(浙教版)金华市2019-2020学年九年级上期末数学测试卷(含答案)(2019级)

合集下载

2019—2020年最新浙教版数学九年级上学期期末水平测试及答案解析.doc

2019—2020年最新浙教版数学九年级上学期期末水平测试及答案解析.doc

第一学期期末质量检测试卷初三数学考生须知:本试卷满分120分,考试时间为120分钟.请同学们按规定将所有试题的答案写答题卷上,不能使用计算器. 参考公式:二次函数y=ax 2+bx+c的顶点坐标是)44,2(2ab ac a b --.一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项填在相应的答案栏内,不选、多选、错选均不给分.) 1.下列各数中属于正整数的是( ) A. 1 B. 0 C.122.二次函数23(2)1y x =--+的图象的顶点坐标是( )A.(2-,1)B.(2,1)C.(2-,1-)D.(2,1-) 3.下列计算正确的是( )A .236a a a ∙= B .224a a a += C .224326a a a ⨯= D .54a a -= 4.小芳从正面(图示“主视方向”)观察左边的热水瓶时,得到的主视图是( )5.某反比例函数的图象过点(1,3-),则此反比例函数解析式为( ) A .3y x =B .3y x =-C .13y x =D .13y x=-6.已知:⊙1O 和⊙2O 的半径分别为10cm 和4cm ,圆心距为6cm ,则⊙1O 和⊙2O 的位置关系是( )A. B. C. D. 主视方向A.外切B.相离C.相交D.内切 7.方程(2)0x x +=的解是( )A.2x =B.2x =-C.0x =或2D.0x =或2- 8.已知函数22y x x =-++,则当0y <时,自变量x 的取值范围是( ) A .1x <-或2x > B .12x -<< C .2x <-或1x >D .21x -<<9. 下列四个三角形,与左图中的三角形相似的是( )10.如图,AC 是菱形ABCD 的对角线,AE EF FC ==, 则S △BMN :S 菱形ABCD =( ) A.34 B.37 C.38 D.310二、填空题(本大题有6小题,每小题4分,共24分.)11.当x ________时,分式12x -有意义. 12.已知32a b =,则算式a bb+=________.13.如图:AB 是⊙O 的直径,C 、D 在圆上,已知∠D =30ο,BC =2,则AB 长为________.14.如图是小李设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端第9题 (A ). (B ). (C ). (D ).第14题BA 第13题B D第10题C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB =1.1米,BP =1.9米,PD =19米, 那么该古城 墙CD 的高度是 _米. 15.已知:2441x x =-,则y x =__________.16.如图,等边三角形ABO 放在平面直角坐标系中,其中点O 为坐标原点,点B 的坐标为(8-,0),点A 位于第二象限.已知点P 、点Q 同时从坐标原点出发,点P 以每秒4个单位长度的速度沿O B A B O →→→→来回运动一次,点Q 以每秒1个单位长度的速度从O 往A 运动,当点Q 到达点A 时,P 、Q 两点都停止运动.在点P 、点Q 的运动过程中,存在某个时刻,使得P 、Q 两点与点O 或点A 构成的三角形为直角三角形,那么点P 的坐标为__________.三、解答题(本大题有8小题,共66分.请将答案写在答题纸上,务必写出解答过程.) 17.(8分)(1(2)2sin 45π0ο-+;(2)化简:()()(2)a b a b a b a +-+-.18.(6分)学校组织初三数学备课组全体教师去外校听课,安排了两辆车,按1~2编号,程、李两位教师可任意选坐一辆车.(1)用画树状图的方法或列表法列出所有可能的结果; (2)求程、李两位教师同坐2号车的概率.19.(6分)已知:△ABC 中,AC 边的长为3(cm ),AC 上的高BD 为2(cm ).设△ABC 中BC 边的长为x (cm ),BC 上的高AE 为y (cm ). (1)求y 关于x 的函数解析式和自变量x 的取值范围; (2)求当636x <<时y 的取值范围.20.(6分)已知:如图,A 是⊙O 外一点,AO 的延长线交⊙O 于点C 和点D ,点B 在圆上,且AB BD =,∠30A ο=. (1)求证:直线AB 是⊙O 的切线; (2)若⊙O 的直径为10,求AC 的长.21.(8分)某饮料经营部每天的固定成本为200元,其销售的饮料每瓶进价为5元.销售单价与日均销售量的关系如下表:(1)若记销售单价比每瓶进价多x 元时,日均毛利润(毛利润=售价-进价-固定成本)为y 元,求y 关于x 的函数解析式和自变量的取值范围;AD(2)若要使日均毛利润达到最大,销售单价应定为多少元?最大日均毛利润为多少元?22.(10分)阅读材料,解答问题.例 如图,在△BCD 中,∠90C ο=,∠45BDC ο=,利用此等腰直角三角形你能求出tan 22.5ο的值吗?解:延长CD 到点A ,使AD BD =,连结AB . 设BC a =(0a >).∵在△BCD 中,∠90C ο=,∠45BDC ο=.∴∠4522.52A οο==. ∴CD a =,AD BD ==.∴1)AC a =.∴tan 22.51BC AC ο=====. (1)仿照上例,求出tan15ο的值;(2)在一次课外活动中,小刘从上例得到启发,用硬纸片做了两个直角三角形,如图1、图2.图1中,∠90B ο=,∠30A ο=,6BC cm =;图2中,∠90D ο=,∠45E ο=,4DE cm =.图3是小刘所做的一个实验:他将△DEF 的直角边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿CA 方向移动.在移动过程中,D 、E 两点始终在CA 边上(移动开始时点E 与点C 重合).①在△DEF 沿CA 方向移动的过程中,∠FCD 的度数逐渐__________.(填“不变”、“变大”、“变小”)②在△DEF 移动过程中,是否存在某个位置,使得∠FCD 15ο=?如果存在,求出AD 的ABC长度;如果不存在,请说明理由.23.(10分)如图,已知A ,B 两点的坐标分别为(3-,0),(0,3),⊙C 的圆心坐标为(3,0),并与x 轴交于坐标原点O .若E 是⊙C 上的一个动点,线段AE 与y 轴交于点D . (1)线段AE 长度的最小值是_________,最大值是_________;(2)当点E 运动到点1E 和点2E 时,线段AE 所在的直线与⊙C 相切,求由A 1E 、A 2E 、弧1E O 2E 所围成的图形的面积;(3)求出△ABD 的最大值和最小值.24.(12分)已知:直角梯形OABC 中,BC ∥OA ,∠A O C =90ο,以AB 为直径的圆M 交OC 于点D 、E ,连结AD 、BD 、BE.图1图2图3(1)在不添加其他字母和线的前提下..............,直接..写出图1中的两对相似三角形: _____________________,______________________ ;(2)直角梯形OABC 中,以O 为坐标原点,A 在x 轴正半轴上建立直角坐标系(如图2),若抛物线223(0)y ax ax a a =--<经过点A 、B 、D ,且B 为抛物线的顶点. ①写出顶点B 的坐标(用含a 的代数式表示)___________; ②求抛物线的解析式;③在x 轴下方的抛物线上是否存在这样的点P ,过点P 作PN ⊥x 轴于点N ,使得以点P 、A 、N 为顶点的三角形与△ADB 相似?若存在,求出点P 的坐标;若不存在,说明理由.做完了吗?做完请仔细检查哦!答案:一、选择题(本大题有10小题,每小题3分,共30分.) 1~5:ABCAB 6~10:DDABC二、填空题(本大题有6小题,每小题4分,共24分.) 11. ≠2; 12.52; 13. 4; 14. 11; 15. 14; 16.(367-、(449-)、(203-)、(329-,0).三、解答题(本大题有8小题,共66分.) 17.(8分)(1)1 ………………………………4分 (2)22ab b - ………………………………4分 18.(6分) (1)………………………………4分(2)14………………………………2分 19.(6分)开始12121 2(1)6y x=………………………………3分 2x ≥ ………………………………1分 (2)116y << ………………………………2分 20.(6分)(1)证明略 ………………………………3分 (2)5 ………………………………3分 21.(8分)(1)240520200y x x =-+-………………………………3分 013x << ………………………………1分 (2)销售单价定为11.5元 ………………………………2分 最大日均毛利润为1490元 ………………………………2分 22.(10分)(1)2- ………………………………4分 (2)①变小 ………………………………2分②不存在 ………………………………4分 23.(10分)(1)3 ………………………………1分 9 ………………………………1分(2)3π ………………………………4分(3………………………………2分最小值为92-………………………………2分24.(12分)(1)△OAD ∽△CDB ,△ADB ∽△ECB .……………4分 (2)①(1,4a -)…………………………………………1分②抛物线的解析式为:322++-=x x y ………………3分 ③当1x <-时,点P 为(43-,139-)、(4-,21-)………………2分 当3x >时两个点P 不存在 …………………………………2分。

