纳米材料制备方法分解

合集下载

纳米材料的制备方法(液相法)

纳米材料的制备方法(液相法)

(2)雾化水解法
将一种盐的超微粒子,由惰性气体载入含有金属 醇盐的蒸气室,金属醇盐蒸气附着在超微粒的 表面,与水蒸气反应分解后形成氢氧化物微粒, 经焙烧后获得氧化物的超细微粒。
这种方法获得的微粒纯度高,分布窄,尺寸可控。 具体尺寸大小主要取决于盐的微粒大小。
例如高纯Al2O3微粒可采用此法制备: 具体过程是将载有氯化银超微粒(868一923K)的 氦气通过铝丁醇盐的蒸气,氦气流速为500— 2000 cm3/min,铝丁醇盐蒸气室的温度为395— 428K,醇盐蒸气压<=1133Pa。在蒸气室形成 以铝丁醇盐、氯化银和氦气组成饱和的混合气 体。经冷凝器冷却后获得了气态溶胶,在水分 解器中与水反应分解成勃母石或水铝石(亚微 米级的微粒)。经热处理可获得从Al2O3的超细 微粒。
• 金刚石粉末的合成
5ml CCl4 和过量的20g金属钠被放到50ml的高压釜中,质量比为Ni:Mn:Co = 70:25:5的Ni-Co合金作为催化剂。在700oC下反应48小时,然后的釜中冷却。 在还原反应开始时,高压釜中存在着高压,随着CCl4被Na还原,压强减少。 制得灰黑色粉末。
(A)TEM image (scale bar, 1 mm) (B) electron diffraction pattern (C) SEM image (scale bar, 60 mm)
§2.2 .1 沉淀法 precipitation method
沉淀法是指包含一种或多种离子的可溶性盐溶液, 当加入沉淀剂(如OH--,CO32-等)后,或在一定 温度下使溶液发生水解,形成不溶性的氢氧化 物、水合氧化物或盐类从溶液中析出,并将溶 剂和溶液中原有的阴离子除去,经热分解或脱 水即得到所需的化合物粉料。
ZrOCl2 2NH 4OH H 2O Zr(OH ) 4 2NH 4Cl

第三章纳米材料的制备方法

第三章纳米材料的制备方法

第三章纳米材料的制备方法纳米材料的制备方法可以分为物理方法、化学方法和生物方法三类。

物理方法包括机械法、气相法和溶液法等;化学方法包括沉淀法、溶胶-凝胶法、化学气相沉积法等;而生物方法主要是利用生物体或生物分子在生物环境下合成纳米材料。

机械法是指通过力的作用将宏观材料制备成纳米尺寸的材料,常见的方法有高能球磨法和挤压法。

高能球磨法是通过高能球磨机将粗颗粒材料和球磨介质一起置于球磨罐中进行强烈碰撞实现的。

挤压法则是将粗颗粒材料置于特定的装置中,通过外力作用使材料变形而制备纳米材料。

气相法是通过气相反应将气态物质制备成纳米材料,常见的方法有气相沉积法和气溶胶法两种。

气相沉积法是将气态前体输送到反应器中,在特定温度和压力条件下发生化学反应,生成纳米颗粒。

气溶胶法则是将气态前体生产成准稳态悬浮液,再经过控制条件使气溶胶中的颗粒在特定条件下成长。

溶液法是通过将溶液中溶解的化合物沉淀出来形成纳米颗粒的方法,常见的方法有沉淀法和溶胶-凝胶法。

沉淀法是将两种反应物溶解在溶液中,然后通过添加沉淀剂使沉淀物形成纳米颗粒。

溶胶-凝胶法则是将溶胶转变成凝胶,在适当条件下控制凝胶的形成和热处理过程,最终制备成纳米材料。

化学气相沉积法是通过在可控的气相条件下,将气态前体沉积在衬底上生成纳米颗粒的方法,主要应用于金属和半导体纳米材料的制备。

该方法需要控制反应气体的成分和温度,以及反应时间和衬底的性质。

生物方法是指利用生物体或生物分子在生物环境下合成纳米材料,包括微生物法和生物模板法两种。

微生物法是利用微生物在代谢过程中产生的酶或其他生物分子对金属离子进行还原或沉淀,形成金属纳米材料。

生物模板法则是利用生物体的分子结构作为模板,在其表面沉积纳米材料,通过控制反应条件可以得到不同形状和尺寸的纳米材料。

总结而言,纳米材料的制备方法多种多样,从物理方法到化学方法再到生物方法,每种方法都有其独特的优势和适用范围。

在制备纳米材料时,需要考虑材料性质、制备条件以及后续应用等因素,以选择最适合的制备方法。

纳米材料的制备方法及原理 (整理)

