《绝对值》微课设计方案
七年级数学《绝对值》教案【优秀6篇】

七年级数学《绝对值》教案【优秀6篇】数学《绝对值》教案篇一●教学内容七年级上册课本11----12页1.2.4绝对值●教学目标1、知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2、过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。
通过应用绝对值解决实际问题,体会绝对值的意义。
3、情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备多媒体课件●教学过程一、创设问题情境1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。
若规定向右为正,则A处记作__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型1、绝对值的概念(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5.注意:①与原点的关系②是个距离的概念2、。
绝对值(第一课时)教案(共5篇)

绝对值(第一课时)教案(共5篇)第一篇:绝对值(第一课时)教案绝对值(第一课时)教案1.知识与技能①能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.②通过应用绝对值解决实际问题,体会绝对值的意义和作用.2.过程与方法经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.3.情感、态度与价值观①通过解释绝对值的几何意义,渗透数形结合的思想.②体验运用直观知识解决数学问题的成功.教学重点难点重点:给出一个数,会求它的绝对值.难点:绝对值的几何意义、代数定义的导出.(一)创设情境,导入新课活动请两同学到讲台前,分别向左、向右行3米.交流①他们所走的路线相同吗? ②若向右为正,分别可怎样表示他们的位置? ③他们所走的路程的远近是多少?(二)合作交流,解读探究观察出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为________,•它们的__________不同,__________相同.总结例如6和-6两个数在数轴上的两点虽然分布在原点的两边,•但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值.绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│.想一想(1)-3的绝对值是什么?更多精彩推荐:初中gt;初一gt;数学gt;初一数学教案第二篇:《绝对值》教案[模版]课题:绝对值正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。
互为相反数的两个数的绝对值相等。
试一试:若字母a表示一个有理数,你知道a的绝对值等于什么吗?(1)当a是正数时,|a|=____;(2)当a是负数时,|a|=__;(3)当a=0时,|a|=___。
总结得出:⎧a(a>0)|a|=⎪⎨-a(a<0)⎪⎩0(a=0)结论:任何一个有理数的绝对值都是非负数。
《绝对值》教学设计

《绝对值》教学设计《绝对值》教学设计(通用10篇)作为一名辛苦耕耘的教育工作者,时常要开展教学设计的准备工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
那么大家知道规范的教学设计是怎么写的吗?下面是小编为大家收集的《绝对值》教学设计,欢迎阅读,希望大家能够喜欢。
《绝对值》教学设计1 教学目标1.了解绝对值的概念,会求有理数的绝对值;2.会利用绝对值比较两个负数的大小;3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力。
教学建议一、重点、难点分析绝对值概念既是本节的教学重点又是教学难点。
关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。
教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。
这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。
此外,0的绝对值是0,从几何定义出发,就十分容易理解了。
二、知识结构绝对值的定义绝对值的表示方法用绝对值比较有理数的大小三、教法建议用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的。
初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即在教学中,只能突出一种定义,否则容易引起混乱。