(金华)2019-2020学年第一学期九年级期末测试-数学试题卷

(金华)2019-2020学年第一学期九年级期末测试-数学试题卷

2019-2020学年第一学期九年级期末测试数学试题卷一、选择题(每题3分,共30分)1.把抛物线y=x2+4先向下平移3个单位,再向左平移1个单位,所得抛物线的表达式为()A.y=(x+1)2+7 B.y=(x-1)2+7 C.y=(x-1)2+1 D.y=(x+1)2+1 2.若一个不透明的袋子中装有2个白球,3个黄球和1个红球,它们除颜色外都相同,则从袋子中随机摸出一个球是白球的概率为()A.16B.14C.13D.123.下列阴影三角形分别在小正方形组成的网格中,则与图中的三角形相似的是()A.B.C.D.第3题图第6题图4.在Rt△ABC中,∠C=90°,AC=3,AB=5,那么sin A的值是()A.34B.45C.35D.435.下列四个立体图形中,左视图为矩形的是()① ② ③ ④A.①③B.①④C.②③D.③④6.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.32° B.116° C.58° D.64°1.2.3.7.小红在周末到某小镇去旅游,欣赏伟大祖国的大好河山,拍了一张照片如图,某桥桥身为一巨型单孔圆弧,全部由石块砌成,犹如一道彩虹横卧河面上,经测算,桥拱拱高为CD,河面宽AB为6 m,△ABC为等边三角形,则桥拱直径..为()A m B. m C.D. m第7题图第9题图第10题图8.已知二次函数y=ax2+bx+3(a≠0),当x=1和x=2019时函数的值相等,则当x=2020时,函数的值等于()A.32B.3 C.32D.-39.如图,已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以点A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠P AD=∠PDA=60°;②△P AO≌△ADE;③PO;④AO∶OP∶P A=1.A.①④B.②③C.③④D.①③④10.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a-b+c>0;⑤若点A(0.5,y1),B,y2)在此抛物线上,则y1<y2,其中正确的有().A.2个B.3个C.4个D.5个二、填空题(每题4分,共24分)11.已知扇形的圆心角为30°,面积为3π,则该扇形的半径为.12.如图,点P为⊙O外一点,P A,PB为⊙O的切线,A,B为切点,PO交⊙O于点D,∠APO =30°,OD=5,则线段BP的长为.第12题图第13题图13.如图,在△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E.若AB=4,则BC 的长为.14.已知一个三角形的三边长分别为3、4、5,则该三角形的内切圆的半径为 . 15.如图,在△ABC 中,∠A =90°,CB =10,sin B =0.6,D 是BC 边上异于B ,C 两点的一个动点,过点D 分别作AB ,AC 边的垂线,垂足分别为E ,F ,则EF 的最小值为 .16.抛物线y =x 2+2x -3与x 轴交于A ,B 两点(点B 在点A 的左侧),与y 轴交于点C .(1)抛物线的对称轴为 .(2)若抛物线上存在点P ,使得锐角∠PCO >∠OCA ,则点P 的横坐标x P 的取值范围为 .三、解答题(17~19每题6分,20~21每题8分,22~23每题10分,24题12分,共66分)17.(6分)计算:21()4sin 602tan 453---︒+︒+.18.(6分)“建设美丽的新农村”正在如火如荼建设当中,其中某村的标志性雕塑如图,某中学九年级数学兴趣小组想测量雕塑AB 的高度,小敏在雕塑前C 、D 两点处用测角仪测得顶端A 的仰角分别为45°和30°,测角仪高EC =FD =1 m ,EF =4 m ,求该雕塑的高度.(结果保留根号)19.(6分)在如图所示的正方形网格中(每个小正方形的边长都为1)建立平面直角坐标系,△ABC的三个顶点分别为(2,-4),B(4,-4),C(1,-1).(1)请在图中画出△ABC的外接圆.(2)画出△ABC绕原点O逆时针旋转90°后得到的△A1B1C1,并求出点B旋转所经过的路径长.(结果保留π)20.(8分)某中学九(1)班调查了全班同学的兴趣爱好,根据调查的结果组建了4个兴趣小组,分别是足球、乒乓球、篮球、排球,并将统计结果绘制成如图所示的两幅不完整的统计图(要求每位同学只能选择一种自己喜欢的球类).①②请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)图②中的m= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组的4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.21.(8分)如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.22.(10分)如图,已知AB为⊙O的直径,AC是⊙O的切线,连结BC交⊙O于点F,取弧BF的中点D,连结AD交BC于点E,过点E作EH⊥AB于点H.(1)求证:△HBE∽△ABC.(2)若CF=4,BF=5,求AC及EH的长.23.(10分)设二次函数y1、y2的图象顶点分别为(a,b)、(c,d),当a+c=0,bd=-1时,则称y1是y2的“顶好二次函数”.(1)理解:通过计算判断二次函数y1=x2-2x-1是否是y2=2x2+4x+2.5的“顶好二次函数”.(2)应用:请写出一个与二次函数y=2x2+8x+7开口方向相反的“顶好二次函数”.(3)拓展:已知关于x的二次函数y1=x2+nx和二次函数y2=nx2+x,函数y1+y2恰好是函数y1-y2的“顶好二次函数”,求n的值.24.(12分)定义:若抛物线y=ax2+bx+c(a≠0)满足a-b+c=0,则称该抛物线为“智慧抛物线”.如图1,“智慧抛物线”y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,若OB=3OA,点D为y轴上的一个动点.探究:(1)若“智慧抛物线”必过一点,求该点的坐标及此抛物线的解析式.(2)当△BCD的面积为6时,求点D的坐标.(3)在抛物线上是否存在点Q,使△BCQ是以BC为直角边的直角三角形?(4)如图2,过点C作CE⊥BD于点E,连结AE,直接写出线段AE的最小值.。

2019-2020学年浙教版九年级上期末考试数学试卷及答案解析

2019-2020学年浙教版九年级上期末考试数学试卷及答案解析

2019-2020学年浙教版九年级上期末考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列抛物线中,与y轴交点坐标为(0,3)的是()A.y=(x﹣3)2B.y=x2﹣3C.y=2x2﹣3x D.y=x2﹣2x+3 2.如图所示是一个旋转对称图形,若将它绕自身中心旋转一定角度之后不能与原图重合,则这个角度可能是()A.60°B.90°C.120°D.180°3.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为()A.9B.3C.D.4.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2﹣2D.y=(x+1)2﹣25.有两辆车按1,2编号,方方和成成两人可以任意选坐一辆车.则两人同坐1号车的概率为()A.B.C.D.6.已知点(﹣2,y1),(,y2),(,y3)在函数y=﹣(x﹣1)2的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,已知在△ABC中,AB=14,BC=12,AC=10,D是AC上一点,过点D画一条直线l,把△ABC分成两部分,使其中的一个三角形与△ABC相似,这样的直线有几条()A.2B.3C.3或4D.48.甲、乙两人同时从A地出发,步行15km到B地,甲比乙每小时多走1km,结果甲比乙早到半小时,两人每小时各走几千米?设甲每小时走xkm,则可列出的方程为()A.B.C.D.9.已知反比例函数的图象经过点P(4,﹣1),则该反比例函数的图象所在的象限是()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限10.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=()A.B.C.D.二.填空题(共6小题,满分30分,每小题5分)11.(5分)醴陵市农科站在相同条件下经试验发现蚕豆种子的发芽率为97.5%,请估计醴陵地区1000斤蚕豆种子中不能发芽的大约有斤.12.(5分)若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为.13.(5分)如图,隧道的截面是抛物线型,抛物线的解析式为y=﹣2+4.隧道是单行道(车从正中间通过),为安全考虑,车顶与隧道顶部的垂直距离不少于0.5m,若货运汽车的宽为2米,则车安全通过隧道的限高为米.。

浙江省金华市九年级上册数学期末考试试卷

浙江省金华市九年级上册数学期末考试试卷

浙江省金华市九年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·红河期末) 下列运算正确的是()A . 7a+2b=9abB . (-3a3b)2=6a9b2C . (a+b)2=a2+b2D .2. (2分) (2020九上·涵江期末) 在下列图形中,既是轴对称图形,又是中心对称图形的是()A . 等边三角形B . 直角三角形C . 正方形D . 正五边形3. (2分)(2018·北区模拟) 如图中三视图对应的几何体是()A . 圆柱B . 三棱柱C . 圆锥D . 球4. (2分) (2019九上·滦南期中) 若a:b=3:2,且b是a、c的比例中项,则b:c等于()A . 4:3B . 3:4C . 3:2D . 2:35. (2分) (2019八上·交城期中) 已知三角形两个内角的差等于第三个内角,则它是()A . 锐角三角形B . 钝角三角形C . 直角三角形D . 以上都不对6. (2分) (2017八上·宁波期中) 小明到离家900米的春晖超市卖水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A .B .C .D .7. (2分)(2017·承德模拟) 对于平面图形上的任意两点P,Q,如果经过某种变换得到的新图形上的对应点P1 , Q1 ,下列变换中不一定保证PQ=P1Q1的是()A . 平移B . 旋转C . 翻折D . 位似8. (2分)(2020·鼓楼模拟) 若△ABC∽△DEF,相似比为1∶2,则△ABC与△DEF的面积的比为()A . :1B . 1∶C . 4∶1D . 1∶49. (2分)已知抛物线y=x2+x-1经过点P(m,5),则代数式m2+m+2006的值为()A . 2012B . 2013C . 2014D . 201510. (2分) (2019八上·江津期中) 如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A . 40°B . 60°C . 45°D . 50°二、填空题 (共10题;共10分)11. (1分) (2019七上·高台期中) 据经济日报报道:青海格尔木枸杞已进入国际市场,出口创汇达4270000美元,将4270000美元用科学记数法表示为________美元.12. (1分) (2019九上·万州期末) 如果两个相似三角形的周长比为,那么面积比是________.13. (1分)如图,△ABC中,BD=EC ,∠ADB=∠AEC ,∠B=∠C ,则∠CAE=________ .14. (1分)(2019·广西模拟) 事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是________15. (1分) (2019八上·浦东月考) 若一元二次方程有一个根为-1,则的关系是________.16. (1分)如图,小刚用一张半径为24cm的扇形纸板做一个圆锥形帽子侧面(接缝忽略不计),如果做成的圆锥形帽子的底面半径为5cm,那么这张扇形纸板的面积是________ cm2.17. (1分) (2020九下·哈尔滨月考) 不等式组的解集是________。