纳米材料的制备方法及原理  (整理)
21/372
7、等离子体加热蒸发法
等离子体的概念及其形成
物质各态变化: 固体→液体→气体→等离子体→反物质(负)+物质(正) (正负电相反,质量相同) 只要使气体中每个粒子的能量超过原子的电离能,电子将 会脱离原子的束缚而成为自由电子,而原子因失去电子成 为带正电的离子(热电子轰击)。这个过程称为电离。当 足够的原子电离后转变另一物态---等离子态。
4
1、气相法制备纳米微粒的生长机理
• 2) 高频感应加热: 电磁感应现象产生的热来加热。 类似于变压器的热损耗。 高频感应加热是利用金属和磁 性材料在高频交变电磁场中存 在涡流损耗和磁滞损耗,因而 实现对金属和铁磁性性材料工 件内部直接加热。
5
1、气相法制备纳米微粒的生长机理
• 3) 激光加热: 将具有很高亮度的激光束经透镜聚焦后,能在焦点附近产生数千
17/372
3、非晶晶化法
原理:先将原料用急冷技术制成非晶薄带或薄膜, 就是把某些金属元素按一定比例高温熔化,然后 将熔化了的合金液体适量连续滴漏到高速转动的 飞轮表面,这些合金液体沿着飞轮表面的切线方 向被甩了出去同时急遽地冷却,成为非晶薄带或 薄膜。然后控制退火条件,如退火时间和退火温 度,使非晶全部或部分晶化,生成的晶粒尺寸可 维持在纳米级。
18/372
4、机械破碎法
是采用高能球磨、超声波或气流粉碎等机械方法,以粉 碎与研磨为主体来实现粉末的纳米化。 其机理主要是产生大量缺陷,位错,发展成交错的位错 墙,将大晶粒切割成纳米晶。 球磨工艺的目的是减小微粒尺寸、固态合金化、混合以 及改变微粒的形状。球磨的动能是它的动能和速度的函 数,致密的材料使用陶瓷球,在连续严重塑性形变中, 位错密度增加,在一定的临界密度下松弛为小角度亚晶 晶格畸变减小,粉末颗粒的内部结构连续地细化到纳米 尺寸