可以把利用数轴给出的定义作为绝对值的一种直观解释。
此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数,“非负数”的概念视学生的情况,逐步渗透,逐步提出四、有关绝对值的一些内容1.绝对值的代数定义一个正数的绝对值是它本身;一个负数的绝对值是它的.相反数;零的绝对值是零2.绝对值的几何定义在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值3.绝对值的主要性质(2)一个实数的绝对值是一个非负数,即a≥0,因此,在实数范围内,绝对值最小的数是零(4)两个相反数的绝对值相等五、运用绝对值比较有理数的大小1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小比较两个负数的方法步骤是:(1)先分别求出两个负数的绝对值;(2)比较这两个绝对值的大小;(3)根据“两个负数,绝对值大的反而小”作出正确的判断2.两个正数大小的比较,与小学学习的方法一致,绝对值大的较大。
七年级数学《绝对值》教案【优秀9篇】

七年级数学《绝对值》教案【优秀9篇】学习难点: 篇一绝对值的综合运用绝对值教案篇二绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。
通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。
教学过程:一、创设情境,复习导入。
今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。
(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?① 千米,千米;②()×升。
在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。
这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。
你还能举出其他类似的例子吗?。
小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。
《绝对值》示范教学方案

第一章有理数1.2有理数1.2.4绝对值一、教学目标1.借助数轴初步理解绝对值的概念,会求一个数的绝对值.2.通过应用绝对值解决实际问题,体会绝对值的意义和作用.二、教学重点及难点重点:正确理解绝对值的概念,能求一个数的绝对值.难点:正确理解绝对值的几何意义和代数意义.三、教学准备电脑、多媒体、课件、直尺、刻度尺四、相关资源动画,知识卡片五、教学过程(一)创设情景两辆汽车从同一处O出发,分别向东、西方向行驶10 km,到达A,B两处.它们的行驶路线相同嘛?它们行驶的路程相等吗?师生活动:学生思考,回答问题,教师画一条数轴,原点表示O处,在数轴上画出表示A处和B处点,观察图形,让学生说出A处、B处与O处的距离.小结:到达A,B两处的行驶路线不相同,它们行驶的路程相等.设计意图:绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念做准备.(二)合作探究1.-10与10是相反数,它们只有符号不同,它们什么相同呢?师生活动:让学生产生疑问,思考讨论,学生很难得出答案.教师可以在数轴上标出到原点距离是10个单位长度的点,总结表示-10的点B和表示10的点A离开原点的距离都是10,我们就把这个距离10叫做数-10、10的绝对值,从而引出绝对值的概念.小结:+10与-10虽然符号不同,但表示这两个数的点到原点的距离都是10,是相同的,我们把这个距离叫+10与-10的绝对值.一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│.设计意图:针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找出到原点距离是10个单位长度的点.”这时学生就有了一个攀登的台阶,自然而然地想到表示+10,-10的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,时而紧张时而轻松,不知不觉学生已获得了知识.2.一个正数的绝对值是什么?0的绝对值是什么?负数呢?师生活动:教师出示动画《探究绝对值》,和学生共同探究.学生小组交流、讨论,小组代表汇报讨论结论.然后教师指出这是绝对值意义的文字叙述,事实上,这意义还可以用数学式子来表达.这时,教师提出问题:怎样用数学式子来表达呢?让学生分组讨论,动脑思考.学生通过动手动脑,分析思考,将得到三个相应的表达式.归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即:①如果a>0,那么│a│=a;②如果a=0,那么│a│=0;③如果a<0,那么│a│=-a.