2019-2020学年浙江省金华市东阳市九年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省金华市东阳市九年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省金华市东阳市九年级(上)期末数学试卷一、选择题(共10小题).1.(3分)已知线段a ,b ,c ,d 满足ab cd =,则把它改写成比例式正确的是( )A .::a d c b =B .::a b c d =C .::c a d b =D .::b c a d =2.(3分)已知圆内接四边形ABCD 中,::1:2:3A B C ∠∠∠=,则D ∠的大小是( )A .45︒B .60︒C .90︒D .135︒3.(3分)如图,AC ,BE 是O 的直径,弦AD 与BE 交于点F ,下列三角形中,外心不是点O 的是( )A .ABE ∆B .ACF ∆C .ABD ∆ D .ADE ∆4.(3分)若把抛物线231y x =-向右平移2个单位,则所得抛物线的表达式为( )A .233y x =-B .231y x =+C .23(2)1y x =++D .23(2)1y x =--5.(3分)已知O 的半径为3,圆心O 到直线L 的距离为4,则直线L 与O 的位置关系是( )A .相交B .相切C .相离D .不能确定6.(3分)在一个不透明的口袋中,装有若干个红球和9个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中大约有红球( )A .21个B .14个C .20个D .30个7.(3分)如图,以(1,4)-为顶点的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( )A.23x<<B.34x<<C.45x<<D.56x<<8.(3分)已知点E在半径为5的O上运动,AB是O的一条弦且8AB=,则使ABE∆的面积为8的点E共有()个.A.1B.2C.3D.49.(3分)一张圆心角为α的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为4,已知4tan3α=,则扇形纸板和圆形纸板的半径之比是()A.1304B.22C.23D.67210.(3分)如图,周长为定值的平行四边形ABCD中,60B∠=︒,设AB的长为x,平行四边形ABCD的面积为y,y与x的函数关系的图象大致如图所示,当63y=时,x的值为( )A.1或7B.2或6C.3或5D.4二、用心填一填(本题共24分,每小题4分)11.(4分)圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为2cm.12.(4分)如图,直线////a b c,若12ABBC=,则DEDF的值为.13.(4分)如图,要拧开一个边长为8a mm =的正六边形螺料,扳手张开的开口b 至少为 mm .14.(4分)设1(2,)A y -,2(1,)B y ,3(2,)C y 是抛物线2(1)1y x =-++上的三点,则1y ,2y ,3y 的大小关系为 .15.(4分)如图,已知等边OAB ∆的边长为23+,顶点B 在y 轴正半轴上,将OAB ∆折叠,使点A 落在y 轴上的点A '处,折痕为EF .当△OA E '是直角三角形时,点A '的坐标为 .16.(4分)在综合实践课中,小慧将一张长方形卡纸如图1所示裁剪开,无缝隙不重叠的拼成如图所示的“L ”形状,且成轴对称图形.裁剪过程中卡纸的消耗忽略不计,若已知9AB =,16BC =,FG AD ⊥.(1)线段AF 与EC 的差值是 .(2)FG 的长度是 .三.细心答一答(本题共66分)17.(6分)计算:01182sin 45(2)()3π--︒+--. 18.(6分)如图1是小区常见的漫步机,从侧面看如图2,踏板静止时,踏板连杆与立柱DE 上的线段AB 重合,BE 长为0.2米,当踏板连杆绕着点A 旋转到AC 处时,测得37CAB ∠=︒,此时点C 距离地面的高度CF 为0.44米,求:(1)踏板连杆AB 的长;(2)此时点C 到立柱DE 的距离、(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75)︒≈19.(6分)“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.20.(8分)在下列1115⨯的网格中,横、纵坐标均为整数的点叫做格点.例如正方形ABCD 的顶点(2,3)A -,(1,0)C 都是格点,要求在下列问题中仅用无刻度的直尺作图.(1)画出格点M ,连AM 或延长AM 交边BC 于E ,使BE EC =,写出点M 的坐标为 ;(2)画出格点N ,连AN (或延长)AN 交边DC 于F ,使14DF DC =,则满足条件的格点N 有 个.21.(8分)采用东阳南枣通过古法熬制而成的蜜枣是我们东阳的土特产之一,已知蜜枣每袋成本10元,试销后发现每袋的销售价x(元)与日销售量y(袋)之间的关系如下表:x(元)152030⋯y(袋)252010⋯若日销售量y是销售价x的一次函数,试求,(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)要使这种蜜枣每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?22.(10分)平行四边形ABCD的对角线相交于点M,ABM∆的外接圆交AD于点E且圆心O恰好落在AD边上,连接ME,若45∠=︒.BCD(1)求证:BC为O切线;(2)求ADB∠的度数;(3)若O的半径为1,求ME的长.23.(10分)在平面直角坐标系中,已知5B.AO AB==,(6,0)(1)如图1,求sin AOB∠的值;(2)把OAB∆绕着点B顺时针旋转,点O、A旋转后对应的点分别为M、N.①当M恰好落在BA的延长线上时,如图2,求出点M、N的坐标;②若点C 是OB 的中点,点P 是线段MN 上的动点,如图3,在旋转过程中,请直接写出线段CP 长的取值范围.24.(12分)已知抛物线2y x ax b =++与x 轴交于(1,0)A ,(3,0)B 两点,与y 轴交于点C .(1)填空:a = b = ;(2)如图1,已知5(2E ,0),过点E 的直线与抛物线交于点M 、N ,且点M 、N 关于点E 对称,求直线MN 的解析式;(3)如图2,已知(0,1)D ,P 是第一象限内抛物线上一点,作PH y ⊥轴于点H ,若PHD ∆与BDO ∆相似,请求出点P 的横坐标.参考答案一.精心选一选:(本题共30分,每小题3分)1.(3分)已知线段a ,b ,c ,d 满足ab cd =,则把它改写成比例式正确的是( )A .::a d c b =B .::a b c d =C .::c a d b =D .::b c a d = 解:A 、::a d c b =,ab cd ∴=,故选项正确;B 、::a b c d =,ad bc ∴=,故选项错误;C 、::c a d b =,bc ad ∴=,故选项错误;D 、::b c a d =,ac bd ∴=,故选项错误.故选:A .2.(3分)已知圆内接四边形ABCD 中,::1:2:3A B C ∠∠∠=,则D ∠的大小是( )A .45︒B .60︒C .90︒D .135︒ 解:四边形ABCD 为圆的内接四边形,:::1:2:3:2A B C D ∴∠∠∠∠=,而180B D ∠+∠=︒, 2180904D ∴∠=⨯︒=︒. 故选:C .3.(3分)如图,AC ,BE 是O 的直径,弦AD 与BE 交于点F ,下列三角形中,外心不是点O 的是( )A .ABE ∆B .ACF ∆C .ABD ∆ D .ADE ∆解:如图所示:只有ACF ∆的三个顶点不都在圆上,故外心不是点O 的是ACF ∆. 故选:B .4.(3分)若把抛物线231y x =-向右平移2个单位,则所得抛物线的表达式为( )A .233y x =-B .231y x =+C .23(2)1y x =++D .23(2)1y x =-- 解:因为抛物线231y x =-向右平移2个单位,得:23(2)1y x =--,故所得抛物线的表达式为23(2)1y x =--.故选:D .5.(3分)已知O 的半径为3,圆心O 到直线L 的距离为4,则直线L 与O 的位置关系是( )A .相交B .相切C .相离D .不能确定 解:圆半径3r =,圆心到直线的距离4d =.故34r d =<=,∴直线与圆的位置关系是相离.故选:C .6.(3分)在一个不透明的口袋中,装有若干个红球和9个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中大约有红球( )A .21个B .14个C .20个D .30个解:设口袋中红球有x 个, 根据题意,得:90.39x=+, 解得21x =,经检验:21x =是分式方程的解,所以估计口袋中大约有红球21个,故选:A .7.(3分)如图,以(1,4)-为顶点的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( )A .23x <<B .34x <<C .45x <<D .56x <<解:二次函数2y ax bx c =++的顶点为(1,4)-,∴对称轴为1x =,而对称轴左侧图象与x 轴交点横坐标的取值范围是32x -<<-,∴右侧交点横坐标的取值范围是45x <<.故选:C .8.(3分)已知点E 在半径为5的O 上运动,AB 是O 的一条弦且8AB =,则使ABE ∆的面积为8的点E 共有( )个.A .1B .2C .3D .4解:过圆心向弦AB 作垂线,再连接半径设ABE ∆的高为h 182ABC S AB h ∆=⨯⨯= 可得:2h =弦心距2215(8)32=-⨯= 321-=,故过圆心向AB 所在的半圆作弦心距为1的弦与O 的两个点符合要求; 325+=,故将弦心距AB 延长与O 相交,交点也符合要求,故符合要求的点由3个. 故选:C .9.(3分)一张圆心角为α的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为4,已知4tan 3α=,则扇形纸板和圆形纸板的半径之比是( )A .1304B .22C .23D .672解:如图1,连接DO ,4 tan3AB BOα==,3BO∴=,7CO∴=,22164965 DO CD CO∴=+=+=,如图2,连接GE,GF,24EF GE∴==,22GE∴=,∴扇形纸板和圆形纸板的半径之比65130422==,故选:A.10.(3分)如图,周长为定值的平行四边形ABCD中,60B∠=︒,设AB的长为x,平行四边形ABCD的面积为y,y与x的函数关系的图象大致如图所示,当63y=时,x的值为( )A.1或7B.2或6C.3或5D.4解:如图,作AE BC⊥于点E,60B∠=︒,设AB的长为x,32AE x ∴=, 设平行四边形ABCD 的周长为a , 则1(2)2BC a x =-13(2)22y a x x ∴=-,根据函数图象可知: 当8x =时,0y =, 代入函数解析式,得16a =, 3(8)2y x x ∴=- 当63y =时, 363(8)2x x =- 解得2x =或6x =. 故选:B .二、用心填一填(本题共24分,每小题4分)11.(4分)圆锥的底面半径为6cm ,母线长为10cm ,则圆锥的侧面积为 60π 2cm . 解:圆锥的侧面积261060cm ππ=⨯⨯=. 12.(4分)如图,直线////a b c ,若12AB BC =,则DE DF 的值为 13.解:直线////a b c , ∴12AB DE BC EF ==, ∴13DE DF =, 故答案为:13.13.(4分)如图,要拧开一个边长为8a mm =的正六边形螺料,扳手张开的开口b 至少为83 mm .解:设正六边形的中心是O ,其一边是AB ,连接OA 、OB 、OC 、AC ,OB 交AC 于M ,如图所示:60AOB BOC ∴∠=∠=︒, OA OB AB OC BC ∴====, ∴四边形ABCO 是菱形,AC OB ∴⊥,AM CM =, 8AB mm =,60AOB ∠=︒,sin AM AMAOB OA AB∴∠==, 3843()2AM mm ∴=⨯=, 283AC AM mm ∴==,故答案为:83.14.(4分)设1(2,)A y -,2(1,)B y ,3(2,)C y 是抛物线2(1)1y x =-++上的三点,则1y ,2y ,3y 的大小关系为 123y y y >> .解:1(2,)A y -、2(1,)B y 、3(2,)C y 是抛物线2(1)1y x =-++上的三点,10y ∴=,23y =-,38y =-, 038>->-,123y y y ∴>>.故答案为:123y y y >>.15.(4分)如图,已知等边OAB ∆的边长为23+,顶点B 在y 轴正半轴上,将OAB ∆折叠,使点A 落在y 轴上的点A '处,折痕为EF .当△OA E '是直角三角形时,点A '的坐标为 (0,1)或(0,13)+ .解:等边OAB ∆的边长为23, 60AOB ∴∠=︒,23AO =+将OAB ∆折叠,使点A 落在y 轴上的点A '处, AE A E '∴=,△OA E '是直角三角形, 90A EO '∴∠=︒,或90EA O '∠=︒,当90EA O '∠=︒,且60A OE '∠=︒, 2OE A O '∴=,3A E O AE ''==,23OE AE AO +==+ 2323A O O ''∴+=+ 1A O '∴=, ∴点(0,1)A '当90A EO '∠=︒,且60A OE '∠=︒, 2A O OE '∴=,3A E OE '=,23OE AE AO +==+ 323OE OE ∴+=+13OE +∴=,13A O '∴=+, ∴点(0,13)A '+故答案为:(0,1)或(0,13)+.16.(4分)在综合实践课中,小慧将一张长方形卡纸如图1所示裁剪开,无缝隙不重叠的拼成如图所示的“L ”形状,且成轴对称图形.裁剪过程中卡纸的消耗忽略不计,若已知9AB =,16BC =,FG AD ⊥.(1)线段AF 与EC 的差值是 9 . (2)FG 的长度是 .解:(1)如图1,延长FG 交BC 于H , 设CE x =,则E H CE x ''==,由轴对称的性质得:9D E DC E F ''''===, 9H F AF x ''∴==+, 16AD BC ==,16(9)7DF x x ∴=-+=-,即7C D DF x F G ''''==-=, 7FG x ∴=-,9(7)2GH x x ∴=--=+,16(9)72EH x x x =--+=-, //EH AB ∴, EGH EAB ∴∆∆∽, ∴GH EHAB BE =, ∴272916x xx+-=-, 1x =或31(舍),1EC ∴=,10AF =,1019AF EC ∴-=-=,故答案为9.(2)由(1)可知:76FG x =-=, 故答案为6.三.细心答一答(本题共66分)17.(6分)计算:01182sin 45(2)()3π--︒+--.解:原式2222132=-⨯+- 22=-.18.(6分)如图1是小区常见的漫步机,从侧面看如图2,踏板静止时,踏板连杆与立柱DE 上的线段AB 重合,BE 长为0.2米,当踏板连杆绕着点A 旋转到AC 处时,测得37CAB ∠=︒,此时点C 距离地面的高度CF 为0.44米,求: (1)踏板连杆AB 的长;(2)此时点C 到立柱DE 的距离、(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75)︒≈解:(1)过点C 作CG AB ⊥于G , 则四边形CFEG 是矩形, 0.44EG CF ∴==,在Rt ACG ∆中,90AGC ∠=︒,37CAG ∠=︒, 0.22cos 0.8AG AC CAG AC AC-∠===, 解得: 1.2AC =, 1.2AB ∴=米;(2) 1.2AC =, 1.20.220.98AG =-=,220.72CG AC AG m ∴=-=,答:点C 到立柱DE 的距离为0.72m .19.(6分)“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放. (1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率; (2)求小聪所提的两袋垃圾不同类的概率.解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A ,B ,C ,D , 垃圾要按A ,B ,C 、D 类分别装袋,甲拿了一袋垃圾, ∴小明拿的垃圾恰好是厨余垃圾的概率为:14; (2)画树状图如下:由树状图知,小聪拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以小聪拿的两袋垃圾不同类的概率为123164=. 20.(8分)在下列1115⨯的网格中,横、纵坐标均为整数的点叫做格点.例如正方形ABCD的顶点(2,3)A-,(1,0)C都是格点,要求在下列问题中仅用无刻度的直尺作图.(1)画出格点M,连AM或延长AM交边BC于E,使BE EC=,写出点M的坐标为(1,3)-;(2)画出格点N,连AN(或延长)AN交边DC于F,使14DF DC=,则满足条件的格点N有个.解:(1)如图点E即为所求.(1,3)M-.故答案为(1,3)-.(2)如图点F即为所求,满足条件的点N有3个,故答案为3.21.(8分)采用东阳南枣通过古法熬制而成的蜜枣是我们东阳的土特产之一,已知蜜枣每袋成本10元,试销后发现每袋的销售价x(元)与日销售量y(袋)之间的关系如下表:x(元)152030⋯y(袋)252010⋯若日销售量y 是销售价x 的一次函数,试求,(1)日销售量y (袋)与销售价x (元)的函数关系式;(2)要使这种蜜枣每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?解:(1)依题意,根据表格的数据,设日销售量y (袋)与销售价x (元)的函数关系式为y kx b =+得15252020k b k b +=⎧⎨+=⎩,解得140k b =-⎧⎨=⎩, 故日销售量y (袋)与销售价x (元)的函数关系式为:40y x =-+;(2)依题意,设利润为w 元,得2(10)(40)50400w x x x x =--+=-+-整理得2(25)225w x =--+ 10-<∴当25x =时,w 取得最大值,最大值为225故要使这种蜜枣每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.22.(10分)平行四边形ABCD 的对角线相交于点M ,ABM ∆的外接圆交AD 于点E 且圆心O 恰好落在AD 边上,连接ME ,若45BCD ∠=︒. (1)求证:BC 为O 切线; (2)求ADB ∠的度数;(3)若O 的半径为1,求ME 的长.【解答】(1)证明:连接OB , 四边形ABCD 是平行四边形,45BAD BCD ∴∠=∠=︒, 290BOD BAD ∴∠=∠=︒, //AD BC ,180DOB OBC ∴∠+∠=︒, 90OBC ∴∠=︒, OB BC ∴⊥, BC ∴为O 切线;(2)解:连接OM ,四边形ABCD 是平行四边形, BM DM ∴=, 90BOD ∠=︒, OM BM ∴=, OB OM =, OB OM BM ∴==, 60OBM ∴∠=︒, 30ADB ∴∠=︒;(3)解:连接EM ,过M 作MF AE ⊥于F , OM DM =,30MOF MDF ∴∠=∠=︒,则1OM OE ==,12FM ∴=,OF =1EF ∴=-AE 是直径, 90AME ∴∠=︒,22(12EM EF AE ∴==-=-EM ∴=.23.(10分)在平面直角坐标系中,已知5AO AB ==,(6,0)B . (1)如图1,求sin AOB ∠的值;(2)把OAB ∆绕着点B 顺时针旋转,点O 、A 旋转后对应的点分别为M 、N . ①当M 恰好落在BA 的延长线上时,如图2,求出点M 、N 的坐标;②若点C 是OB 的中点,点P 是线段MN 上的动点,如图3,在旋转过程中,请直接写出线段CP 长的取值范围.解:(1)如图1中,作AH OB ⊥于H .5AO AB ==,(6,0)B ,AH OB ⊥,3OH HB ∴==,2222534AH AO OH ∴=-=-=,4sin 5AH AOB OA ∴∠==.(2)①如图2中,作ME OB ⊥于E .AOB ABO =∠,sin sin EM ABO AOB BM ∴∠=∠=, ∴465EM =, 245EM ∴=, 222224186()55EB BM EM ∴=-=-=, 1812655OE OB EB ∴=-=-=, 12(5M ∴,24)5, NMB AOB ABO ∠=∠=∠,//MN OB ∴,5MN OA ==, 37(5N ∴,24)5.②如图3中,连接BP .点D 为线段OA 上的动点,OA 的对应边为MN∴点P 为线段MN 上的动点∴点P 的运动轨迹是以B 为圆心,BP 长为半径的圆C 在OB 上,且132CB OB == ∴当点P 在线段OB 上时,CP BP BC =-最短;当点P 在线段OB 延长线上时,CP BP BC =+最如图2,当BP MN ⊥时,BP 最短NBM ABO S S ∆∆=,5MN OA ==∴1122A MN BP OB y = 462455BP ⨯∴==, 249355CP ∴=-=最小值, 当点P 与M 重合时,BP 最大,6BP BM OB ===639CP ∴=+=最大值∴线段CP 长的取值范围为995CP 24.(12分)已知抛物线2y x ax b =++与x 轴交于(1,0)A ,(3,0)B 两点,与y 轴交于点C .(1)填空:a = 4- b = ;(2)如图1,已知5(2E ,0),过点E 的直线与抛物线交于点M 、N ,且点M 、N 关于点E 对称,求直线MN 的解析式;(3)如图2,已知(0,1)D ,P 是第一象限内抛物线上一点,作PH y ⊥轴于点H ,若PHD ∆与BDO ∆相似,请求出点P 的横坐标.解:(1)抛物线的表达式为:2(1)(3)43y x x x x =--=-+⋯①, 故答案为:4-,3;(2)设点M 、N 的横坐标为m ,n ,直线MN 的表达式为:5()2y k x =-⋯②, 联立①②并整理得:25(4)(3)2x k x k -++-, 则4m n k +=+, 点M 、N 关于点E 对称,则55()5022M N y y km k kn k k m n k +=-+-=+-=, 即(4)50k k k +-=,解得:0k =(舍去)或1, 故直线MN 的表达式为:52y x =-;(3)设点2(,43)P m m m -+,则PH m =,2|431|HD m m =-+-,而3OB =,1OD =,则1tan 4DOB ∠=, 若PHD ∆与BDO ∆相似,则1tan 4HPD ∠=或4, 即14HD PH =或4,即2|42|14m m m -+=或4, 解得:23m =1397±741±。