纳米材料制备方法简介

纳米材料制备方法简介

纳米材料制备方法简介
纳米材料制备方法是指用于生产纳米材料的各种工艺方法,它们可以将原材料加工成纳米尺度的微粒。

根据纳米材料的性质及其用途,纳米材料制备方法大致可分为两大类:物理方法和化学方法。

一、物理方法:
1. 气相沉积法:利用气体中的还原剂及原料释放到真空室内,在真空中经过热力学的反应形成纳米颗粒。

2. 冷冻干燥法:将悬浮液放入冷冻装置中冷冻,然后将液体分子强行脱水,使悬浮液中的物质在固态中凝结而形成纳米粒子。

3. 电火花法:利用电解质在特定的电场作用下,催化产生的等离子体,使原料形成纳米粒子。

4. 光敏剂法:利用光敏剂对激发光进行吸收,使原料进行分散而形成纳米粒子。

二、化学方法:
1. 化学气相沉积法:利用气态原料在真空中经过化学反应而形成纳米粒子。

2. 超声法:利用超声波的震荡,使原料分散而形成纳米粒子。

3. 生物法:利用微生物或植物细胞在特定条件下,形成纳米粒子。

4. 酸-碱法:将原料溶液与混合酸溶液混合,使原料溶解,并形成纳米粒子。

半导体纳米材料的制备与应用

半导体纳米材料的制备与应用

半导体纳米材料的制备与应用随着材料科学技术的不断进步,半导体纳米材料在能源、生物医学、信息等领域的应用逐渐扩大。

因此,半导体纳米材料的制备与应用在学术研究和实际生产中得到越来越多的关注。

一、半导体纳米材料的制备方式半导体纳米材料的制备方式分为以下几种:1. 生长法。

生长法是指通过化学气相沉积、物理气相沉积、溶胶-凝胶法等方法,在载体表面或表面上制备半导体纳米材料。

其中,化学气相沉积法是一种常见的方法,通过分解含有半导体元素的气体,在高温下使半导体元素沉积在基底表面形成纳米颗粒。

2. 结晶法。

结晶法是指利用溶解度差异,控制晶体的生长方向,使半导体原子在液相或气相中集聚,形成纳米晶体。

3. 纳米压缩。

纳米压缩是一种通过压缩纳米粒子形成纳米材料的制备方法。

将半导体粉末或纳米颗粒放置在高压环境下,通过物理力量作用将颗粒压缩合成一体。

二、半导体纳米材料在能源领域的应用半导体纳米材料在能源领域的应用主要体现在太阳能电池、燃料电池、电解水产氢等领域。

1. 太阳能电池。

半导体纳米材料的能带结构具有催化光解水的能力,在太阳能电池中可以作为光阳极材料使用。

例如,TiO2纳米颗粒能够在紫外光下吸收能量,激发电子移动,从而产生电流。

2. 燃料电池。

在燃料电池中,半导体纳米材料主要用作电解质材料。

例如,ZnO纳米材料的高比表面积可以增加电化学反应的速率,从而提高燃料电池的效率。

3. 电解水产氢。

半导体纳米材料也可用于电解水产氢。

例如,SrTiO3纳米晶体可以催化水的分解,产生氢气。

三、半导体纳米材料在生物医学领域的应用半导体纳米材料在生物医学领域的应用主要包括药物输送、生物成像、诊断和治疗等方面。

1. 药物输送。

半导体纳米材料可以被功能化,被用于靶向治疗。

例如,纳米尺寸的Ag2S可以被表面改性,在低温条件下,可以被利用于药物的送递。

2. 生物成像。

半导体纳米颗粒因为其在可见光区域透明度高而被用于生物成像。

例如,Ag2S纳米晶体可以通过荧光显微镜成像,用于癌细胞等组织分析。

纳米材料处理步骤详解

纳米材料处理步骤详解

纳米材料处理步骤详解纳米材料是指尺寸在纳米级别的物质,具有特殊的物理、化学和生物学性质。

它们在许多领域中都有广泛的应用,如电子学、光学、材料科学和生物医学领域。

然而,纳米材料的处理过程与传统材料不同,需要特定的步骤和措施来确保其特性和质量得到保持和提升。

本文将详细介绍纳米材料的处理步骤。

第一步:纳米材料的制备纳米材料的制备是纳米材料处理的第一步。

通常有两种方法来合成纳米材料:底层制备和顶层制备。

底层制备即从最基础的材料开始,通过物理或化学反应来合成纳米材料。

顶层制备则是通过加工和改性已有的材料来制备纳米材料。

第二步:纳米材料的分散纳米材料通常以团簇的形式存在,需要进行分散处理以获得单个颗粒的纳米材料。

分散处理可以通过物理方法如超声波处理、机械搅拌等,或者化学方法如添加分散剂来实现。

分散处理能够均匀分散纳米颗粒,避免它们的凝聚和团聚,从而提高纳米材料的稳定性和分散度。

第三步:纳米材料的表面修饰纳米材料的表面修饰是为了改善其性能和使用特性。

由于纳米材料的高比表面积和特殊结构,表面修饰能够增加纳米材料与基体的粘附力、稳定性和功能性。

表面修饰可以通过化学改性、表面修饰剂的加入、离子交换等方法来实现。

第四步:纳米材料的分析与表征在纳米材料处理过程中,对纳米材料进行分析和表征是非常重要的。

分析和表征能够提供纳米材料的结构、形貌、尺寸以及物理和化学性质的信息。

常用的纳米材料分析和表征技术包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X 射线衍射(XRD)和核磁共振(NMR)等。