设计意图:通过分组讨论可以使全体学生参与数学活动,而且还可以起到合作交流,相互学习,相互促进的作用.它较好地体现了学生是学习的主人这一理念,有利于学生自主地探究数学问题,必使他们的团队精神得到培养.此图片是动画缩略图,本动画资源给出数轴及其上两动点,通过拖动点,体会绝对值的几何意义,适用于绝对值的教学.若需使用,请插入动画【数学探究】绝对值的几何意义.3.有没有绝对值等于-2的数?一个数的绝对值会是负数吗?不论有理数a取何值,它的绝对值总是什么数?师生活动:教师提出问题,学生思考,回答问题.小结:没有绝对值等于-2的数,一个数的绝对值不会是负数,不论有理数a取何值,它的绝对值总是非负数.归纳:不论有理数a取何值,它的绝对值总是正数或0(非负数),即对任意有理数a,总有|a|≥0.4.互为相反数的两个数的绝对值有什么关系?师生活动:学生观察讨论:一对相反数虽然分别在原点两边,但它们到原点的距离是相等的.小结:互为相反数的两个数的绝对值相等.设计意图:通过提问的形式,使学生对绝对值的概念和意义得以深化理解.5.下图给出了未来一周中每天的最高气温和最低气温,看图回答下面问题:(1)最低气温是多少?最高气温是多少?(2)你能将这七天中每天的最低气温按从低到高的顺序排列吗?(3)数轴上的数的排列规律是什么?师生活动:教师利用多媒体提出问题,让学生自主学习,并讨论解决以上问题.答案:(1)最低气温是-4,最高气温是9.(2)这七天中每天的最低气温按从低到高的顺序排列为:-4,-3,-2,-1,0,1,2.(3)数轴上的数的排列规律是:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.设计意图:让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性.6.对于正数、0和负数这三类数,它们之间有什么大小关系?两个负数之间如何比较大小?师生活动:让学生分小组讨论,利用数轴探究结论,教师重点关注学生能否正确找到两个负数的比较方法.归纳:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.设计意图:数的大小比较法则对于负数的比较学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,加强数与形的想象,掌握有理数大小的比较方法.此图片是动画缩略图,本动画资源随机给出两个数,比较它们的大小,体会有理数大小比较的方法,适用于绝对值的教学.若需使用,请插入动画【数学活动】比较两个有理数的大小.此图片是动画缩略图,本动画资源给出数轴及其上两动点,探究如何利用绝对值表示数轴上两点的距离,适用于绝对值的教学.若需使用,请插入动画【数学探究】数轴上两点间的距离.(三)例题分析1.例1 求下列各数的绝对值:(1)112-; (2)-|-7|; (3)+|-2|; (4)|3-π|. 师生活动:学生充分思考后,让学生回答,教师板书.思路解析:由绝对值定义来解,注意绝对值外面的负号.解:(1)原式=1;(2)原式=-7;(3)原式=2;(4)原式=π-3. 设计意图:通过例题,使学生学会用正数与负数表示具有相反意义的量的方法,透过师生合作,突破用正数、负数表示指定方向变化的量这一难点.例2 比较下列各对数的大小:(1)-(-1)和-(+2); (2)821-和37-; (3)-(-0.3)和13-. 师生活动:出示教材问题,然后师生共同解决问题.解:(1)化简,得:-(-1)=1,-(+2)=-2.∵1>-2,∴-(-1)>-(+2).(2)∵8833212177-=,-=, 又∵83217<,即83217-<-, ∴821->37-. (3)化简,得:-(-0.3)=0.3,1133-=.∵0.3<13, ∴-(-0.3)<13-. 设计意图:学生对本节知识有了更深一步的理解,并进一步明确了绝对值的内涵与意义,解决问题的能力得到了大大提高.(四)练习巩固121.比较大小:(1)-2_______5,72-_______38+,-0.01________-1; (2)-45_______-56. 答案:(1)<;>;> ;(2)>.设计意图:考查了有理数的比较大小.2.化简:-|-5|=_______; |-(-5)|=_______;1()2-+=_______. 答案:-5,5,21. 设计意图:考查了绝对值、相反数的意义.3.已知|x -2|+|y +2|=0,求x ,y 的值.分析:此题考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即0a ≥. 所以|x -2|≥0,|y +2|≥0,而两个非负数之和为0,则这两个数均为0,所以可求出x ,y的值.解:∵|x -2|≥0,|y +2|≥0, 又|x -2|+|y +2|=0,∴|x -2|=0,|y +2|=0,即x -2=0,y +2=0,∴x =2,y =-2.