2019-2020学年浙教版九年级数学上册期末综合检测试卷(有答案)

2019-2020学年浙教版九年级数学上册期末综合检测试卷(有答案)
则任意摸出一张卡片,摸到黑色卡片的概率是 =0.08;
(2)盒子里蓝色卡片的个数是:50﹣12﹣16﹣4=18.
27.【答案】解:(1)每次游戏可能出现的所有结果列表如下:
表格中共有9种等可能的结果,
则数字之积为3的倍数的有五种,
其概率为 ;数字之积为5的倍数的有三种,
其概率为 = .
(2)这个游戏对双方不公平.
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
3.抛物线y=3x2, y=-3x2, y= x2+3共有的性质是()
A.开口向上 B.对称轴是y轴 C.都有最高点 D.y随x值的增大而增大
4.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()
A.k>- B.k>- 且k≠0 C.k≥- D.k≥- 且k≠0
∴∠CFD=∠AED,
∵∠A=∠CDF,
∴△AED∽△DFC,
∴ ,即 = .
(2)当∠B+∠EGC=180°时, = 成立.
证明:∵四边形ABCD是平行四边形,
∴∠B=∠ADC,AD∥BC,
∴∠B+∠A=180°,
∵∠B+∠EGC=180°,
∴∠A=∠EGC=∠FGD,
∵∠FDG=∠EDA,
∴△DFG∽△DEA,
13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的 ,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.
14.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.

