2018年人教版八年级下《一次函数》期末专题培优复习含答案
人教版八年级下学期期末复习 第十九章《一次函数》 培优训练含参考答案

期末复习:《一次函数》培优训练一.选择题1.下列各曲线中表示y是x的函数的是()A.B.C.D.2.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠13.设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是()A.2k﹣2 B.k﹣1 C.k D.k+14.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<15.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=6.如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.下列说法中正确的是()A.B点表示此时快车到达乙地B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为km/hD.慢车的速度为125km/h7.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个9.已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<010.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.二.填空题11.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.12.当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是.13.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为.14.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为.15.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示兔子所行的路程).有下列说法:表示乌龟所行的路程,y2①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)16.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y 轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.17.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.三.解答题19.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.20.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.21.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.22.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.23.某酒厂每天生产A ,B 两种品牌的白酒共600瓶,A ,B 两种品牌的白酒每瓶的成本和利润如下表:设每天生产A 种品牌白酒x 瓶,每天获利y 元.(1)请写出y 关于x 的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?24.已知一次函数y =2x ﹣4的图象与x 轴、y 轴分别相交于点A 、B ,点P 在该函数的图象上,P 到x 轴、y 轴的距离分别为d 1、d 2.(1)当P 为线段AB 的中点时,求d 1+d 2的值;(2)直接写出d 1+d 2的范围,并求当d 1+d 2=3时点P 的坐标;(3)若在线段AB 上存在无数个P 点,使d 1+ad 2=4(a 为常数),求a 的值.25.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程y1(km),小轿车的路程y2(km)与时间x(h)的对应关系如图所示.(1)甲乙两地相距多远?小轿车中途停留了多长时间?(2)①写出y1与x的函数关系式;②当x≥5时,求y2与x的函数解析式;(3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?26.如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案一.选择题1.解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D 正确.故选:D.2.解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.3.解:原式可以化为:y=(k﹣2)x+2,∵0<k<2,∴k﹣2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k﹣2)+2=k.故选:C.4.解:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选:C.5.解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选:C.6.解:A、B点表示快车与慢车出发4小时两车相遇;故本选项错误;B、B﹣C﹣D段表示快、慢车相遇后行驶一段时间快车到达乙地,慢车继续行驶,慢车共用了12小时到达甲地故本选项错误;C、快车的速度=﹣=(km/h);故本选项正确;D、慢车的速度==(km/h);故本选项错误;故选:C.7.解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x ≤2,s =,当2<x ≤3,s =1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分. 故选:C .8.解:由图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A 城的距离y 与t 的关系式为y 甲=kt ,把(5,300)代入可求得k =60,∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt +n ,把(1,0)和(4,300)代入可得,解得,∴y 乙=100t ﹣100,令y 甲=y 乙可得:60t =100t ﹣100,解得t =2.5,即甲、乙两直线的交点横坐标为t =2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y 甲﹣y 乙|=50,可得|60t ﹣100t +100|=50,即|100﹣40t |=50,当100﹣40t =50时,可解得t =,当100﹣40t =﹣50时,可解得t =,又当t =时,y 甲=50,此时乙还没出发,当t =时,乙到达B 城,y 甲=250;综上可知当t 的值为或或或t =时,两车相距50千米, ∴④不正确; 综上可知正确的有①②共两个,故选:B .9.解:∵一次函数y =kx ﹣m ﹣2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,∴k ﹣2<0,﹣m <0,∴k <2,m >0.故选:A .10.解:∵OB =,OC =1, ∴BC =2,∴∠OBC =30°,∠OCB =60°.而△AA 1B 1为等边三角形,∠A 1AB 1=60°,∴∠COA 1=30°,则∠CA 1O =90°.在Rt △CAA 1中,AA 1=OC =,同理得:B 1A 2=A 1B 1=,依此类推,第n 个等边三角形的边长等于.故选:A .二.填空题(共8小题)11.解:∵正比例函数y =x 也经过点A ,∴kx +b <x 的解集为x >3,故答案为:x >3. 12.解:y =(2﹣2k )x +k ﹣3经过第二、三、四象限,∴2﹣2k <0,k ﹣3<0,∴k >1,k <3,∴1<k <3;故答案为1<k <3;13.解:根据三个函数图象所在象限可得a <0,b >0,c >0,再根据直线越陡,|k |越大,则b >c .则b >c >a ,故答案为:a <c <b .14.解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16.即线段BC扫过的面积为16.故答案为16.15.解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y 1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.16.解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.17.解:∵一次函数y=(m+4)x+m+2的图象不过第二象限,∴,解得﹣4<m≤﹣2,而m是整数,则m=﹣3或﹣2.故填空答案:﹣3或﹣2.18.解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4.故答案为:x<4.三.解答题(共8小题)19.