设计意图:考查了绝对值的综合应用以及非负数的性质.六、课堂小结1.绝对值的定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作│a │.2.绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 即::①如果a >0,那么│a │=a ;②如果a =0,那么│a │=0;③如果a <0,那么│a │=-a .3.不论有理数a 取何值,它的绝对值总是正数或0(非负数),即对任意有理数a ,总有|a |≥0.4.互为相反数的两个数的绝对值相等.5.数轴上的数的排列规律是:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.6.有理数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.设计意图:教师要努力使学生自己回顾、总结、梳理所学的知识,将所学的知识与以前学过的知识进行紧密联结,完善认知结构.七、板书设计1.2.4绝对值1.绝对值的定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│.2.绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即::①如果a>0,那么│a│=a;②如果a=0,那么│a│=0;③如果a<0,那么│a│=-a.3.不论有理数a取何值,总有| a |≥0.4.数轴上的数的排列规律是:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.5.有理数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.。
七年级数学《绝对值》教案

七年级数学《绝对值》教案数学是人们对客观世界定性掌控和定量刻画逐渐抽象概括、形成方法和理论,并进行广泛运用的进程。
这里给大家分享一些关于七年级数学《绝对值》教案,方便大家学习。
七年级数学《绝对值》教案篇1一、说教材(五)教材的地位和作用《绝对值》是选自人教版初一数学第一章第二节第四部分的内容。
这部分内容之前已经学习了有理数、数轴、相反数的内容,这是本节课学习的基础。
绝对值的内容主要包括含义及有理数之间的大小比较,这也为后面学习有理数的加减法奠定了基础。
(六)教学目标根据对教材内容的分析,以及在新课改理念的指导下,制定了以下三维目标:(一)知识与技能知道、掌控绝对值的含义,并且会比较有理数之间的大小。
(二)进程与方法运用数轴来推理数的绝对值,并在推理的进程中清楚的论述自己的观点,从而逐渐发展产生的抽象思维。
(三)情感态度与价值观体验数学活动的探干脆和创造性,感受数学的严谨性以及数学结论的肯定性。
教学重难点通过以上对教材内容及教学目标的分析,以及学生已有的知识水平,本节课的教学重难点以下:重点:绝对值的知道以及有理数的比较难点:负数的绝对值的知道及比较二、说学情以上就是我对教材的分析,由于教学目标及重难点的肯定也是在学生情形的基础上进行的,所以下面我对学情进行分析。
初一学生的抽象思维开始有了一定的发展,但还需一定的感性材料作支持,同时思维比较活跃和积极,所以教学进程中会重视直观材料的运用,然后引导学生自主摸索并知道知识,以激发学生的学习爱好,调动学生的积极性和主动性。
三、说教材基于以上对教材、学情的分析,以及新课改的要求,我在本课中采取的教法有:讲授法、演示法和引导归纳法。
演示法中需要的教具有多媒体和温度计。
四、说教法新课改理念告知我们,学生不仅要学到具体的知识,更重要的是学生要学会怎样自己学习,为毕生学习奠定扎实的基础。
所以本课中我将引导学生通过自主探究、合作交换的学法来更好的掌控本节课的内容。
五、说教学程序为了更好的实现三维目标、突破重难点,我将本课的教学程序设计为以下五个环节:(一)情境导入出示温度计,北方某一城市的温度是零下15摄氏度,南方某一城市的温度是15摄氏度 ,学生在稿纸上画一条数轴,标出这两个温度,并请一位学生画在黑板上。
七年级数学《绝对值》教案精选3篇

七年级数学《绝对值》教案精选3篇七年级数学《绝对值》教案篇一一、教学目标:1.知识目标:①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2.能力目标:①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3.情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的`绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法启发引导式、讨论式和谈话法四、教学过程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?(二)新授1.引入结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2.数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。