浙教版2019—2020学年度九年级上学期期末数学试卷及答案

浙教版2019—2020学年度九年级上学期期末数学试卷及答案

浙教版2019—2020学年度九年级上学期期末数学试卷及答案一、选择题(共12小题;每小题4分;满分48分)1.若x:y=6:5;则下列等式中不正确的是( )A.B.C.D.2.二次函数y=x2﹣2x﹣2与坐标轴的交点个数是( )A.0个B.1个C.2个D.3个3.如图;在平行四边形ABCD中;E为CD上一点;DE:CE=2:3;连结AE;BD交于点F;则S△DEF:S△A DF:S△ABF等于( )A.2:3:5 B.4:9:25 C.4:10:25 D.2:5:254.从标有1;2;3;4的四张卡片中任取两张;卡片上的数字之和为奇数的概率是( )A.B.C.D.5.如图;一根5m长的绳子;一端拴在互相垂直的围墙墙角的柱子上;另一端拴着一只小羊A(羊只能在草地上活动);那么小羊A在草地上的最大活动区域面积是( )A.πm2B.πm2C.πm2D.πm26.二次函数y=ax2﹣2x﹣3(a<0)的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限.7.在下列命题中;正确的是( )A.三点确定一个圆B.圆的内接等边三角形只有一个C.一个三角形有且只有一个外接圆D.一个四边形一定有外接圆8.二次函数y=ax2+bx+c(a≠0)的图象如图;下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有( )A.1个B.2个C.3个D.4个9.某块面积为4000m2的多边形草坪;在嘉兴市政建设规划设计图纸上的面积为250cm2;这块草坪某条边的长度是40m;则它在设计图纸上的长度是( )A.4cm B.5cm C.10cm D.40cm10.抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合;那么平移的方法可以是( ) A.向左平移3个单位再向下平移3个单位B.向左平移3个单位再向上平移3个单位C.向右平移3个单位再向下平移3个单位D.向右平移3个单位再向上平移3个单位11.如图;将∠AOB放置在5×5的正方形网格中;则tan∠AOB的值是( )A.B.C.D.12.如图;等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2;且AC与DE在同一直线上;开始时点C与点D重合;让△ABC沿这条直线向右平移;直到点A与点E重合为止.设CD的长为x;△ABC 与正方形DEFG重合部分(图中阴影部分)的面积为y;则y与x之间的函数关系的图象大致是( ) A.B.C.D.二、填空题(共6小题;每小题4分;满分24分)13.已知弦AB把圆周分成1:5的两部分;则弦AB所对的圆心角的度数为__________.14.如图;将弧AC沿弦AC折叠交直径AB于圆心O;则弧AC=__________度.15.如图;我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点;抛物线的解析式为y=x2﹣2x﹣3;AB为半圆的直径;则这个“果圆”被y轴截得的弦CD 的长为__________.16.如图;在直角三角形ABC中(∠C=90°);放置边长分别3;4;x的三个正方形;则x的值为__________.17.如图;A、D、E是⊙O上的三个点;且∠AOD=120°;B、C是弦AD上两点;BC=;△BCE是等边三角形.若设AB=x;CD=y;则y与x的函数关系式是__________.18.如图;在Rt△ABC中;∠ABC=90°;BA=BC;点D是AB的中点;连结CD;过点B作BG⊥CD;分别交CD、CA于点E;F;与过点A且垂直于AB的直线相交于点G;连结DF.给出以下四个结论:①;②FG=FB;③AF=;④S△ABC=5S△BDF;其中正确结论的序号是__________.三、解答题(共8小题;满分78分)19.计算:(+1)()﹣(﹣2014)0+2sin45°.20.如图;在等边△ABC中;D为BC边上一点;E为AC边上一点;且∠ADE=60°.(1)求证:△ABD∽△DCE;(2)若BD=3;CE=2;求△ABC的边长.21.如图;AB和CD是同一地面上的两座相距39米的楼房;在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°;楼底D的俯角为30°.求楼CD的高(结果保留根号).22.如图所示的转盘;分成三个相同的扇形;指针位置固定;转动转盘后任其自由停止;其中的某个扇形会恰好停在指针所指的位置;并相应得到一个数(指针指向两个扇形的交线时;视为无效;重新转动一次转盘);此过程称为一次操作.请用树状图或列表法;求事件“两次操作;第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.23.在学习圆与正多边形时;马露、高静两位同学设计了一个画圆内接正三角形的方法:(1)如图;作直径AD;(2)作半径OD的垂直平分线;交⊙O于B;C两点;(3)联结AB、AC、BC;那么△ABC为所求的三角形.请你判断两位同学的作法是否正确;如果正确;请你按照两位同学设计的画法;画出△ABC;然后给出△A BC是等边三角形的证明过程;如果不正确;请说明理由.24.如图1;在四边形ABCD的AB边上任取一点E(点E不与点A、点B重合;分别连接ED;EC;可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似;我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似;我们就把点E叫做四边形ABCD的AB边上的强相似点.(1)若图1中;∠A=∠B=∠DEC=50°;证明点E是四边形ABCD的AB边上的相似点.(2)①如图2;画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限;不写画法;保留画图痕迹或有必要的说明)②对于任意的一个矩形;是否一定存在强相似点?如果一定存在;请说明理由;如果不一定存在;请举出反例.(3)如图3;在四边形ABCD中;AD∥BC;AD<BC;∠B=90°;点E是四边形ABCD的AB边上的一个强相似点;判断AE与BE的数量关系并说明理由.25.某蔬菜经销商到蔬菜种植基地采购一种蔬菜;经销商一次性采购蔬菜的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB﹣﹣BC﹣﹣CD所示(不包括端点A).(1)当100<x<200时;直接写y与x之间的函数关系式:__________.(2)蔬菜的种植成本为2元/千克;某经销商一次性采购蔬菜的采购量不超过200千克;当采购量是多少时;蔬菜种植基地获利最大;最大利润是多少元?(3)在(2)的条件下;求经销商一次性采购的蔬菜是多少千克时;蔬菜种植基地能获得418元的利润?26.在平面直角坐标系xOy中;一块含60°角的三角板作如图摆放;斜边AB在x轴上;直角顶点C在y轴正半轴上;已知点A(﹣1;0).(1)请直接写出点B、C的坐标:B__________、C__________;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°;∠DEF=60°);把顶点E放在线段AB上(点E是不与A、B两点重合的动点);并使ED所在直线经过点C.此时;EF所在直线与(1)中的抛物线交于点M.①设AE=x;当x为何值时;△OCE∽△OBC;②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在;请写出点P的坐标;若不存在;请说明理由.一、选择题(共12小题;每小题4分;满分48分)1.若x:y=6:5;则下列等式中不正确的是( )A.B.C.D.考点:比例的性质.分析:根据比例设x=6k;y=5k;然后分别代入对各选项进行计算即可判断.解答:解:∵x:y=6:5;∴设x=6k;y=5k;A、==;故本选项错误;B、==;故本选项错误;C、==6;故本选项错误;D、==﹣5;故本选项正确.故选D.点评:本题考查了比例的性质;利用“设k”法表示出x、y可以使计算更加简便.2.二次函数y=x2﹣2x﹣2与坐标轴的交点个数是( )A.0个B.1个C.2个D.3个考点:抛物线与x轴的交点.分析:先计算根的判别式的值;然后根据b2﹣4ac决定抛物线与x轴的交点个数进行判断.解答:解:∵△=(﹣2)2﹣4×1×(﹣2)=12>0;∴二次函数y=x2﹣2x﹣2与x轴有2个交点;与y轴有一个交点.∴二次函数y=x2﹣2x﹣2与坐标轴的交点个数是3个.故选D.点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a;b;c是常数;a≠0)与x轴的交点坐标;令y=0;即ax2+bx+c=0;解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a;b;c是常数;a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2﹣4ac决定抛物线与x轴的交点个数;△= b2﹣4ac>0时;抛物线与x轴有2个交点;△=b2﹣4ac=0时;抛物线与x轴有1个交点;△=b2﹣4ac<0时;抛物线与x轴没有交点.3.如图;在平行四边形ABCD中;E为CD上一点;DE:CE=2:3;连结AE;BD交于点F;则S△DEF:S△A DF:S△ABF等于( )A.2:3:5 B.4:9:25 C.4:10:25 D.2:5:25考点:相似三角形的判定与性质;平行四边形的性质.分析:根据平行四边形性质得出DC=AB;DC∥AB;求出DE:AB=2:5;推出△DEF∽△BAF;求出=()2=;==;根据等高的三角形的面积之比等于对应边之比求出===;即可得出答案.解答:解:∵四边形ABCD是平行四边形;∴DC=AB;DC∥AB;∵DE:CE=2:3;∴DE:AB=2:5;∵DC∥AB;∴△DEF∽△BAF;∴=()2=;==;∴===(等高的三角形的面积之比等于对应边之比);∴S△DEF:S△ADF:S△ABF等于4:10:25;故选C.点评:本题考查了平行四边形的性质和相似三角形的判定和性质的应用;注意:相似三角形的面积之比等于相似比的平方.4.从标有1;2;3;4的四张卡片中任取两张;卡片上的数字之和为奇数的概率是( )A.B.C.D.考点:列表法与树状图法.分析:列举出所有情况;看卡片上的数字之和为奇数的情况数占总情况数的多少即可.解答:解:1 2 3 41 3 4 52 3 5 63 4 5 74 5 6 7由列表可知:共有3×4=12种可能;卡片上的数字之和为奇数的有8种.所以卡片上的数字之和为奇数的概率是.故选C.点评:本题考查求随机事件概率的方法.注意:任意取两张;相当于取出不放回.用到的知识点为:概率=所求情况数与总情况数之比.5.如图;一根5m长的绳子;一端拴在互相垂直的围墙墙角的柱子上;另一端拴着一只小羊A(羊只能在草地上活动);那么小羊A在草地上的最大活动区域面积是( )A.πm2B.πm2C.πm2D.πm2考点:扇形面积的计算.专题:压轴题.分析:小羊A在草地上的最大活动区域是一个扇形+一个小扇形的面积.解答:解:大扇形的圆心角是90度;半径是5;所以面积==m2;小扇形的圆心角是180°﹣120°=60°;半径是1m;则面积==(m2);则小羊A在草地上的最大活动区域面积=+=(m2).故选D.点评:本题的关键是从图中找到小羊的活动区域是由哪几个图形组成的;然后分别计算即可.6.二次函数y=ax2﹣2x﹣3(a<0)的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限.考点:二次函数的性质.分析:先根据题意判断出二次函数的对称轴方程;再令x=0求出y的值;进而可得出结论.解答:解:∵二次函数y=ax2﹣2x﹣3(a<0)的对称轴为直线x=﹣=﹣=<0;∴其顶点坐标在第二或三象限;∵当x=0时;y=﹣3;∴抛物线一定经过第四象限;∴此函数的图象一定不经过第一象限.故选A.点评:本题考查的是二次函数的性质;熟知二次函数的对称轴方程是解答此题的关键.7.在下列命题中;正确的是( )A.三点确定一个圆B.圆的内接等边三角形只有一个C.一个三角形有且只有一个外接圆D.一个四边形一定有外接圆考点:命题与定理.分析:利用确定圆的条件、圆内接三角形的定义、外接圆的定义分别判断后即可确定正确的选项.解答:解:A、不在同一直线上的三点确定一个圆;故错误;B、圆内接等边三角形有无数个;故错误;C、一个三角形有且只有一个外接圆;正确;D、并不是所有的四边形一定有外接圆;故错误;故选C.点评:本题考查了命题与定理的知识;解题的关键是了解确定圆的条件、圆内接三角形的定义、外接圆的定义等知识;难度不大.8.二次函数y=ax2+bx+c(a≠0)的图象如图;下列结论:(1)c<0;(2)b>0;(3)4a+2b+c>0;(4)(a+c)2<b2.其中不正确的有( )A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a的符号;由抛物线与y轴的交点得出c的值;然后根据图象经过的点的情况进行推理;进而对所得结论进行判断.解答:解:抛物线的开口向上;则a>0;对称轴为x=﹣=1;即b=﹣2a;故b<0;故(2)错误;抛物线交y轴于负半轴;则c<0;故(1)正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c<0;故(3)错误;把x=1代入y=ax2+bx+c得:y=a+b+c<0;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c<0;则(a+b+c)(a﹣b+c)>0;故(4)错误;不正确的是(2)(3)(4);故选C.