第五步:纳米材料的应用与性能测试纳米材料的处理过程需要与实际应用相结合。

在纳米材料的应用过程中,对其性能进行测试是必要的,以确保纳米材料能够满足特定的需求。

性能测试通常包括物理性能测试、化学性能测试、生物相容性测试和环境适应性测试等。

第六步:纳米材料的储存和保护纳米材料具有较高的反应性和易受污染的特点,需要特殊的储存和保护措施来确保其稳定性和质量。

纳米复合材料的制备与性能调控方法详解

纳米复合材料的制备与性能调控方法详解

纳米复合材料的制备与性能调控方法详解纳米复合材料作为一类重要的材料,因其独特的性能和广泛的应用领域,受到了广泛的关注和研究。

它由一种或多种纳米颗粒或者纳米结构与基体材料组合而成,具有优异的力学、电学、热学和光学等性能。

本文将详细介绍纳米复合材料的制备方法与性能调控方法。

一、纳米复合材料的制备方法1. 溶液法制备:溶液法是一种常用的制备纳米复合材料的方法。

该方法将纳米粒子或者纳米结构溶于溶剂中,并将基体材料溶解或者悬浮在溶液中,然后经过混合、沉淀、干燥等工艺步骤,最终得到纳米复合材料。

溶液法制备的纳米复合材料一般具有较好的分散性和均匀性,但是工艺复杂、成本较高。

2. 气相沉积法制备:气相沉积法是一种将气体在高温、高压条件下分解产生纳米颗粒或者纳米结构,并将其与基体材料进行反应形成纳米复合材料的方法。

该方法具有制备高纯度纳米复合材料、控制纳米粒子尺寸和形貌的优势,但是设备复杂,工艺要求高。

3. 真空热蒸发法制备:真空热蒸发法是一种将纳米粒子或者纳米结构在真空条件下蒸发,并沉积在基体材料上形成纳米复合材料的方法。

该方法具有制备高密度纳米复合材料、控制纳米颗粒分布的优势,但是需要高真空设备和对材料的热稳定性要求高。

二、纳米复合材料的性能调控方法1. 界面调控:纳米复合材料中纳米颗粒与基体之间的界面对材料的性能具有重要影响。

通过控制界面的结合强度和结晶度,可以有效调控纳米复合材料的力学性能和导电性能等。

常用的界面调控方法包括防蚀处理、界面改性和化学结合等。

2. 纳米颗粒尺寸调控:纳米颗粒的尺寸对纳米复合材料的性能有很大影响。

通过调节纳米颗粒的尺寸和分布,可以改变材料的电学、光学、磁学等性能。

常见的尺寸调控方法包括溶剂控制成核、溶液浓度控制和反应条件调控等。

3. 组分调控:纳米复合材料由不同组分的纳米颗粒或者纳米结构与基体材料组成,通过调控组分的比例和配比,可以改变纳米复合材料的化学和物理性质。

常见的组分调控方法包括混合物质的选择、添加剂的引入和材料配比的调整等。

纳米材料制备方法

纳米材料制备方法

纳米材料制备方法目录1. 物理方法 (2)1.1 物理凝聚法 (2)1.2 溅射法 (2)1.3 喷雾热解法 (2)1.4 高能球磨法 (2)1.5 压淬法 (2)1.6 固相法 (3)1.7 超声膨胀法 (3)1.8 液态金属离子源法 (3)1.9 爆炸法 (3)1.10 严重塑性变形法 (3)2.化学方法 (3)2.1 沉淀法 (4)2.2 水解法 (4)2.3 溶胶-凝胶法 (4)2.4 熔融法 (4)2.5 电化学法 (4)2.6 溶剂蒸发法 (5)2.7 微乳液法 (5)2.8 金属醇盐法 (5)2.9 气相燃烧合成法 (6)2.10 有机液相合成法 (6)2.11 模板法 (6)3.参考文献 (6)11. 物理方法1.1 物理凝聚法1.1.1 真空蒸发-冷凝法在超高真空(10-6 Pa)或惰性气氛(Ar、He,50~1 k Pa)中,利用电阻、等离子体、电子束、激光束加热原料,使金属、合金或化合物气化、升华,再冷凝形成纳米微粒。