数a的绝对值记作|a|。
举例说明数a的绝对值的几何意义。
(按教材P63的倒数第二段进行讲解。
)强调:表示0的点与原点的距离是0,所以|0|=0。
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
七年级数学《绝对值》教案篇二各位专家领导:你们好!今天我说课的内容是人教版七年级上册1、2、4 绝对值内容。
首先,我对本节教材进行一些分析:一、教材分析(说教材):(一)、教材所处的地位与作用:本节内容在全书及章节的地位是:《绝对值》是七年级数学教材上册1、2、4 节内容。
《 绝对值》教案

《绝对值》教案绝对值教案一、教学目标1. 知识目标:掌握绝对值的概念与性质,能正确理解和运用绝对值的定义;熟练掌握求解绝对值的方法和技巧;能够解决涉及绝对值的实际问题。
2. 能力目标:培养学生的逻辑思维和抽象思维能力;培养学生的问题发现和问题解决能力;锻炼学生的数学推理和证明能力。
3. 情感目标:培养学生的求知欲和探究精神;培养学生的合作意识和团队合作能力;培养学生的数学美感和创造性思维。
二、教学内容本堂课主要内容为绝对值的概念、性质及应用。
三、教学过程Step 1 导入新知1. 老师出示一张有负数的纸条,并问学生这个纸条上的数字是多少。
2. 学生回答“-3”。
3. 老师引导学生思考纸条上的数字表示了什么意思,以及如何用数学语言来表示。
4. 学生尝试回答,老师给予指导和补充。
Step 2 探究绝对值的概念1. 老师出示一个数轴,并在上面标出-3和3两个点。
2. 老师引导学生观察这两个点的特点并总结,进而引出绝对值的概念。
3. 学生根据观察和总结,尝试给出绝对值的定义。
4. 学生发表自己的观点后,老师给予肯定和指导。
Step 3 探究绝对值的性质1. 老师出示绝对值的性质列表,让学生观察并自行尝试探究。
2. 学生根据观察结果,提出绝对值的性质并进行讨论。
3. 老师在讨论的过程中加以引导和概括,确立正确的绝对值性质。
4. 学生根据老师的引导和概括,总结出绝对值的性质。
Step 4 绝对值的运算规则1. 老师出示绝对值的运算规则,并解释其推导过程。
2. 学生根据老师的解释,回答绝对值的运算规则。
3. 学生根据绝对值的运算规则,完成一些简单的练习题。
Step 5 绝对值的应用1. 老师给学生出示一些实际问题,涉及到绝对值的应用。
2. 学生思考问题,并尝试用绝对值来解决实际问题。
3. 学生分组讨论问题的解决方法和思路。
4. 学生向全班展示自己的解决方法,得到其他同学的评价和建议。
Step 6 拓展练习1. 老师布置一些练习题,要求学生结合所学知识,独立完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微课设计方案
微课名称《绝对值》第一课
选题意图在此之前,学生已学习了有理数,数轴与相反数等基础内容,这为过渡到本节的学习起着铺垫作用。
绝对值不仅可以使学生加深对有理数的认识,还为以后学习两个负数的比较大小以及有理数的运算作好必要的准备!所以说本讲内容在有理数这一节中,占据了一个承上启下的位置。
适用对象初中数学,七年级上学期
教学目标1、知识目标:1)使学生了解绝对值的表示法,会计算有理数的绝对值。
2)能利用数形结合思想来理解绝对值的几何定义;理解绝对值非负的意义、理解字母a的任意性。
2、能力目标:通过教学初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
3、思想目标:让学生初步认识到数学知识来源于实践,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度。
教学用途课中讲解或活动
制作方式(可多选) 演示文稿
微课设计过程及设计意图
教学过程设计意图
(一)复习旧知,温故知新
1、什么是数轴?
2、数轴的三要素?
3、数轴上的点表示下列各数:—1.5 ,0 ,2 ,—3 ,3
通过引导学生复习已有的知识,为探究新知做准备
(二)创设情境,导入新课
它们行走的路线填相同或不同),它们行走的距离?
从具体的生活实例引入,让学生体会到生活中处处有数学,激发学生的学习兴趣和求知欲望. (三)得出定义,揭示内涵
由上面提问,10到原点的距离?—10到原点的距离?
这时我们就说10的绝对值是10,—10的绝对值也是10;
前面数轴上数的绝对是?并追问一个数的绝对值究竟怎么定义?通过由具体的实例引出绝对值,并追问用自己的语言给绝对值下定义,让学生从真正意义上理解绝对值内涵。
最终的定义当然还要回归课本。