点评:本题考查二次函数图象与二次函数系数之间的关系;二次函数与方程之间的转换;根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子;如:y=a+b+c;y=4a+2b+c;然后根据图象判断其值.9.某块面积为4000m2的多边形草坪;在嘉兴市政建设规划设计图纸上的面积为250cm2;这块草坪某条边的长度是40m;则它在设计图纸上的长度是( )A.4cm B.5cm C.10cm D.40cm考点:相似多边形的性质.分析:首先设这块草坪在设计图纸上的长度是xcm;根据题意可得这两个图形相似;根据相似图形的面积比等于相似比的平方;可列方程=()2;解此方程即可求得答案;注意统一单位.解答:解:设这块草坪在设计图纸上的长度是xcm;4000m2=40000000m2;40m=4000cm;根据题意得:=()2;解得:x=10;即这块草坪在设计图纸上的长度是10cm.故选C.点评:此题考查了相似图形的性质.此题难度不大;注意相似图形的面积比等于相似比的平方的应用与方程思想的应用.10.抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合;那么平移的方法可以是( ) A.向左平移3个单位再向下平移3个单位B.向左平移3个单位再向上平移3个单位C.向右平移3个单位再向下平移3个单位D.向右平移3个单位再向上平移3个单位考点:二次函数图象与几何变换.分析:根据平移前后的抛物线的顶点坐标确定平移方法即可得解.解答:解:∵抛物线y=﹣(x﹣2)2+1的顶点坐标为(2;1);抛物线y=﹣(x+1)2﹣2的顶点坐标为(﹣1;﹣2);∴顶点由(2;1)到(﹣1;﹣2)需要向左平移3个单位再向下平移3个单位.故选A.点评:本题考查了二次函数图象与几何变换;此类题目;利用顶点的变化确定抛物线解析式更简便.11.如图;将∠AOB放置在5×5的正方形网格中;则tan∠AOB的值是( )A.B.C.D.考点:锐角三角函数的定义.专题:网格型.分析:认真读图;在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值.解答:解:由图可得tan∠AOB=.故选B.点评:本题考查了锐角三角函数的概念:在直角三角形中;正切等于对边比邻边.12.如图;等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2;且AC与DE在同一直线上;开始时点C与点D重合;让△ABC沿这条直线向右平移;直到点A与点E重合为止.设CD的长为x;△ABC 与正方形DEFG重合部分(图中阴影部分)的面积为y;则y与x之间的函数关系的图象大致是( )A.B.C.D.考点:动点问题的函数图象.专题:几何图形问题;压轴题.分析:此题可分为两段求解;即C从D点运动到E点和A从D点运动到E点;列出面积随动点变化的函数关系式即可.解答:解:设CD的长为x;△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时;即0≤x≤2时;y==.当A从D点运动到E点时;即2<x≤4时;y==∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:A.点评:本题考查的动点变化过程中面积的变化关系;重点是列出函数关系式;但需注意自变量的取值范围.二、填空题(共6小题;每小题4分;满分24分)13.已知弦AB把圆周分成1:5的两部分;则弦AB所对的圆心角的度数为60°.考点:圆心角、弧、弦的关系.专题:计算题.分析:由于弦AB把圆周分成1:5的两部分;根据圆心角、弧、弦的关系得到弦AB所对的圆心角为周角的.解答:解:∵弦AB把圆周分成1:5的两部分;∴弦AB所对的圆心角的度数=×360°=60°.故答案为60°.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中;如果两个圆心角、两条弧、两条弦中有一组量相等;那么它们所对应的其余各组量都分别相等.14.如图;将弧AC沿弦AC折叠交直径AB于圆心O;则弧AC=120度.考点:翻折变换(折叠问题);等边三角形的判定与性质;圆心角、弧、弦的关系.分析:过O点作OD⊥AC交AC于D;交弧AC于E;连结OC;BC.根据垂径定理可得OD=OE;AD=CD;根据三角形中位线定理可得OD=BC;再根据等边三角形的判定和性质;以及邻补角的定义即可求解.解答:解:过O点作OD⊥AC交AC于D;交弧AC于E;连结OC;BC.∴OD=OE;AD=CD;∵AB是直径;∴∠ACB=90°;OD=BC;又∵OC=OB;∴△OBC是等边三角形;∴∠BOC=60°;∴∠AOC=180°﹣60°=120°;即弧AC=120度.故答案为:120.点评:考查了翻折变换(折叠问题);垂径定理;三角形中位线定理;等边三角形的判定和性质;以及邻补角的定义;综合性较强;难度中等.15.如图;我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点;抛物线的解析式为y=x2﹣2x﹣3;AB为半圆的直径;则这个“果圆”被y轴截得的弦CD 的长为3+.考点:二次函数综合题.分析:连接AC;BC;有抛物线的解析式可求出A;B;C的坐标;进而求出AO;BO;DO的长;在直角三角形ACB中;利用射影定理可求出CO的长;进而可求出CD的长.解答:解:连接AC;BC;∵抛物线的解析式为y=x2﹣2x﹣3;∴点D的坐标为(0;﹣3);∴OD的长为3;设y=0;则0=x2﹣2x﹣3;解得:x=﹣1或3;∴A(﹣1;0);B(3;0)∴AO=1;BO=3;∵AB为半圆的直径;∴∠ACB=90°;∵CO⊥AB;∴CO2=AO•BO=3;∴CO=;∴CD=CO+OD=3+;故答案为:3+.点评:本题是二次函数综合题型;主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理;读懂题目信息;理解“果圆”的定义是解题的关键.16.如图;在直角三角形ABC中(∠C=90°);放置边长分别3;4;x的三个正方形;则x的值为7.考点:相似三角形的判定与性质;正方形的性质.分析:根据已知条件可以推出△CEF∽△OME∽△PFN然后把它们的直角边用含x的表达式表示出来;利用对应边的比相等;即可推出x的值答题解答:解:如图∵在Rt△ABC中∠C=90°;放置边长分别3;4;x的三个正方形;∴△CEF∽△OME∽△PFN;∴OE:PN=OM:PF;∵EF=x;MO=3;PN=4;∴OE=x﹣3;PF=x﹣4;∴(x﹣3):4=3:(x﹣4);∴(x﹣3)(x﹣4)=12;∴x1=0(不符合题意;舍去);x2=7.故答案为:7.点评:本题主要考查相似三角形的判定和性质、正方形的性质;解题的关键在于找到相似三角形;用x的表达式表示出对应边.17.如图;A、D、E是⊙O上的三个点;且∠AOD=120°;B、C是弦AD上两点;BC=;△BCE是等边三角形.若设AB=x;CD=y;则y与x的函数关系式是y=.考点:相似三角形的判定与性质;等边三角形的性质;圆周角定理.专题:计算题.分析:由圆周角定理得出∠AED=120°;得出∠EAD+∠EDC=60°;由等边三角形的性质得出∠BEC=∠EBC =∠ECB=60°;BE=CE=BC=;得出∠ABE=∠ECD=120°;证出∠AEB=∠EDC;证明△ABE∽△ECD;得出对应边成比例;即可得出结果.解答:解:连接AE、DE;如图所示:∵∠AOD=120°;∴360°﹣120°=240°;∴∠AED=×240°=120°;∴∠EAD+∠EDC=60°;∵△BCE是等边三角形;∴∠BEC=∠EBC=∠ECB=60°;BE=CE=BC=;∴∠ABE=∠ECD=120°;∠EAD+∠AEB=60°;∴∠AEB=∠EDC;∴△ABE∽△ECD;∴;即;∴y=.故答案为:y=.点评:本题考查了圆周角定理、等边三角形的性质、相似三角形的判定与性质;熟练掌握圆周角定理和等边三角形的性质;并能进行推理论证与计算是解决问题的关键.18.如图;在Rt△ABC中;∠ABC=90°;BA=BC;点D是AB的中点;连结CD;过点B作BG⊥CD;分别交CD、CA于点E;F;与过点A且垂直于AB的直线相交于点G;连结DF.给出以下四个结论:①;②FG=FB;③AF=;④S△ABC=5S△BDF;其中正确结论的序号是①②③.考点:相似三角形的判定与性质;等腰直角三角形.分析:根据同角的余角相等求出∠ABG=∠BCD;然后利用“角边角”证明△ABC和△BCD全等;根据全等三角形对应边相等可得AG=BD;然后求出AG=BC;再求出△AFG和△CFB相似;根据相似三角形对应边成比例可得=;从而判断出①正确;由AG=BC;所以FG=FB;故②正确;根据相似三角形对应边成比例求出=;再根据等腰直角三角形的性质可得AC=AB;然后整理即可得到AF=AB;判断出③正确;过点F作MF⊥AB于M;根据三角形的面积整理即可判断出④错误.解答:解:∵∠ABC=90°;BG⊥CD;∴∠ABG+∠CBG=90°;∠BCD+∠CBG=90°;∴∠ABG=∠BCD;在△ABC和△BCD中;;∴△ABG≌△BCD(ASA);∴AG=BD;∵点D是AB的中点;∴BD=AB;∴AG=BC;在Rt△ABC中;∠ABC=90°;∴AB⊥BC;∵AG⊥AB;∴AG∥BC;∴△AFG∽△CFB;∴;∵BA=BC;∴;故①正确;∵△AFG∽△CFB;∴;∴FG=FB;故②正确;∵△AFG∽△CFB;∴;∴AF=AC;∵AC=AB;∴AF=AB;故③正确;过点F作MF⊥AB于M;则FM∥CB;∴;∵;∴====;故④错误.故答案为:①②③.点评:本题考查了相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形的性质;熟练掌握相似三角形的判定方法和相似三角形对应边成比例的性质是解题的关键.三、解答题(共8小题;满分78分)19.计算:(+1)()﹣(﹣2014)0+2sin45°.考点:二次根式的混合运算;零指数幂;特殊角的三角函数值.分析:分别进行二次根式的乘法、零指数幂、特殊角的三角函数值等运算;然后合并.解答:解:原式=6﹣1﹣1+2=6.点评:本题考查了二次根式的混合运算;涉及了二次根式的乘法、零指数幂、特殊角的三角函数值等知识;属于基础题.20.如图;在等边△ABC中;D为BC边上一点;E为AC边上一点;且∠ADE=60°.(1)求证:△ABD∽△DCE;(2)若BD=3;CE=2;求△ABC的边长.考点:相似三角形的判定与性质;等边三角形的性质.分析:(1)由∠ADE=60°;可证得△ABD∽△DCE;(2)可用等边三角形的边长表示出DC的长;进而根据相似三角形的对应边成比例;求得△ABC的边长.解答:(1)证明:∵△ABC是等边三角形;∴∠B=∠C=60°;∴∠BAD+∠ADB=120°∵∠ADE=60°;∴∠ADB+∠EDC=120°;∴∠DAB=∠EDC;又∵∠B=∠C=60°;∴△ABD∽△DCE;(2)解:∵△ABD∽△DCE;∴;∵BD=3;CE=2;∴;解得AB=9.点评:此题主要考查了等边三角形的性质和相似三角形的判定和性质;能够证得△ABD∽△DCE是解答此题的关键.21.如图;AB和CD是同一地面上的两座相距39米的楼房;在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°;楼底D的俯角为30°.求楼CD的高(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:在题中两个直角三角形中;知道已知角和其邻边;只需根据正切值求出对边后相加即可.解答:解:延长过点A的水平线交CD于点E;则有AE⊥CD;四边形ABDE是矩形;AE=BD=39米.∵∠CAE=45°;∴△AEC是等腰直角三角形;∴CE=AE=39米.在Rt△AED中;tan∠EAD=;∴ED=39×tan30°=13米;∴CD=CE+ED=(39+13)米.答:楼CD的高是(39+13)米.点评:本题考查的是解直角三角形的应用﹣仰角俯角问题;涉及到特殊角的三角函数值及等腰三角形的判定;熟知以上知识是解答此题的关键.22.如图所示的转盘;分成三个相同的扇形;指针位置固定;转动转盘后任其自由停止;其中的某个扇形会恰好停在指针所指的位置;并相应得到一个数(指针指向两个扇形的交线时;视为无效;重新转动一次转盘);此过程称为一次操作.请用树状图或列表法;求事件“两次操作;第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.考点:列表法与树状图法.分析:根据题意;用列表法列举出所有情况;看所求的情况与总情况的比值即可得答案.解答:解:画树状图如下:所有可能出现的结果共有9种;其中满足条件的结果有5种.所以P(所指的两数的绝对值相等)=.点评:考查了列表法与树状图法求概率的知识;树状图法适用于两步或两部以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.在学习圆与正多边形时;马露、高静两位同学设计了一个画圆内接正三角形的方法:(1)如图;作直径AD;(2)作半径OD的垂直平分线;交⊙O于B;C两点;(3)联结AB、AC、BC;那么△ABC为所求的三角形.请你判断两位同学的作法是否正确;如果正确;请你按照两位同学设计的画法;画出△ABC;然后给出△A BC是等边三角形的证明过程;如果不正确;请说明理由.考点:正多边形和圆;垂径定理.分析:利用锐角三角函数关系得出∠BOE=60°;进而得出∠COE=∠BOE=60°;再利用圆心角定理得出答案.解答:解:两位同学的方法正确.连BO、CO;∵BC垂直平分OD;∴直角△OEB中.cos∠BOE==;∠BOE=60°;由垂径定理得∠COE=∠BOE=60°;由于AD为直径;∴∠AOB=∠AOC=120°;∴AB=BC=CA;。