其粒径可达1~100 nm。

此方法的特点是外表清洁、粒度小、设备要求高、产量低,适用于实验室制备。

1.1.2 等离子体蒸发凝聚法把一种或多种固体颗粒注入惰性的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气凝聚制得纳米微粒。

通常用于制备含有高熔点金属、合金的纳米材料,如Fe-Al、Nb-Si等。

此法常以等离子体作为连续反应且制备纳米微粒。

1.2 溅射法溅射法利用离子、等离子体或激光溅射固体靶,即用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气,两电极间施加电压。

粒子的大小及尺寸主要取决于两电极间的电压、电流和气体压力。

靶材的外表积愈大,原子的蒸发速度愈高,超微粒的获得量愈多。

1.3 喷雾热解法喷雾热解法是将含所需正离子的某种盐类的溶液喷成雾状,送入加热至设定温度的反应器内,通过反应生成微细的粉末颗粒。

它综合了气相法和液相法的优点,可制备多种组分的复合材料,从溶液到粉末一步完成,且颗粒形状好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相法
物理气相沉积法---电阻式加热法 电阻式加热气相法裝置,此为实验室內常用的合成设 备。利用电源供应器加热真空腔內之钨船(Tungsten boat),钨船內之材料在真空或惰性气氛下开始被蒸发成 为气体,此时会如图4 般蒸发,有如一缕轻烟,順著通入 的载流气体(carrier gas) 往充滿液态氮的冷凝井(cold trap)方向流动。当蒸气到达此一低温区域时,随即因过 饱和而开始成核析出,并成长为粉体,停留在冷凝井表面 上。此方法适于合成高熔点金属或金属间化合物以及陶瓷 等纳米粉体。图3 的设备也可用作化学气相合成法。如: 在钨船中置入钛金属,当钛被蒸发成气体时,若通入氧气 当载流气体或在氧气气氛下,則生成二氧化钛纳米粉体。
气相法
物理气相沉积法---电浆加热法 传统的电浆法,系以蒸发原料为阴极,在与 阳极电极棒之间施加直流电压,并于惰性气体中 放电,原料即从熔化的阴极表面上蒸发,随后在 冷却铜筒內,析出并沉积为纳米材料。目前常用 者为电浆喷柱法,方法是把蒸发的金属材料放置 在水冷铜坩埚上,在斜上方之电浆枪间,先对直 流电压施加高周波使流过电浆枪內的Ar、He 等惰 性气体电离而起弧,再调节反应室中的载送气体 流量,可决定蒸气压并导引其至冷却收集器上形 成纳米粒子。
纳米材料 Nanomaterials
回顾---纳米材料的定义
纳米材料可简单定义为尺寸小于100nm 的一种或多种 的晶粒或颗粒所组成的材料,依其型态可区分为等轴(粉 体)、层状(薄膜)及丝纤状(纤維或管)等(图1)。因其特殊 之表面及体积效应,近年來已引起国际间广泛的研究兴趣。 特別是在材料的电、热、磁以及光学等性质上产生了重要 的影响,也为材料的应用领域科学开拓了一崭新的机会。
气相法
简介 气相合成技术的发展可追溯至60年代,为目 前最主要的合成技术。其基本原理是利用气相中 的原子或分子处在过饱和状态时,将会导致成核 析出为固相或液相。如在气相中进行均质成核时 控制其冷却速率,則可渐成长为纯金属、陶瓷或 复合材料的纳米粉体;若在固态基板上緩慢冷却 來成核-成长,則可长成薄膜、须晶或碳管等纳米 級材料。
气相法