解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得,解得.所以一次函数解析式为y=x+;(2)把x=0代入y=x+得y=,所以D点坐标为(0,),所以△AOB的面积=S△AOD +S△BOD=××2+××1=.20.解:(1)设直线的解析式为y=kx+b,把A(﹣1,5),B(3,﹣3)代入,可得:,解得:,所以直线解析式为:y=﹣2x+3,把P(﹣2,a)代入y=﹣2x+3中,得:a=7;(2)由(1)得点P的坐标为(﹣2,7),令x=0,则y=3,所以直线与y轴的交点坐标为(0,3),所以△OPD的面积=.21.解:(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,∴A(6,0),B(0,8),在Rt△OAB中,∠AOB=90°,OA=6,OB=8,∴AB==10,∵△DAB沿直线AD折叠后的对应三角形为△DAC,∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上,∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0),由题意可知CD=BD,CD2=BD2,在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,解得y=﹣12.∴点D的坐标为D(0,﹣12),可设直线CD的解析式为y=kx﹣12(k≠0)∵点C(16,0)在直线y=kx﹣12上,∴16k﹣12=0,解得k=,∴直线CD的解析式为y=x﹣12.22.解:(1)慢车的速度=180÷(﹣)=60千米/时,快车的速度=60×2=120千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.23.解:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得y=20x+15(600﹣x)=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得50x+35(600﹣x)≥26400,解得x≥360,∴每天至少获利y=5x+9000=10800.24.解:(1)对于一次函数y=2x﹣4,令x=0,得到y=﹣4;令y=0,得到x=2,∴A(2,0),B(0,﹣4),∵P为AB的中点,∴P(1,﹣2),则d1+d2=3;(2)①d1+d2≥2;②设P(m,2m﹣4),∴d1+d2=|m|+|2m﹣4|,当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,解得:m=1,此时P1(1,﹣2);当m>2时,d1+d2=m+2m﹣4=3,解得:m=,此时P2(,);当m<0时,不存在,综上,P的坐标为(1,﹣2)或(,);(3)设P(m,2m﹣4),∴d1=|2m﹣4|,d2=|m|,∵P在线段AB上,∴0≤m≤2,∴d1=4﹣2m,d2=m,∵d1+ad2=4,∴4﹣2m+am=4,即(a﹣2)m=0,∵有无数个点,即无数个解,∴a﹣2=0,即a=2.25.解:(1)由图可知,甲乙两地相距420km,小轿车中途停留了2小时;(2)①y1=60x(0≤x≤7);②当x=5.75时,y1=60×5.75=345,x≥5时,设y2=kx+b,∵y2的图象经过(5.75,345),(6.5,420),∴,解得:,∴x≥5时,y2=100x﹣230;(3)x=5时,有y2=100×5﹣230=270,即小轿车在3≤x≤5停车休整,离甲地270km,当x=3时,y1=180;x=5时,y1=300,∴火车在3≤x≤5时,会与小轿车相遇,即270=60x,x=4.5;当0<x≤3时,小轿车的速度为270÷3=90km/h,而货车速度为60km/h,故,货车在0<x≤3时,不会与小轿车相遇,∴货车出发4.5小时后首次与小轿车相遇,距离甲地270km.26.解:(1)对于直线AB:,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t<4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),此时所需要的时间t=[4﹣(﹣2)]/1=6秒,即M点的坐标是(2,0)或(﹣2,0).。
培优训练之人教版八年级下册《一次函数》(含详细答案解析)(精)

培优训练之《一次函数》一.选择题(共15小题)1.汽车匀加速行驶路程为,匀减速行驶路程为,其中v 0、a 为常数、一汽车经过启、匀加速行驶、匀速行驶、匀减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )A .B .C . D.2.一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程随时间变化的图象如图所示,下列结论错误的是( )A . 轮船的速度为20千米/小时 B . 快艇的速度为千米/小时C . 轮船比快艇先出发2小时D . 快艇比轮船早到2小时 3.设0<k <2,关于x 的一次函数y=kx+2(1﹣x ),当1≤x ≤2时的最大值是( ) A . 2k ﹣2 B . k ﹣1 C . k D . k+14.(2015•杭州模拟)直角坐标系xOy 中,一次函数y=kx+b (kb ≠0)的图象过点(1,kb ),且b ≥2,与x 轴、y 轴分别交于A 、B 两点.设△ABO 的面积为S ,则S 的最小值是( ) A . B . 1 C . D .不存在 5.如图,点A 的坐标为(﹣2,0),点B 在直线y=x 上运动,当线段AB 最短时,点B 的坐标为( )A 、(22,—22)B 、(—22,—22)C 、(0,0) D 、(—1,—1) 6.如图,在△ABC 中,AC=BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( )A. B . C . D .7.已知过点(2,﹣3)的直线y=ax+b (a ≠0)不经过第一象限,设s=a+2b ,则s 的取值范围是( )A . ﹣5≤s ≤﹣B . ﹣6<s ≤﹣C . ﹣6≤s ≤﹣ D .﹣7<s ≤﹣ 8.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( )A . ①②③B . 仅有①②C . 仅有①③D .仅有②③9.某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y (米)与挖掘时间x (天)之间的关系如图,则下列说法中错误的是( )A .甲队每天挖100米B .乙队开挖两天后,每天挖50米C .甲队比乙队提前2天完成任务D .当x=3时,甲、乙两队所挖管道长度相同(第9题图)10.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图分别如图中甲、乙,下列四种说法:①甲厂的制版费为1千元;②当印制证书超过2千个时,乙厂的印刷费用为0.2元/个;③当印制证书8千个时,应选择乙厂节省费用,节省费用500元;④甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下.每个证书最少降低0.0625元.其中正确的是( )A . 1个B . 2个C . 3个D . 4个11.如图所示.直线y=x+2与y 轴相交于点A ,OB 1=OA ,以OB 1为底边作等腰三角形A 1OB 1,顶点A 1在直线y=x+2上,△A 1OB 1记作第一个等腰三角形;然后过B 1作平行于OA 1的直线B 1A 2与直线y=x+2相交于点A 2,再以B 1A 2为腰作等腰三角形A 2B 1B 2,记作第二个等腰三角形;同样过B 2作平行于OA 1的直线B 2A 3与直钱y=x+2相交于点A 3,再以B 2A 3为腰作等腰三角形A 3B 2B 3,记作第三个等腰三角形;依此类推,则等腰三角形A 10B 9B 10的面积为( )A . 3•48B . 3•49C . 3•410D .3•41112.如图,直线y=﹣x+3与x 轴,y 轴交于A ,B 两点.点P 是线段OB 上的一动点(能与点O ,B 重合),若能在斜边AB 上找到一点C ,使∠OCP=90°.设点P 的坐标为(m ,0),则m 的取值范围是( )A . 3≤m ≤4B . 2≤m ≤4C . 0≤m ≤D .0≤m ≤3 13.已知两直线y 1=kx+k ﹣1、y 2=(k+1)x+k (k 为正整数),设这两条直线与x 轴所围成的三角形的面积为S k ,则S 1+S 2+S 3+…+S 2013的值是( )A .B .C .D .14.若一次函数y=kx+b ,当x 的值增大1时,y 值减小3,则当x 的值减小3时,y 值( )(第11题图)╳A .增大3 B.减小3 C.增大9 D.减小915.如图,A点的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B,C,连接AC,如果∠ACD=90°,则n的值为()A.﹣2 B.﹣C.﹣D.﹣二.填空题(共12小题)16.如图,甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到达B 地,在B地停留1小时后,沿原路以另一个速度匀速返回,若干时间后与乙车相遇,乙车的速度为每小时60千米.