浙教版2019--2020学年度第一学期期末考试九年级数学试卷

浙教版2019--2020学年度第一学期期末考试九年级数学试卷

试卷第1页,总8页绝密★启用前浙教版2019--2020学年度第一学期期末考试九年级数学试卷考试时间:100分钟;满分120分钟 一、单选题1.(3分)对于二次函数y=x 2-4x+7的图象,下列说法正确的是( )A .开口向下B .对称轴是x=-2C .顶点坐标是(2,3)D .与x 轴有两个交点2.(3分)现有两个可以自由转动的转盘,每个转盘分成三个相同的扇形,涂色情况如图所示,指针的位置固定,同时转动两个转盘,则转盘停止后指针指向同种颜色区域的概率是( )A .19B .16C .23D .133.(3分)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC ,若∠CAB=22.5°,CD=8cm ,则⊙O 的半径为( )A .8cmB .4cmC .D .5cm4.(3分)已知:如图,小华在打羽毛球时,扣球要使球恰好能打过网,而且落在离网前4米的位置处,则球拍击球的高度h 应为( )试卷第2页,总8页A .1.55mB .3.1mC .3.55mD .4m5.(3分)飞机着陆后滑行的距离y (单位:m )关于滑行时间以(单位:)的函数解析式是y =6t ﹣32t 2.在飞机着陆滑行中,滑行最后的150m 所用的时间是( )s . A .10B .20C .30D .10或306.(3分)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,如果∠ACD =34°,那么∠BAD 等于( )A .34°B .46°C .56°D .66°7.(3分)如图,AB,CD 都垂直于x 轴,垂足分别为B,D,若A (6,3),C (2,1),则三角形OCD 与四边形ABCD 的面积比为( )A .1:2B .1:3C .1:4D .1:88.(3分)如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(4,2)9.(3分)如图所示,矩形纸片ABCD 中,6AD cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧试卷第3页,总8页面和底面,则AB 的长为( )A .3.5cmB .4cmC .4.5cmD .5cm10.(3分)如图为二次函数y=ax 2+bx+c (a≠0)的图象,则下列说法:①a>0 ②2a+b=0③a+b+c>0 ④ 当-1<x<3时,y>0 其中正确的个数为()A .1B .2C .3D .4二、填空题11.(4分)在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省金华市九年级上学期期末测试数学试卷一、选择题(共10小题,每小题3分,满分30分)1.﹣2016的相反数是()A.B.C.6102 D.20162.四边形的内角和为()A.90°B.180°C.360°D.720°3.已知=,则的值是()A.B.C.D.4.将抛物线y=3x2向上平移1个单位,得到抛物线()A.y=3(x﹣1)2B.y=3(x+1)2C.y=3x2﹣1 D.y=3x2+15.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒(如图),则它的主视图是()A.图① B.图②C.图③ D.图④6.在Rt△ABC中,∠ACB=Rt∠,BC=1,AB=2,则sinA的值为()A.B.C.D.7.已知半径为3的圆⊙O外有一条直线l,已知⊙O与直线l相切,则圆心到直线l的距离为()A.1 B.2 C.3 D.48.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为()A.B.C.D.9.如果正比例函数y=ax(a≠0)与反比例函数y=(b≠0 )的图象有两个交点,其中一个交点的坐标为(﹣3,﹣2),那么另一个交点的坐标为()A.(2,3)B.(3,﹣2)C.(﹣2,3)D.(3,2)10.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=6cmB.sin∠EBC=C.当0<t≤10时,y=t2D.当t=12s时,△PBQ是等腰三角形二、填空题(共6小题,每小题4分,满分24分)11.函数中,自变量x的取值范围是.12.因式分解:ab2﹣64a= .13.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,若不计接缝和损耗,则圆锥底面半径为.14.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形的个数是.15.对任意两实数a、b,定义运算“*”如下:.根据这个规则,则方程2*x=9的解为.16.如图,梯形OABC中,BC∥AO,O(0,0),A(10,0),B(10,4),BC=2,G(t,0)是底边OA 上的动点.(1)tan∠OAC=.(2)边AB关于直线CG的对称线段为MN,若MN与△OAC的其中一边平行时,则t= .三、解答题(共8小题,满分66分)17.计算:.18.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.19.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).20.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形的面积S.21.为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:(A组:x<155;B组:155≤x<160;C组:160≤x<165;D组165≤x<170;E组:x≥170)根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组.(2)样本中,女生的身高在E组的人数有人.(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?22.阅读下列材料:小华遇到这样一个问题:已知:如图1,在△ABC中,三边的长分别为AB=,AC=,BC=2,求∠A的正切值.小华是这样解决问题的:如图2所示,先在一个正方形网格(每个小正方形的边长均为1)中画出格点△ABC(△ABC三个顶点都在小正方形的顶点处),然后在这个正方形网格中再画一个和△ABC相似的格点△DEF,从而使问题得解.(1)如图2,△DEF中与∠A相等的角为,∠A的正切值为.(2)参考小华的方法请解决问题:若△LMN的三边分别为LM=2,MN=2,LN=2,求∠N的正切值.23.某公司装修需用A型板材240块,B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n(1)上表中,m= ,n= ;(2)若裁完剩余的部分可以拼接成A型或B型板材使用,则至少需要几张标准板材?(3)若裁完剩余的部分不能拼接成A型或B型板材使用,已知用170张标准板材,可以完成装修任务.请通过计算写出两种剪裁方案(要求:①其中一种方案三种剪裁方法都使用,另一种方案只用到两种剪裁方法;②每种方案需写出使用各种裁剪方法裁剪标准板的张数).24.在平面直角坐标系中,O是坐标原点,矩OABC的位置如图所示,点A,C的坐标分别为(10,0),(0,8),点P是y轴上的一个动点,将△OAP沿AP翻折得到:△O′AP,直线BC与直线O′P交于点E,与直线O′A交于点F.(1)当O′落在直线BC上时,求折痕AP的长.(2)当点P在y轴正半轴上时,若△PCE与△POA相似,求直线AP的解析式;(3)在点P的运动过程中,是否存在某一时刻,使得?若存在,求点P坐标;若不存在,请说明理由.浙江省金华市婺城区九年级上学期期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.﹣2016的相反数是()A.B.C.6102 D.2016【考点】相反数.【分析】根据相反数的定义回答即可.【解答】解:﹣2016的相反数是2016.故选;D.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.四边形的内角和为()A.90°B.180°C.360°D.720°【考点】多边形内角与外角.【分析】根据多边形内角和公式:(n﹣2)•180°(n≥3)且n为整数)进行计算即可.【解答】解:四边形的内角和为180°(4﹣2)=360°,故选:C.【点评】此题主要考查了多边形内角,关键是掌握多边形内角和计算公式.3.已知=,则的值是()A.B.C.D.【考点】比例的性质.【分析】根据合比性质,可得的值,再根据反比性质,可得答案.【解答】解:由合比性质,得=,由反比性质,得=,故选:A.【点评】本题考查了比例的性质,利用了和比性质:=⇒=,又利用了反比性质:=⇒=.4.将抛物线y=3x2向上平移1个单位,得到抛物线()A.y=3(x﹣1)2B.y=3(x+1)2C.y=3x2﹣1 D.y=3x2+1【考点】二次函数图象与几何变换.【分析】因为函数y=3x2的图象沿y轴向上平移1个单位长度,所以根据左加右减,上加下减的规律,直接在函数上加1可得新函数y=3x2+1.【解答】解:∵函数y=3x2的图象沿y轴向上平移1个单位长度.∴y=3x2+1.故选:D.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.5.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒(如图),则它的主视图是()A.图① B.图②C.图③ D.图④【考点】简单组合体的三视图.【分析】先细心观察原立体图形中圆柱和正方体的位置关系,找到从正面看所得到的图形即可.【解答】解:圆柱的主视图是矩形,正方体的主视图是正方形,所以它们的主视图是图②.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.在Rt△ABC中,∠ACB=Rt∠,BC=1,AB=2,则sinA的值为()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据正弦的定义进行计算即可.【解答】解:∵∠ACB=Rt∠,BC=1,AB=2,∴sinA==,故选:A.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7.已知半径为3的圆⊙O外有一条直线l,已知⊙O与直线l相切,则圆心到直线l的距离为()A.1 B.2 C.3 D.4【考点】直线与圆的位置关系.【分析】连接OP,根据切线的性质得出OP⊥AB,根据垂线段最短得出OP的长最短,得出选项即可.【解答】解:连接OP,∵直线AB切⊙O于P,∴OP⊥AB,即OP的长是圆心到直线的最短距离,∴OP=3,故选C.【点评】本题考查了点到直线的距离,切线的性质,直线和圆的位置关系的应用,解此题的关键是找出OP 的位置,难度适中.8.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两球恰好是一个黄球和一个红球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两球恰好是一个黄球和一个红球的有6种情况,∴两球恰好是一个黄球和一个红球的为:=.故选A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.如果正比例函数y=ax(a≠0)与反比例函数y=(b≠0 )的图象有两个交点,其中一个交点的坐标为(﹣3,﹣2),那么另一个交点的坐标为()A.(2,3)B.(3,﹣2)C.(﹣2,3)D.(3,2)【考点】反比例函数图象的对称性.【专题】常规题型.【分析】利用待定系数法求出两函数解析式,然后联立两解析式,解方程组即可得到另一交点的坐标;或根据两交点关于原点对称求解.【解答】解:由题设知,﹣2=a•(﹣3),(﹣3)•(﹣2)=b,解得a=,b=6,联立方程组得,解得,,所以另一个交点的坐标为(3,2).或:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).故选:D.【点评】本题考查了反比例函数图象的对称性,联立两函数解析式求交点坐标是常用的方法,也是基本的方法,需熟练掌握,另外,利用对称性求解更简单,且不容易出错.10.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=6cmB.sin∠EBC=C.当0<t≤10时,y=t2D.当t=12s时,△PBQ是等腰三角形【考点】动点问题的函数图象.【专题】压轴题.【分析】由图2可知,在点(10,40)至点(14,40)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;(2)在ED段,y=40是定值,持续时间4s,则ED=4;(3)在DC段,y持续减小直至为0,y是t的一次函数.【解答】解:(1)结论A正确.理由如下:分析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm;(2)结论B正确.理由如下:如答图1所示,连接EC,过点E作EF⊥BC于点F,=40=BC•EF=×10×EF,∴EF=8,由函数图象可知,BC=BE=10cm,S△BEC∴sin∠EBC===;(3)结论C正确.理由如下:如答图2所示,过点P作PG⊥BQ于点G,∵BQ=BP=t,∴y=S=BQ•PG=BQ•BP•sin∠EBC=t•t•=t2.△BPQ(4)结论D错误.理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,NC.此时AN=8,ND=2,由勾股定理求得:NB=,NC=,∵BC=10,∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.【点评】本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.二、填空题(共6小题,每小题4分,满分24分)11.函数中,自变量x的取值范围是x≠1.【考点】函数自变量的取值范围;分式有意义的条件.