物理气相沉积法---电弧放电法(Arc discharge) 电弧放电法系利用电弧放电所产生的高温(約 4000 K),将原料气化以沉积为纳米材料的方法。 代表性的例子为1991 年Iijima等人首先利用电弧 放电法合成出纳米碳管。图7 則为电弧放电裝置 示意图。在不锈钢制的真空室內,使用直径6mm 的石墨碳棒为阴极与直径9mm 的碳棒当阳极,两 极的间距可调整。 研究指出,本制程中影响碳管品质最重要的 因素为氦气的压力。1992 年Ebbesen等人发現500 torr 的氦气压力会比20 torr 时有更高的纳米碳 管产率,而过高的电流会使碳管烧结在一起,故 操作时应控制在可产生稳定电弧下的最低操作电 流。通常,反应腔之阴极石墨棒上所沉积的纳米 碳管,可观察到非晶质(amorphous) 碳、石墨微 粒及煤灰等杂质,因而常需后续的纯化处理。
图1. 纳米材料广义区分之型态(a)纳米粉体, (b)纳米结构薄膜, (c)纳米碳管
纳米材料的制造方法
纳米材料的相关研究及合成方法非常多,各领 域学者提出很多新的纳米合成技术途径,因此整理 出清楚的合成系统比较困难。 过去常按照合成过程中是否产生化学反应的变 化,区分为物理及化学法两大类而说明,如今似乎 过于局限在纳米粉体的制造上,相较于目前材料开 发上百花争鸣的景象,这种分类方式有些狹隘; 另外,也有学者根据其反应物的状态,区分为气 相法、液相法以及物理粉碎法、火花放电法等
气相法
物理气相沉积法---高周波感应加热 1970 年代初便已开发出來用作高性能磁帶用纳米粉体的制 造。其特色是 (1).进行蒸发的溶液温度可保持一定 (2).溶液內的合金成份均勻性良好 (3).能以安定的输出,运转长时间 (4).可大量工业化生产。
气相法
物理气相沉积法---电子束加热 电子束加热法目前主要用于高熔点物质的纳米粉体的 制造上。1973 年Iwama等人即以此法制造了Bi、Sn、Ag、 Mn、Cu、Mg、Fe、Fe-Co、Ni、Al、Zr 等超微粒子(16)。 以Cu 为例,50V / 5mA 电子束的功率,于66 Pa 的Ar 气 中,其1 分钟可得50mg 的微粉。在N2 或NH3 气氛中,蒸 发Ti 則可得到10nm 的TiN 立方晶纳米粉体。而Al 在NH3 中蒸发則可得到AlN 粉体,但在N2 气中則无法生成。这 样的制程实則属于化学气相沉积的范围。
纳米合成技术
一.气相法 1 物理气相沉积法 (1)电阻式加热法 (2)电浆加热法 (3)电弧放电法(Arc discharge) (4)辐射蒸发法 (5)高周波感应加热 (6)电子束加热 (7)溅射法(Sputtering) 2 化学气相沉积法 (1)催化剂化学气相沉积法( Catalytic Chemical Vapor Deposition ; CCVD ) (2)微波电浆触媒輔助电子回旋共振化e synthesis) 二.液相法 1沉淀法 2溶胶-凝胶法 3喷雾法 4水热法 三.物理粉碎法 四.火花放电法 五.有机二次元纳米材料
图8 纳米碳管
气相法
物理气相沉积法---辐射蒸发法 辐射蒸发法主要原理与电弧法相似,最大的不同乃是 以高能辐射取代电弧放电的功能。图9 即为辐射蒸发法合 成纳米碳管裝置的示意图。此法中,是将含有金属触媒 ( 如:鈷、鎳等 ) 的石墨靶材,放置在約 1 英寸的石英玻 璃管中,再将此管放置于高温反应炉中。于 1200℃ 充滿 惰性气氛 ( 如: 500 torr 氬气 ) 的环境下,以高能脉冲辐 射 ( 如: Nd YAG Laser) 对焦石墨靶材而使其表面的碳材 蒸发。随著炉管中高温区域惰性气体的快速流动,蒸发的 碳随即被帶往炉体外末端的圆锥型水冷铜上沉积,沉积物 再经萃取精鍊后可得纳米碳管 通常,此法所得的纳米碳管直径分布在 5-20 nm ,管 长可达10 um 以上。较一般Arc 法所合成的纳米碳管纯度 高、杂质少;最大的优点在于可产制大于70% 以上的单层 纳米碳管。
相关文档
最新文档