如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间函数的图象,则甲车返回的速度是每小时千米.17.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度保持不变,那么小明从学校骑车回家用的时间是分钟.18.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间关系如图:当x=h时,甲、乙两个工程队所挖河渠的长度相等.19.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了元.(第16题图)(第17题图)(第18题图)20.已知直线y=x+(n为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2012=.21.如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是.22.无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于.23.已知点A(2a﹣1,3a+1),直线l经过点A,则直线l的解析式是.24.直线y=2x+6与两坐标轴围成的三角形面积是.25.直线y=﹣2x﹣4交x轴、y轴于点A、B,O为坐标原点,则S△AOB=.26.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为.27.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y 轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.三.解答题(共3小题)28.为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0 1 2 3 …油箱剩余油量Q (L)100 94 88 82 …(1)根据上表的数据,你能用t表示Q吗?试一试;(2)汽车行驶5h后,油箱中的剩余油量是多少?(3)若汽车油箱中剩余油量为52L,则汽车行使了多少小时?(4)贮满100L汽油的汽车,理论上最多能行驶几小时?(第26题图)(第21题图)(第27题图)29.如图,已知直线l1:y1=k1x+b1和直线l2:y2=k2x+b2相交于点(1,1).请你根据图象所提供的信息回答下列问题:(1)分别求出直线l1、l2的函数解析式;(2)写出一个二元一次方程组,使它满足图象中的条件;(3)根据图象直接写出当0≤y1≤y2时x的取值范围.30.(2015•温州模拟)如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(12,0)、(12,6),直线y=﹣x+b与y轴交于点P,与边OA交于点D,与边BC交于点E.(1)若直线y=﹣x+b平分矩形OABC的面积,求b的值;(2)在(1)的条件下,当直线y=﹣x+b绕点P顺时针旋转时,与直线BC和x轴分别交于点N、M,问:是否存在ON平分∠CNM的情况?若存在,求线段DM的长;若不存在,请说明理由;(3)在(1)的条件下,将矩形OABC沿DE折叠,若点O落在边BC上,求出该点坐标;若不在边BC上,求将(1)中的直线沿y轴怎样平移,使矩形OABC沿平移后的直线折叠,点O恰好落在边BC上.培优训练之《一次函数》参考答案与试题解析一.选择题(共15小题)1.(2015•宝应县校级模拟)汽车匀加速行驶路程为,匀减速行驶路程为,其中v0、a为常数、一汽车经过启、匀加速行驶、匀速行驶、匀减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是()A .B.C.D.考点:函数的图象.专题:应用题.分析:分析三段中路程随时间的变化的变化情况,或函数类型即可判断.解答:解:第一段匀加速行驶,路程随时间的增大而增大,且速度越来越大,即路程增加的速度不断变大.则图象斜率越来越大,则C错误;第二段匀速行驶,速度不变,则路程是时间的一次函数,因而是线段,则D错误;第三段是匀减速行驶,速度减小,路程随时间的增大而增大,但增加的速度就减小.故B错误.故选A.点评:解决本题的关键是读懂图意,根据实际情况判断出路程是随时间的增大的变化情况.2.(2015•广东模拟)一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程随时间变化的图象如图所示,下列结论错误的是()A .轮船的速度为20千米/小时B.快艇的速度为千米/小时C .轮船比快艇先出发2小时D.快艇比轮船早到2小时考点:函数的图象.分析:先计算轮船和快艇的速度,再结合图象,逐一判断.解答:解:轮船的速度为:160÷8=20千米/小时,快艇的速度为:160÷(6﹣2)=40千米/小时,故A正确,B错误;由函数图象可知,C、D正确.故选B.点评:主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数表示的实际意义,再结合实际意义得到正确的结论.3.(2015•彭州市校级模拟)设0<k<2,关于x的一次函数y=kx+2(1﹣x),当1≤x≤2时的最大值是(C)A .2k﹣2 B.k﹣1 C.k D.k+1考点:一次函数的性质.专题:压轴题.分析:首先确定一次函数的增减性,根据增减性即可求解.解答:解:原式可以化为:y=(k﹣2)x+2∵0<k<2∴k﹣2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k﹣2)+2=k故选C.点评:本题主要考查了一次函数的性质,正确根性质确定当x=2时,函数取得最小值是解题的关键.4.(2015•杭州模拟)直角坐标系xOy中,一次函数y=kx+b(kb≠0)的图象过点(1,kb),且b≥2,与x轴、y轴分别交于A、B两点.设△ABO的面积为S,则S的最小值是(B)A .B.1 C.D.不存在考点:一次函数图象上点的坐标特征.专题:压轴题.分析:首先将(1,kb)点代入一次函数解析式,求出k与b的关系式,再求出一次函数y=kx+b (kb≠0)的图象与x轴、y轴分别交于A、B两点坐标,表示出△ABO的面积S,再根据b≥2,去掉绝对值,利用二次函数最值求法,可求出S的最小值.解答:解:∵一次函数y=kx+b(kb≠0)的图象过点(1,kb),代入一次函数解析式得:∴kb=k+b,∴kb﹣k=b,∴k(b﹣1)=b,∴k=,∵一次函数y=kx+b(kb≠0)的图象与x轴、y轴分别交于A、B两点,∴A点坐标为:(﹣,0),B点的坐标为:(0,b),∵△ABO的面积为S,∴S=|b•|=||=||;若b≥2,∴b2﹣b>0,∴S=,∴S的最小值为:=2﹣1=1.故选B.点评:此题主要考查了一次函数与坐标轴的交点坐标求法,以及二次函数的最值问题等知识,表示图象与坐标轴围成的面积,注意应该加绝对值保证S是正值,这是做题中经常犯错的地方.5.(2015•桥西区模拟)如图,点A的坐标为(﹣2,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为(D)A .(,B.(,C.(0,0)D.(﹣1,﹣1)))考点:一次函数综合题;垂线段最短;等腰三角形的性质;勾股定理.专题:计算题.分析:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB最短,推出AC=OC,求出AC、OC长,根据三角形面积公式求出CD,推出CD=OD,即可求出B的坐标.解答:解:过A作AC⊥直线y=x于C,过C作CD⊥OA于D,当B和C重合时,线段AB 最短,∵直线y=x,∴∠AOC=45°,∴∠OAC=45°=∠AOC,∴AC=OC,由勾股定理得:2AC2=OA2=4,∴AC=OC=,由三角形的面积公式得:AC×OC=OA×CD,∴×=2CD,∴CD=1,∴OD=CD=1,∴B(﹣1,﹣1).故选D.点评:本题考查了垂线段最短,等腰三角形性质,勾股定理,一次函数的性质等知识点的应用,关键是得出当B和C重合时,线段AB最短,题目比较典型,主要培养了学生的理解能力和计算能力.6.(2014•广安)如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A 匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是(D)A .B.C.D.考动点问题的函数图象.点:专题:动点型.分析:该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.解答:解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.点评:本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.7.(2014•镇江)已知过点(2,﹣3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是(B)A .﹣5≤s≤﹣B.﹣6<s≤﹣C.﹣6≤s≤﹣D.﹣7<s≤﹣考点:一次函数图象与系数的关系.分析:根据直线y=ax+b(a≠0)不经过第一象限,可知a<0,b≤0,直线y=ax+b(a≠0)过点(2,﹣3),可知2a+b=﹣3,依此即可得到s的取值范围.