【分析】分式的意义可知分母:就可以求出x的范围.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.因式分解:ab2﹣64a= a(b+8)(b﹣8).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据平方差公式进行二次分解即可求得答案,注意分解要彻底.【解答】解:ab2﹣64a=a(b2﹣64)=a(b+8)(b﹣8).故答案为:a(b+8)(b﹣8).【点评】本题考查了提公因式法,公式法分解因式的知识.注意因式分解的步骤:先提公因式,再利用公式法分解,注意分解要彻底.13.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,若不计接缝和损耗,则圆锥底面半径为10cm .【考点】圆锥的计算.【分析】由于弧长=圆锥底面周长==20π,故由底面周长公式可求得圆锥底面的半径.【解答】解:由题意知:圆锥底面周长==20πcm,圆锥底面的半径=20π÷2π=10cm.故答案为:10cm.【点评】此题主要考查了圆锥的计算,用到的知识点为:弧长=圆锥底面周长;底面半径=底面周长÷2π.14.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形的个数是3n+4 .【考点】规律型:图形的变化类.【分析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;【解答】方法一:解:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n 个图形共有三角形5+3n ﹣1=3n+4个;故答案为:3n+4方法二:当n=1时,s=7,当n=2时,s=10,当n=3时,s=13,经观察,此数列为一阶等差,∴设s=kn+b ,, ∴,∴s=3n+4.【点评】此题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.15.对任意两实数a 、b ,定义运算“*”如下:.根据这个规则,则方程2*x=9的解为 x=﹣3或 .【考点】一元二次方程的应用.【专题】新定义.【分析】根据题意可得2*x=9要分两种情况讨论:①当x≤2时②当x >2时,分别代入数计算可得到x 的值,要根据条件进行取舍.【解答】解:由题意得:当x≤2时,2*x=x 2=9,解得:x 1=3(不合题意舍去),x 2=﹣3,则x=﹣3,当x >2时:2*x=x 2+x=9,解得:x 1=,x 2=(不合题意舍去),则x=, 故答案为:x=﹣3或.【点评】此题主要考查了一元二次方程的应用,关键是看懂公式所表示的意义,根据公式列出一元二次方程.16.如图,梯形OABC 中,BC∥AO,O (0,0),A (10,0),B (10,4),BC=2,G (t ,0)是底边OA 上的动点.(1)tan∠OAC= .(2)边AB 关于直线CG 的对称线段为MN ,若MN 与△OAC 的其中一边平行时,则t= 4或4或10﹣2 .【考点】梯形;坐标与图形性质;轴对称的性质.【分析】(1)根据∠OAC=∠ACB 求出tan∠ACB 即可.(2)分①A′B′∥OA②A′B′∥AC③A′B′∥OC 三种情形讨论即可.【解答】解:(1)∵BC∥AO,∴∠OAC=∠ACB,∵AB=4,BC=2,∴tan∠OAC=tan∠ACB===.故答案为.(2)情形①图1中,当A′B′∥OA 时,作CD⊥OA 垂足为D ,∵∠BCB′=90°,CG 平分∠BCB′,∴∠GCD=∠NCB′=45°∴△CGD 是等腰直角三角形,∴DG=CD=4,t=OG=OD ﹣GD=8﹣4=4.情形②图2中,A′B′∥AC,∵OC=4,AC=2,AO=10,∴AO2=OC2+AC2,∴∠OCA=90°,∵A′B′∥AC,∠A′B′C=90°,∴点B′在线段OC上,∵CG平分∠BCB′,BC∥OA,∴∠BCG=∠OGC=∠OCG,∴OG=OC==4,∴t=4.情形③图3中,A′B′∥OC时,∵CG平分∠BCB′,BC∥OA,∴∠ACG=∠B′CE=′BCE=′AGC,∴AG=AC==2,∴t=CG=AO﹣AG=10﹣2.故答案为4或4或10﹣2.【点评】本题考查平面直角坐标系、对称的性质、勾股定理等知识,正确画出图象是解题的关键,学会分类讨论,注意不能漏解.三、解答题(共8小题,满分66分)17.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+2+2×﹣=1+2+﹣=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.【考点】全等三角形的判定与性质;等腰三角形的性质;平行四边形的判定与性质.【专题】证明题.【分析】(1)运用AAS证明△ABD≌△CAE;(2)易证四边形ADCE是矩形,所以AC=DE=AB,也可证四边形ABDE是平行四边形得到AB=DE.【解答】证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.【点评】本题主要考查了三角形全等的判定与性质,矩形的判定与性质以及平行四边形的判定与性质,难度不大,比较灵活.19.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).【考点】解直角三角形的应用-仰角俯角问题.【专题】应用题.【分析】设EC=x,则在RT△BCE中,可表示出BE,在Rt△ACE中,可表示出AE,继而根据AB+BE=AE,可得出方程,解出即可得出答案.【解答】解:设EC=x,在Rt△BCE中,tan∠EBC=,则BE==x,在Rt△ACE中,tan∠EAC=,则AE==x,∵AB+BE=AE,∴300+x=x,解得:x=1800,这座山的高度CD=DE﹣EC=3700﹣1800=1900(米).答:这座山的高度是1900米.【点评】此题考查了解直角三角形的应用,解答本题的关键是两次利用三角函数的知识,求出BE及AE的表达式,属于基础题,要能将实际问题转化为数学计算.20.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形的面积S.【考点】扇形面积的计算;含30度角的直角三角形;垂径定理;圆周角定理.【分析】(1)根据∠D=60°,可得出∠B=60°,继而求出BC,判断出OE是△ABC的中位线,就可得出OE的长;(2)连接OC,将阴影部分的面积转化为扇形FOC的面积.【解答】解:(1)∵∠D=60°,∴∠B=60°(圆周角定理),又∵AB=6,∴BC=3,∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE∥BC,又∵点O是AB中点,∴OE是△ABC的中位线,∴OE=BC=;(2)连接OC,则易得△COE≌△AFE,故阴影部分的面积=扇形FOC的面积,==π.S扇形FOC即可得阴影部分的面积为π.【点评】本题考查了扇形的面积计算、含30°角的直角三角形的计算及圆周角定理及垂径定理的知识,综合考察的知识点比较多,难点在第二问,注意将不规则图形转化为规则图形.21.为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:(A组:x<155;B组:155≤x<160;C组:160≤x<165;D组165≤x<170;E组:x≥170)根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在 B 组,中位数在 C 组.(2)样本中,女生的身高在E组的人数有 2 人.(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?【考点】频数(率)分布直方图;用样本估计总体;扇形统计图;中位数;众数.【分析】(1)根据众数和中位数的概念进行解答;(2)根据男生和女生的人数相等求出女生人数,求出女生的身高在E组的人数的百分比,计算即可;(3)求出身高在160≤x<170之间女生人数和男生人数即可.【解答】解:(1)男生身高在B组的人数最多,所以男生的身高众数在B组,男生人数为4+12+10+8+6=40,∴中位数是第20和21个数的平均数,所以中位数在C组;(2)女生的身高在E组的人数为40×(1﹣17.5%﹣37.5%﹣25%﹣15%)=2人;(3)400×+380×40%=332人,答:身高在160≤x<170之间的学生约有332人.【点评】本题考查的是频数分布直方图,掌握用样本估计总体的方法、正确读懂扇形图的信息、理解中位数和众数的概念是解题的关键.22.阅读下列材料:小华遇到这样一个问题:已知:如图1,在△ABC中,三边的长分别为AB=,AC=,BC=2,求∠A的正切值.小华是这样解决问题的:如图2所示,先在一个正方形网格(每个小正方形的边长均为1)中画出格点△ABC(△ABC三个顶点都在小正方形的顶点处),然后在这个正方形网格中再画一个和△ABC相似的格点△DEF,从而使问题得解.(1)如图2,△DEF中与∠A相等的角为∠D,∠A的正切值为.(2)参考小华的方法请解决问题:若△LMN的三边分别为LM=2,MN=2,LN=2,求∠N的正切值.【考点】作图—相似变换.【分析】(1)先证明△DEF∽△ACB得∠D=∠A,根据tan∠A=tan∠D即可解决.(2)构造一个△RKT∽△MLN得∠T=∠N,根据tan∠N=tan∠T即可解决.【解答】解:(1)由图2 可知DE=2,EF=2,DF=2,AB=,AC=,BC=2,∵,∴△DEF∽△ACB,∴∠D=∠A,∴tan∠A=tan∠D=,故答案分别为∠D,(2)在图3中,作一个△RKT,使得PK=,RT=,KT=5,∵LM=2,NM=2,LN=2,∴=,∴△RKT∽△MLN,∴∠T=∠N,∴tan∠N=tan∠T=.【点评】本题考查相似三角形的判定和性质、勾股定理、三角函数的定义等知识,学会用转化的数学思想解决问题,构造一个三角形和已知三角形相似是解题的关键.23.某公司装修需用A型板材240块,B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n(1)上表中,m= 0 ,n= 3 ;(2)若裁完剩余的部分可以拼接成A型或B型板材使用,则至少需要几张标准板材?(3)若裁完剩余的部分不能拼接成A型或B型板材使用,已知用170张标准板材,可以完成装修任务.请通过计算写出两种剪裁方案(要求:①其中一种方案三种剪裁方法都使用,另一种方案只用到两种剪裁方法;②每种方案需写出使用各种裁剪方法裁剪标准板的张数).【考点】二元一次方程组的应用.【分析】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块B型板材块的长为160cm>150所以无法裁出4块B型板;(2)根据裁法一和裁法二及裁法三的剩余量分析得出至少需要2张板材;(3)设裁法一用x张,裁法二用y张,则裁法三用(170﹣x﹣y)张,列出方程组解答即可.【解答】解:(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块块B型板材块的长为160cm>150cm,所以无法裁出4块B型板;则m=0,n=3;(2)裁法一的剩余量是150﹣60﹣40﹣40=10裁法二的剩余量是150﹣60﹣60=30;裁法三的剩余量是150﹣40﹣40﹣40=30;拼接成A型可用裁法二和裁法三共2张,拼接成B型可用裁法一和裁法二共2张,故可得至少需2张板材;(3)方案一:三种裁法都用,设裁法一用x张,裁法二用y张,则裁法三用(170﹣x﹣y)张,列出方程组解得:答:裁法一用60张,裁法二用90张,裁法三用20张,共用170张;方案二:用裁法一用x张,裁法二用y张,列出方程组解得:答:裁法一用90张,裁法二用75张,共用165张【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,在做题时要明缺所裁出A型板材和B型板材的总张数不能超过170张.24.在平面直角坐标系中,O是坐标原点,矩OABC的位置如图所示,点A,C的坐标分别为(10,0),(0,8),点P是y轴上的一个动点,将△OAP沿AP翻折得到:△O′AP,直线BC与直线O′P交于点E,与直线O′A交于点F.(1)当O′落在直线BC上时,求折痕AP的长.(2)当点P在y轴正半轴上时,若△PCE与△POA相似,求直线AP的解析式;(3)在点P的运动过程中,是否存在某一时刻,使得?若存在,求点P坐标;若不存在,请说明理由.【考点】相似形综合题.【分析】(1)先在RT△ABO′求出BO′,设PO=PO′=x,在RT△PCO′中利用勾股定理解决即可.(2)当∠CPE=∠APO时得∠CPE=∠APO=∠APO′=60°求出OP=OA即可.当∠CPE=∠OAP时,∠CEP=∠APO=∠APO′,此时AP∥EC,显然不可能.(3)分四种情形讨论,在RT△PCE中利用E2=PC2+CE2列出方程求解.【解答】解:(1)图1,当O′落在直线BC上时,在RT△ABO′中,∵AO′=10,AB=8,∴BO′===6,∵△APO′是由△AOP翻折,∴可以设PO=PO′=x,在RT△PCO′中,∵PO′2=PC2+CO′2,∴x2=(8﹣x)2+42,∴x=5,∴AP===5,(2)当∠CPE=∠APO时,∵∠CPE=∠APO=∠APO′=60°,∴OP=OA=,设直线AP为y=kx+b,由题意解得,∴直线AP为y=﹣x+.当∠CPE=∠OAP时,∠CEP=∠APO=∠APO′,此时AP∥EC,显然不可能.(3)情形1如图2中,∵CE=BC=2,∴BE=8,AE==8,EO′==2,设OP=x,在RT△PCE中,∵PE2=PC2+CE2,∴(x﹣2)2=(8﹣x)2+22,∴x=,此时P[0,],情形2如图3中,同理O′E=2,设OP=x,在RT△PCE中,∵PE2=PC2+CE2,∴(x+2)2=(8﹣x)2+22,∴x=,此时P[0,],情形3如图4中,AE===4,EO′==6,设OP=x,在RT△PCE中,∵PE2=PC2+CE2,∴(6﹣x)2=(x﹣8)2+22,∴x=,此时P[0,],情形4如图5中,设OP=x,在RT△PCE中,∵PE2=PC2+CE2,∴(6﹣x)2=(x+8)2+22,∴x=,此时P[0,].【点评】本题考查矩形的性质、勾股定理等知识,用到转化的思想,分类讨论的方法,灵活运用勾股定理是解题的关键,分类讨论时考虑问题要全面.。

相关文档
最新文档