级数展开3.9 泰勒公式3.10 泛函分析四、常微分方程4.1 常微分方程的基本概念4.2 一阶线性微分方程4.3 各种特殊方程的求解4.4 高阶线性微分方程4.5 常系数线性微分方程与齐次线性微分方程4.6 常微分方程的级数解4.7 常微分方程的初值问题4.8 常微分方程的变分法4.9 常微分方程的稳定性理论五、偏微分方程5.1 偏微分方程的基本概念5.2 一阶偏微分方程5.3 二阶线性偏微分方程5.4 分离变量法5.5 特征线法5.6 椭圆型方程5.7 抛物型方程5.8 双曲型方程5.9 伪线性方程5.10 对称型方程六、复变函数6.1 复数及其运算6.2 函数的极限与连续性6.3 导数与解析函数6.4 积分与柯西公式6.5 高阶导数与洛朗展开6.6 解析函数的亚纯性6.7 解析函数的特殊函数6.8 留数定理6.9 解析函数在整个平面上的解析延拓6.10 解析函数的唯一性总结:数学二考研的知识点主要涵盖了线性代数、概率论与数理统计、数学分析、常微分方程、偏微分方程和复变函数等方面的内容。
在线性代数中,需要掌握行列式、矩阵、矩阵的秩、线性方程组、特征值与特征向量、正交性、线性空间、相似矩阵、二次型、线性变换等基本概念和定理。
考研数学线性代数必考的知识点

考研数学线性代数必考的知识点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。
其原因是解决相关题目要用到线代中的大量内容,既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。
四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。
概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。
其它知识点考小题,如随机事件与概率,数字特征等。
从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。
第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。
随机变量之于概率正如矩阵之于线性代数。
考生也可以看看考研真题,数一、数三概率考五道题,这五题的第一句话为“设随机变量X……”,“设总体X……”,“设X1,X2,…,Xn为来自X的简单随机样本”,无论“随机变量”、“总体”和“样本”本质上都是随机变量。
所以随机变量的理解至关重要。
讨论完随机变量之后,讨论其描述方式。
分布即为描述随机变量的方式。
分布包括三种:分布函数、分布律和概率密度。
其中分布函数是通用的描述工具,适用于所有随机变量,分布律只针对离散型随机变量而概率密度只针对连续型随机变量。
之后讨论常见的离散型和连续性随机变量,考研范围内需要考生掌握七种常见分布。
介绍完一维随机变量之后,推广一下就得到了多维随机变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学(线性代数)知识点归纳2018考研数学(线性代数)知识点归纳
不同专业考察的内容不一样,从历年的实际考研试题来看,3类数学的线性代数试题基本相同,差别仅仅在于:数学(一)比数学(二)和(三)多了n维向量空间的相关内容,但这部分内容在考题中很少
出现。
第一章、行列式
1、行列式的定义
2、行列式的性质
3、特殊行列式的值
4、行列式展开定理
5、抽象行列式的计算
第二章、矩阵
1、矩阵的定义及线性运算
2、乘法
3、矩阵方幂
4、转置
5、逆矩阵的概念和性质
6、伴随矩阵
7、分块矩阵及其运算
8、矩阵的初等变换与初等矩阵
9、矩阵的等价
10、矩阵的秩
第三章、向量
1、向量的概念及其运算
2、向量的`线性组合与线性表出
3、等价向量组
4、向量组的线性相关与线性无关
5、极大线性无关组与向量组的秩
6、内积与施密特正交化
7、n维向量空间(数学一)
第四章、线性方程组
1、线性方程组的克莱姆法则
2、齐次线性方程组有非零解的判定条件
3、非齐次线性方程组有解的判定条件
4、线性方程组解的结构
第五章、矩阵的特征值和特征向量
1、矩阵的特征值和特征向量的概念和性质
2、相似矩阵的概念及性质
3、矩阵的相似对角化
4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章、二次型
1、二次型及其矩阵表示
2、合同变换与合同矩阵
3、二次型的秩
4、二次型的标准型和规范型
5、惯性定理
6、用正交变换和配方法化二次型为标准型
7、正定二次型及其判定。