解答:解:∵直线y=ax+b(a≠0)不经过第一象限,∴a<0,b≤0,∵直线y=ax+b(a≠0)过点(2,﹣3),∴2a+b=﹣3,∴a=,b=﹣2a﹣3,∴s=a+2b=+2b=b﹣≤﹣,s=a+2b=a+2(﹣2a﹣3)=﹣3a﹣6>﹣6,即s的取值范围是﹣6<s≤﹣.故选:B.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b >0时,直线与y 轴正半轴相交; b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.8.(2014•黔西南州)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( A )A . ①②③B .仅有①②C .仅有①③D .仅有②③9.(2014•和平区二模)某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y (米)与挖掘时间x (天)之间的关系如图,则下列说法中错误的是( D )考点: 一次函数的应用.专题: 行程问题.分析:易得乙出发时,两人相距8m ,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s 跑完总路程500可得乙的速度,进而求得100s 时两人相距的距离可得b 的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c 的值. 解答: 解:甲的速度为:8÷2=4(米/秒); 乙的速度为:500÷100=5(米/秒);b=5×100﹣4×(100+2)=92(米); 5a ﹣4×(a+2)=0, 解得a=8,c=100+92÷4=123(秒), ∴正确的有①②③. 故选:A . 点评: 考查一次函数的应用;得到甲乙两人的速度是解决本题的突破点;得到相应行程的关系式是解决本题的关键.A.甲队每天挖100米B.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当x=3时,甲、乙两队所挖管道长度相同考点:一次函数的应用.分析:根据函数图象得到甲工作6天开挖了600米,所以甲的工作效率==100(米/天);根据函数图象得到乙2天挖了300米,接着4天挖了200米,则乙队开挖两天后,每天挖米;由于后300米,乙需要=6天挖完,则乙队共需开挖8天完成,所以甲队比乙队提前2天完成任务;当x=3时,可计算甲队所挖管道长度为300米,乙队所挖管道长度=300+(3﹣2)×50=350米,所以当x=3时,甲、乙两队所挖管道长度不相同.解答:解:A、甲的工作效率==100(米/天),所以A选项的说法正确;B、乙队开挖两天后,4天开挖了(500﹣300)=200米,则乙的工作效率==50(米/天),所以B选项的说法正确;C、=6,则乙队开挖2+6=8天完成,而甲对只需6天完成,所以甲队比乙队提前2天完成任务,所以C选项的说法正确;D、当x=3时,甲队所挖管道长度=3×100=300米,乙队所挖管道长度=300+(3﹣2)×50=350米,所以D选项的说法错误.故选D.点评:本题考查了一次函数的应用:从一次函数图象中得到实际问题中的数量关系,再根据有关的数学公式解决实际问题.10.(2014•香坊区一模)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图分别如图中甲、乙,下列四种说法:①甲厂的制版费为1千元;②当印制证书超过2千个时,乙厂的印刷费用为0.2元/个;③当印制证书8千个时,应选择乙厂节省费用,节省费用500元;④甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下.每个证书最少降低0.0625元.其中正确的是()A .1个B.2个C.3个D.4个考点:一次函数的应用.分析:①根据纵轴图象判断即可;②用2到6千个时的费用除以证件个数计算即可得解;③用待定系数法求出乙厂x>2时的函数解析式,再求出x=8时的函数值,再求出甲厂印制1个的费用,然后求出8千个的费用,比较即可得解;④设至少降低x元,然后根据甲厂的费用不大于乙厂的费用列出不等式,然后求解即可.解答:解:①由图可知,甲厂的制版费为1千元,故①正确;②(4﹣3)÷(6﹣2)=0.25元/个,故②错误;③设乙厂x>2时的函数解析式为y=kx+b,则,解得,∴y=0.25x+2.5,x=8时,y=0.25×8+2.5=4.5千元,甲厂印制1个证件的费用为:(4﹣1)÷6=0.5元,印制8千个的费用为0.5×8+1=4+1=5千元,5﹣4.5=0.5千元=500元,所以,选择乙厂节省费用,节省费用500元,故③正确;④设至少降低x元,由题意得,(0.5﹣x)×8+1≤4.5,解得x≥0.0625,∴每个证书最少降低0.0625元,故④正确.综上所述,正确的有①③④共3个.故选:C.点评:本题考查了一次函数应用,主要利用了待定系数法求一次函数解析式,一元一次不等式的应用,读懂题目信息并准确识图,理解横坐标与纵坐标的意义是解题的关键.11.(2013秋•宁波期末)如图所示.直线y=x+2与y轴相交于点A,OB1=OA,以OB1为底边作等腰三角形A1OB1,顶点A1在直线y=x+2上,△A1OB1记作第一个等腰三角形;然后过B1作平行于OA1的直线B1A2与直线y=x+2相交于点A2,再以B1A2为腰作等腰三角形A2B1B2,记作第二个等腰三角形;同样过B2作平行于OA1的直线B2A3与直钱y=x+2相交于点A3,再以B2A3为腰作等腰三角形A3B2B3,记作第三个等腰三角形;依此类推,则等腰三角形A10B9B10的面积为()A .3•48B.3•49C.3•410D.3•411考点:一次函数综合题.专题:压轴题;规律型.分析:令x=0求解得到点A的坐标,然后求出OA的长,过点A1作A1C1⊥x轴于C1,根据等腰三角形三线合一的性质求出OC1,再根据直线解析式求出A1C1,然后判断出△A2B1B2∽△A1OB1,过点A2作A2C2⊥x轴于C2,根据相似三角形的性质用B1C2表示出A2C2,再根据A2在直线上列式求解得到第二个等腰三角形的底边与高,同理求出第三个等腰三角形的底边与高,然后根据规律判断出△A10B9B10的底边与高,再根据三角形的面积公式列式计算即可得解.解答:解:令x=0,则y=2,∴点A的坐标为(0,2),∴OA=2,∴OB1=OA=2,过点A1作A1C1⊥x轴于C1,则OC1=OB1=×2=1,∵A1在直线y=x+2上,∴A1C1=x+2=1+2=3,∴A1C1=3OC1,由题意得,△A2B1B2∽△A1OB1,过点A2作A2C2⊥x轴于C2,则A2C2=3B1C2,X设B1C2=a,则A2C2=3a,∵A2在直线y=x+2上,∴A2C2=x+2=(2+a)+2=3a,解得a=2,∴B1B2=2×2=4,同理可得B2B3=8=23,A2C3=12=3×22,…,△A10B9B10的底边B9B10=210,高为3×29,∴△A10B9B10的面积=×210×3×29,=3•49.故选B.点评:本题是一次函数综合题型,主要考查了等腰三角形的性质,一次函数图象上点的坐标特征,求出等腰三角形底边上的高等于底边一半的3倍是解题的关键,也是本题的难点.12.(2014春•海曙区校级期中)如图,直线y=﹣x+3与x轴,y轴交于A,B两点.点P是线段OB上的一动点(能与点O,B重合),若能在斜边AB上找到一点C,使∠OCP=90°.设点P的坐标为(m,0),则m的取值范围是()A .3≤m≤4 B.2≤m≤4 C.0≤m≤D.0≤m≤3考点:一次函数综合题.专题:压轴题.分析:令y=0求出点B的坐标,过点C作CD⊥x轴于D,设点C的坐标横坐标为a,则OD=a,PD=m﹣a,求出△OCD和△CPD相似,利用相似三角形对应边成比例列式表示出m,然后求出m的最小值,再根据点P在线段OB上判断出OC⊥AB时,点P、B重合,m最大,然后写出m的取值范围即可.解答:解:令y=0,则﹣x+3=0,解得x=4,所以,点B的坐标为(4,0),过点C作CD⊥x轴于D,设点C的坐标横坐标为a,则OD=a,PD=m﹣a,∵∠OCP=90°,∴△OCD∽△CPD,∴=,∴CD2=OD•DP,∴(﹣a+3)2=a(m﹣a),整理得,m=a+﹣,所以,m≥2﹣=3,∵点P是线段OB上的一动点(能与点O,B重合),∴OC⊥AB时,点P、B重合,m最大,∴m的取值范围是3≤m≤4.故选A.点评:本题是一次函数综合题型,主要利用了一次函数与坐标轴的交点的求法,相似三角形的判定与性质,难点在于列不等式求出m的最小值.13.(2013•江干区一模)已知两直线y1=kx+k﹣1、y2=(k+1)x+k(k为正整数),设这两条直线与x轴所围成的三角形的面积为S k,则S1+S2+S3+…+S2013的值是()A .B.C.D.考点:一次函数图象上点的坐标特征.专题:压轴题.分析:方程组的解为,直线y1=kx+k﹣1与x轴的交点为(,0),y2=(k+1)x+k与x轴的交点为(,0),先计算出S K的面积,再依据规律求解.解答:解:∵方程组的解为,∴两直线的交点是(﹣1,﹣1),∵直线y1=kx+k﹣1与x轴的交点为(,0),y2=(k+1)x+k与x轴的交点为(,0),∴S k=×|﹣1|×|﹣|=|﹣|,∴S1+S2+S3+…+S2013=×(1﹣+﹣+﹣+…+﹣)=×(1﹣)=×=.故选D.点评:本题考查的是一次函数图象上点的坐标特点.熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.(2012•白云区一模)若一次函数y=kx+b,当x的值增大1时,y值减小3,则当x的值减小3时,y值()A .增大3 B.减小3 C.增大9 D.减小9考点:一次函数的性质.专题:探究型.分析:先把x+1代入求出k的值,再把x﹣3代入求出y的值即可.解答:解:∵一次函数y=kx+b,当x的值增大1时,y值减小3,∴y﹣3=k(x+1)+b,解得k=﹣3,∴当x减小3时,把x﹣3代入得,y=﹣3(x﹣3)+b,即y=﹣3x+b+9,∴y的值增大9.故选:C.点评:本题考查的是一次函数的性质,先根据题意求出k的值是解答此题的关键.15.(2014•贵阳)如图,A点的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B,C,连接AC,如果∠ACD=90°,则n的值为()A .﹣2 B.﹣C.﹣D.﹣考点:一次函数图象上点的坐标特征;解直角三角形.专题:压轴题.分析:由直线y=x+n与坐标轴交于点B,C,得B点的坐标为(﹣n,0),C点的坐标为(0,n),由A点的坐标为(﹣4,0),∠ACD=90°,用勾股定理列出方程求出n的值.解答:解:∵直线y=x+n与坐标轴交于点B,C,∴B点的坐标为(﹣n,0),C点的坐标为(0,n),∵A点的坐标为(﹣4,0),∠ACD=90°,∴AB2=AC2+BC2,∵AC2=AO2+OC2,BC2=0B2+0C2,∴AB2=AO2+OC2+0B2+0C2,即(﹣n+4)2=42+n2+(﹣n)2+n2解得n=﹣,n=0(舍去),故选:C.点评:本题主要考查了一次函数图象上点的坐标特征及解直角三角形,解题的关键是利用勾股定理列出方程求n.二.填空题(共12小题)16.(2013•武汉模拟)如图,甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到达B地,在B地停留1小时后,沿原路以另一个速度匀速返回,若干时间后与乙车相遇,乙车的速度为每小时60千米.如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间函数的图象,则甲车返回的速度是每小时90千米.考点:函数的图象;一次函数的应用.专题:压轴题;数形结合.分析:根据返回相遇时两车走的路程和为120,甲车走了0.4小时,乙车走了1.4小时可得甲车返回时的速度.解答:解:甲车返回时的路程为120﹣1.4×60=36千米,∴甲车返回时的速度为36÷0.4=90千米/时.故答案为90.点评:考查根据函数图象得到相关信息;判断出甲车返回时走的路程是解决本题的难点,判断出甲车返回时用的时间是解决本题的易错点.17.(2012•湖北模拟)小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度保持不变,那么小明从学校骑车回家用的时间是37.2分钟.考点:函数的图象.专题:行程问题;压轴题.分析:根据图表可计算出上坡的速度以及下坡的速度.又已知返回途中的上、下坡的路程正好相反,故可计算出共用的时间.解答:解:由图中可以看出:上坡速度为:=2百米/分,下坡速度为:=5百米/分,返回途中,上下坡的路程正好相反,所用时间为:+=7.2+30=37.2分.故答案为:37.2.点评:本题考查利用函数的图象解决实际问题,应先求出上坡速度和下坡速度,注意往返路程上下坡路程的转化.18.(2012•江夏区校级模拟)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m)与挖掘时间x(h)之间关系如图:当x=4h时,甲、乙两个工程队所挖河渠的长度相等.考点:函数的图象.专题:压轴题;数形结合.分析:由图中可以看出,甲超过乙在2小时后,根据特殊点的坐标和实际意义可求出甲的速度一直是:60÷6米/时,乙两小时后的速度为:(50﹣30)÷(6﹣2),设x小时时,甲乙所挖的距离相等,列出方程,解之即可.解答:解:因为甲超过乙在2小时后,甲的速度一直是:60÷6=10米/时,乙两小时后的速度为:(50﹣30)÷(6﹣2)=5米/时,设x小时时,甲乙所挖的距离相等,则30+5×(x﹣2)=10x,解得x=4.故答案为:x=4.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.19.(2011•江岸区模拟)小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了36元.考点:函数的图象.专题:销售问题;压轴题.分析:根据图中特殊点的实际意义首先可以求出西瓜原来的售价和销售金额,然后利用图象信息可以求出后来的销售金额,再结合已知条件即可求出小李赚了多少钱.解答:解:根据题意得:由降价前40千克西瓜卖了64元,那么售价为:64÷40=1.6元,降价0.4元后单价变为1.6﹣0.4=1.2,钱变为了76元,说明降价后卖了76﹣64=12元,那么降价后卖了12÷1.2=10千克.总质量将变为40+10=50千克,那么小李的成本为:50×0.8=40元,赚了76﹣40=36元.故填36.点评:解决本题的关键是求出降价后卖的西瓜的质量,进而求得所有西瓜的总质量.20.(2013•广安)已知直线y=x+(n为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2012=.考点:一次函数图象上点的坐标特征.专题:压轴题;规律型.分析:令x=0,y=0分别求出与y轴、x轴的交点,然后利用三角形面积公式列式表示出S n,再利用拆项法整理求解即可.解答:解:令x=0,则y=,令y=0,则﹣x+=0,解得x=,所以,S n=••=(﹣),所以,S1+S2+S3+…+S2012=(﹣+﹣+﹣+…+﹣)=(﹣)=.故答案为:.点评:本题考查的是一次函数图象上点的坐标特点,表示出S n,再利用拆项法写成两个数的差是解题的关键,也是本题的难点.21.(2013•温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(﹣2,0),(﹣1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A 和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是(1,3).。
天津市2017-2018学年八年级数学下册《一次函数》专题复习含答案

2018年八年级数学下册一次函数一、选择题:1.若y=x+2-b是正比例函数,则b的值是()A.0 B.﹣2 C.2 D.﹣0.52.P(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()1A.y1>y2B.y1<y2 C.当x1<x2时,y1>y2D.当x1<x2时,y1<y23.小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家、下面哪一个图象能大致描述他回家过程中离学校的距离S(千米)与所用时间t(分)之间的关系()A.B.C.D.4.函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限5.某种型号的计算器单价为40元,商家为了扩大销售量,现按八折销售,如果卖出x台这种计算器,共卖得y元,则用x表示y的关系式为( )A.y=40x B.y=32x C.y=8x D.y=48x6.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x-4)-2b>0解集为()A.x>﹣2 B.x<﹣2 C.x>2 D.x<37.若式子有意义,则一次函数y=(1-k)x+k-1的图象可能是( )8.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A.B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.249.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡的速度仍然保持不变,那么他从学校回到家需要的时间是()A. 8.6分钟B. 9分钟C. 12分钟D.16分钟10.在平面直角坐标系中,将直线l:y=-3x-1平移后,得到直线l2:y=-3x+2,则下列平移方式1正确的是()A.将l1向左平移1个单位B.将l1向右平移1个单位C.将l1向上平移2个单位D.将l1向上平移1个单位11.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20 L B.25 L C.27L D.30 L12.如图,直线l:y =x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2015的坐标为( )A.(0,42015)B.(0,42014)C.(0,32015)D.(0,32014)二、填空题:13.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(-1,1),顶点B在第一象限.若点B在直线y=kx+3上,则k的值为________.14.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.5元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.15元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.15.如图,直线:y=x+1与直线:y=mx+n相交于点P(a,2),则关于x的不等式=x+1≥=mx+n 的解集为.16.已知直线y=(k+2)x+的截距为1,那么该直线与x轴的交点坐标为.17.如图所示的计算程序中,y与x之间的函数表达式为.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示.现有以下4个结论:①快递车从甲地到乙地的速度为100千米/小时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3.75,75);④快递车从乙地返回时的速度为90千米/小时以上结论正确的是________________.19.正方形AB1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示的方式放置.点A1,A2,A3,…,和点C1,1C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1、B2坐标分别为B1(1,1),B2(3,2),则B8坐标是.20.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l,l2,过点(1,0)作1x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.三、解答题:21.已知正比例函数图象经过点(-1,2).(1)求此正比例函数的表达式;(2)画出这个函数图象;(3)点(2,-5)是否在此函数图象上?(4)若这个图象还经过点A(a,8),求点A的坐标.22.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.23.“六一”前夕,某玩具经销商用去2350元购进A.B、C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具x套,B种玩具y套,三种电动玩具的进价和售价如表所示(1)用含x、y的代数式表示购进C种玩具的套数;(2)求y与x之间的函数关系式;(3)假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元.①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时三种玩具各多少套.24.甲、乙两城市之间开通了动车组高速列车.已知每隔2h有一列速度相同的动车组列车从甲城开往乙城.如图,OA是第一列动车组列车离开甲城的路程s(km)与运行时间t(h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(km)与运行时间t(h)的函数图象.请根据图中的信息,解答下列问题:(1)从图象看,普通快车发车时间比第一列动车组列车发车时间 1h(填”早”或”晚”),点B的纵坐标600的实际意义是;(2)请直接在图中画出第二列动车组列车离开甲城的路程s(km)与时间t(h)的函数图象;(3)若普通快车的速度为100km/h,①求第二列动车组列车出发多长时间后与普通快车相遇?②请直接写出这列普通快车在行驶途中与迎面而来的相邻两列动车组列车相遇的时间间隔.25.已知景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x 人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a= ,b= ;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到景区旅游,两团共计50人,两次共付门票费用3040元,求A.B两个旅游团各多少人?26.为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题:(1)当用电量是180千瓦时时,电费是_________元;(2)第二档的用电量范围是________________;(3)“基本电价”是_________元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?27.某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x (个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?28.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?29.在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)(1)写出y与x之间的函数解析式;(2)画出此函数的图象.30.设某用户一个月内手机通话时间为x分钟,请根据上表解答下列问题:(1)按A类收费标准,该用户应缴纳费用y A(元)与通话时间x(分钟)之间的函数关系式是;按B类收费标准,该用户应缴纳费用y B(元)与通话时间x(分钟)之间的函数关系式是;(2)如果该用户每月通话时间为400分钟,应选择哪种收费方式?为什么?31.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜.32.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/(1)设从甲仓库运送到A x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.33.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?34.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨.现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.(1)将这些货物一次性运到目的地,有几种租用货车的方案?(2)若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?35.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数关系式;(2)求出自变量x的取值范围.36.甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.37.某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?38.如图,直线y=-x+8与x轴、y轴分别相交于点A,B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B'处.求:(1) 点B'的坐标;(2) 直线AM所对应的函数关系式.39.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).www-2-1-cnjy-com(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.40.为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?41.为表彰学习进步的同学,某班生活委员到文具店买文具作为奖品.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求每个笔记本和每支钢笔的售价.(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受八折优惠,若买x(x>0)支钢笔需要花y元,求y与x的函数关系式.42.某县在实施“村村通”工程中,决定在A.B两村之间修一条公路,甲、乙两个工程队分别从A.B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.43.为了提高天然气使用效率,保障居民的本机用气需求,某地积极推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3元/m3,(1)根据题意,填写下表:(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式;(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.44.已知A(8,0)及在第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S(1)求S关于x的函数表达式;(2)求x的取值范围;(3)求S=12时P点坐标;45.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C →D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10 cm2?46.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物(1(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.47.某商场经营某种品牌的玩具,进价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是500件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件(2)在(1)问条件下,若商场获得了8000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于35元,且商场要完成不少于350件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?48.为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A.B两贫困村的计划.现决定从某地运送152箱鱼苗到A.B两村养殖,若用大、小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大、小货车的载货能力分别为12箱/辆和8箱/辆,其运往A.B两村的运费如下表:(1)这15辆车中大、小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A.B两村总费用为y元,试求出y与x的函数表达式;(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.49.在平面直角坐标系中,点O为坐标原点,直线y=-x+1分别与x轴、y轴交与点A.B.(1)求△AOB的周长;(2)以AB为腰,作等腰直角三角形,且∠BAC=90°,求点C坐标.50.如图,已知点A(3,4)在y=kx上.(1)求k值;(2)若点P在x轴上,当点P、O、A构成的三角形是等腰三角形,求点P坐标.参考答案1.C2.C3.C4.B.5.B6.B7.C8.D9.C10.B11.A12.答案为:-2;13.答案为:y=0.15x-1;14.x≥115.答案为:(﹣1,0).16.y=-2x+417.答案为:①③④18.答案为:(28﹣1,28﹣1)或(255,128).19.答案为:(21008,21009).20.略21.解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴5k+b=0,k+b=4,解得k=-1,b=5,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴y=-x+5,y=2x-4.解得x=3,y=2,∴点C(3,2);(3)根据图象可得x>3.22.【解答】解:(1)已知共购进A.B、C三种新型的电动玩具共50套,故购进C种玩具套数为:50﹣x﹣y;(2)由题意得40x+55y+50(50﹣x﹣y)=2350,整理得y=2x﹣30;(3)①利润=销售收入﹣进价﹣其它费用,故:p=(50﹣40)x+(80﹣55)y+(65﹣50)(50﹣x﹣y)﹣200,又∵y=2x﹣30,∴整理得p=15x+250,②购进C种电动玩具的套数为:50﹣x﹣y=50﹣x﹣(2x﹣30)=80﹣3x,据题意列不等式组,解得20≤x≤,∴x的范围为20≤x≤,且x为整数,故x的最大值是23,∴当x取最大值23时,P有最大值,最大值为595元.此时购进A.B、C种玩具分别为23套、16套、11套.23.24.25.(1)108 ;(2)180<x≤450 ;(3)0.6 .(4)设直线BC的解析式为y=kx+b,由图象,得解得∴y=0.9x-121.5.当y=328.5时,0.9x-121.5=328.5.解得x=500.答:这个月他家用电500千瓦时.26.解:(1)设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,∴y与x之间的函数关系式为y=﹣x+300;(2)∵y=﹣x+300;∴当x=120时,y=180.设甲品牌进货单价是a元,则乙品牌的进货单价是2a元,由题意,得120a+180×2a=7200,解得:a=15,∴乙品牌的进货单价是30元.答:甲、乙两种品牌的文具盒进货单价分别为15元,30元;(3)设甲品牌进货m个,则乙品牌的进货(﹣m+300)个,由题意,得,解得:180≤m≤181,∵m为整数,∴m=180,181.∴共有两种进货方案:方案1:甲品牌进货180个,则乙品牌的进货120个;方案2:甲品牌进货181个,则乙品牌的进货119个;设两种品牌的文具盒全部售出后获得的利润为W元,由题意,得W=4m+9(-m+300)=-5m+2700.∵k=﹣5<0,∴W随m的增大而减小,∴m=180时,W最大=1800元.27.解:(1)设线段AB所表示的函数关系式为y=kx+b(k≠0),根据题意,得b=192,2k+b=0,解得k=-96,b=192.∴线段AB所表示的函数关系式为y=-96x+192(0≤x≤2);由题意可知,行驶2小时,经过了192千米,∴汽车的速度为96(千米/时),又∵出发时距西安192千米,∴线段AB所表示的函数关系式为y=192-96x(0≤x≤2);(2)由题意可知,下午3点时,x=8,y=112.设线段CD所表示的函数关系式为y=k′x+b′(k′≠0),则根据题意,得k′=80,b′=-528,∴线段CD的函数关系式为y=80x-528.∴当y=192时,80x-528=192,解得x=9.∴他当天下午4点到家.28.解:(1)点P在边AB,BC,CD上运动时所对应的y与x之间的函数解析式不相同,故应分段求出相应的函数解析式.①当点P在边AB上运动,即0≤x<3时,y=0.5×4x=2x;②当点P在边BC上运动,即3≤x<7时,y=0.5×4×3=6;③当点P在边CD上运动,即7≤x≤10时,y=0.5×4(10-x)=-2x+20.(2)函数图象如图所示.29. (1) y A=0.2x+15 ;y B =0.25x(2) 当x=400时,算出y A=95元,y B =100元,30.解:(1)设y=kx+b,将(0,29),(30,35)代入,1解得k=,b=29,∴,又24×60×30=43200(min)∴(0≤x≤43200),同样求得;(2)当y1=y2时,;当y1<y2时,.所以,当通话时间等于96min时,两种卡的收费相等,当通话时间小于mim时,“如意卡便宜”,当通话时间大于min时,“便民卡”便宜.31.解(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤80.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.32.解:(1)由题意:设y与的一次函数关系为解得:∴(2)当两摞摆成一摞时,共有11只此时∴这摞碗共高21cm33.解:(1)设租用甲种货车x辆,则乙种货车为8﹣x辆,依题意得:解不等式组得3≤x≤5这样的方案有三种,甲种货车分别租3,4,5辆,乙种货车分别租5,4,3辆.(2)总运费s=1300x+1000(8﹣x)=300x+8000因为s随着x增大而增大所以当x=3时,总运费s最少为8900元.34.解:(1)设y与x的函数关系式为y=kx+b(k≠0),∵函数图象经过点(20,300)和点(30,280),∴,解得:,∴y与x的函数关系式为y=﹣2x+340.(2)∵试销期间销售单价不低于成本单价,也不高于每千克40元,且草莓的成本为每千克20元,∴自变量x的取值范围是20≤x≤40.35.解:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克=30元.故答案为30.(2)由题意y1=18x+50,y2=,(3)函数y1的图象如图所示,由解得,所以点F坐标(,125),由解得,所以点E坐标(,650).由图象可知甲采摘园所需总费用较少时<x<.36.解:(1)第20天的总用水量为1000米3(2)当x ≥20时,设y=kx+b ∵函数图象经过点(20,1000),(30,4000) ∴解得∴y 与x 之间的函数关系式为:y=300x ﹣5000.(3)当y=7000时,由7000=300x ﹣5000,解得x=40答:种植时间为40天时,总用水量达到7000米3.37. (1) y=-x +8,令x=0,则y=8;令y=0,则x=6,∴ A (6,0),B (0,8),∴ OA=6,OB=8,AB=10.∵ AB'=AB=10,∴ OB'=10-6=4,∴ B'的坐标为 (-4,0)(2) 设OM=m ,则B'M=BM=8-m ,在Rt △OMB'中,m 2+42=(8-m)2,解得m=3,∴ M 的坐标为 (0,3),设直线AM 的解析式为y=kx +b ,则6k +b=0,b=3,解得k=-,b=3,故直线AM 的解析式为y=-x +338.解:(1)设按优惠方法①购买需用y 1元,按优惠方法②购买需用y 2元y 1=(x ﹣4)×5+20×4=5x+60,y 2=(5x+20×4)×0.9=4.5x+72.(2)解:分为三种情况:①∵设y 1=y 2,5x+60=4.5x+72,解得:x=24,∴当x=24时,选择优惠方法①,②均可;②∵设y 1>y 2,即5x+60>4.5x+72,∴x >24.当x >24整数时,选择优惠方法②; ③当设y 1<y 2,即5x+60<4.5x+72∴x <24∴当4≤x <24时,选择优惠方法①.(3)解:采用的购买方式是:用优惠方法①购买4个书包,需要4×20=80元,同时获赠4支水性笔;用优惠方法②购买8支水性笔,需要8×5×90%=36元.共需80+36=116元.∴最佳购买方案是:用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔.39.解:(1)当4060x <≤时,令y kx b =+,则404602k b k b +=⎧⎨+=⎩,解得1108.k b ⎧=-⎪⎨⎪=⎩, ∴1810y x =-+. 同理,当60100x <<时,1520y x =-+. 18(4060)1015(60100)20x x y x x ⎧-+<⎪⎪∴=⎨⎪-+<<⎪⎩,≤ 40.41.解:(1)由图象可知前八天甲、乙两队修的公路一样长,乙队前八天所修公路的长度为840÷12×8=560(米),答:甲队前8天所修公路的长度为560米.(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,将点(4,360),(8,560)代入,得,解得.故甲工程队改变修路速度后y与x之间的函数关系式为y=50x+160(4≤x≤16).(3)当x=16时,y=50×16+160=960;由图象可知乙队共修了840米.960+840=1600(米).答:这条公路的总长度为1800米.42.43.解:(1)∵x+y=10∴y=10﹣x,∴s=8(10﹣x)÷2=40﹣4x,(2)∵40﹣4x>0,∴x<10,∴0<x<10,(3)∵s=12,∴12=40﹣4x,x=7∴y=10﹣7=3,∴s=12时,P点坐标(7,3),44.解:(1)6;2;18(2)PD=6-2(t-12)=30-2t,S=0.5AD·PD=0.5×6×(30-2t)=90-6t,即点P在CD上运动时S与t之间的函数解析式为S=90-6t(12≤t≤15).(3)当0≤t≤6时易求得S=3t,将S=10代入,得3t=10,解得t=10/3;当12≤t≤15时,S=90-6t,将S=10代入,得90-6t=10,解得t=40/3.所以当t为10/3或40/3时,三角形APD的面积为10 cm2.45.解:(1)根据题意,装运食品的车辆数为x,装运药品的车辆数为y,那么装运生活用品的车辆数为(20﹣x﹣y),则有6x+5y+4(20﹣x﹣y)=100,整理得,y=﹣2x+20;(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为x,20﹣2x,x,由题意,得x≥5,20-2x≥4,解这个不等式组,得5≤x≤8,因为x为整数,所以x的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆.(3)设总运费为W(元),则W=6x×120+5(20﹣2x)×160+4x×100=16000﹣480x,因为k=﹣480<0,所以W的值随x的增大而减小.要使总运费最少,需x最大,则x=8.故选方案4.W最小=16000﹣480×8=12160元.最少总运费为12160元.46.47. (1)设大货车用x辆,小货车用y辆,根据题意,得解得答:大货车用8辆,小货车用7辆.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+9 400.(0≤x≤10,且x为整数).(3)由题意,得12x+8(10-x)≥100.解得x≥5.又∵0≤x≤10,∴5≤x≤10且x为整数.∵y=100x+9 400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9 400=9 900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村,3辆大货车、2辆小货车前往B村.最少运费为9 900元.48. (1)∵y=-x+1,∴当y=0时,x=,则A的坐标(,0),当x=0时,y=1,则B的坐标(0,1).∵OA=,OB=1,AB==2,∴C△AOB=OA+OB+AB=+1+2=+3.(2)如图,在直线AB的上方作等腰直角三角形,且∠BAC=90°,过C作CD垂直于x轴于D.∵∠CAD+∠OAB=90°,∠CAD+∠DCA=90°,∴∠OAB=∠DCA.在△DCA与△OAB中,∴△DCA≌△OAB(AAS).∴AD=OB=1,CD=AO=.∴OD=OA+AD=+1.∴C的坐标为(+1,).当点C在直线AB的下方时.同理得出C的坐标为(-1,-).综上所述:点C坐标为(+1,)或(-1,-).49.略50.略;。
人教版2017-2018学年八年级数学下册 期末小专题练习 四 一次函数(含答案)

2018年八年级数学期末小专题练习四一次函数一、选择题:1.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣22.下列函数(1)y=πx (2)y=2x-1 (3)y=x-1 (4)y=2-3x (5)y=x2-1中,是一次函数的有()A.4个B.3个C.2个D.1个3.如图,直线l和l2的交点坐标为()1A.(4,﹣2)B.(2,﹣4)C.(﹣4,2)D.(3,﹣1)4.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是().A.2 B.1.5 C.2.5 D.-65.在平面直角坐标系中,点P(x,0)是x轴上一动点,它与坐标原点O的距离为y,则y关于x的函数图象大致是()6.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()7.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px-2和y2=x+q,使两个函数图象的交1点在直线x=2的左侧,则这样的有序数组(p,q)共有().A.4组B.5组C.6组D.不确定8.如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是( )A.10 B.16 C.18 D.209.如图,直线y=﹣x+8与x轴、y轴分别交于A.B两点,点M是OB上一点,若直线AB沿AM折叠,点B恰好落在x轴上的点C处,则点M的坐标是()A.(0,4)B.(0,3)C.(﹣4,0)D.(0,﹣3)10.如图,直线l:y =x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A;1过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2015的坐标为( )A.(0,42015)B.(0,42014)C.(0,32015)D.(0,32014)二、填空题:11.一次函数y=﹣3x+6的图象不经过象限.12.已知y=(k﹣1)x+k2-1是正比例函数,则k=13.如图,已知A(2,0),B(4,0),点P是直线y=x上一点,当PA+PB最小时,点P的坐标为.14.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(3.5,1.5),那么点A n的纵坐标是.三、解答题:15.写出下列问题中的关系式,并指出其中的变量和常量.(1)直角三角形中一个锐角a与另一个锐角β之间的关系;(2)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t(小时)表示水箱中的剩水量y(吨).16.为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x(0kW·h)与应付电费y(元)的关系如图所示。
【初二物理试题精选】2018年八年级下《一次函数》期末专题培优复习(人教版有答案)

2018年八年级下《一次函数》期末专题培优复习(人教版
有答案)
CO
M b-6)3的值等于
三、解答题
19、已知函数y=(2m+1)x+m-3
(1)若函数图象经过原点,求m的值
(2)若函数的图象平行于直线y=3x-3,求m的值
(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围
6=4,B’(-4,0)
(2)设OM=m则B’M=BM=8-m,m2+42=(8-m)2,m=3,M(0,3)
设直线AM的解析式为y=kx+b
23、解(1)当y=0时, x+1=0,解得x=﹣2,则A(﹣2,0),
当x=0时,y= x+1=1,则B(0,1);
(2)AB= = ,当AP=AB时,P点坐标为(﹣,0)或(,0);
当BP=BA时,P点坐标为(2,0);
当PA=PB时,作AB的垂直平分线交x轴于P,连结PB,如图1,则PA=PB,
设P(t,0),则OA=t+2,OB=t+2,
在Rt△OBP中,12+t2=(t+2)2,解得t=﹣,此时P点坐标为(﹣,0);
(3)如图2,设D(x, x+1),当x>0时,∵S△ABC+S△BCD=S△ACD,∴ 2 2+ 2 x=4,解得x=2,此时D点坐标为(2,2);
当x<0时,∵S△BCD﹣S△ABC=S△ACD,∴ 2 (﹣x)﹣ 2 2=4,解得x=﹣6,此时D点坐标为(﹣6,﹣2),
综上所述,D点坐标为(2,2)或(﹣6,﹣2)
故答案为(﹣2,0),(0,1);(2,2)或(﹣6,﹣2)24、(1)2;(0,3);。
人教版初中数学培优系列八年级下册之第19章一次函数题目和详解(40题)

人教版初中数学培优系列八年级下册之第19章一次函数题目和详解(40题)重要说明:1、本资料系本人多年教学经验的总结,力求每一道题目代表一种题型或一种思维,力求穷尽本章所有相关知识的培优,内容主要立足于课程标准,少部分奥赛内容,掌握此培优系列内容则中考无忧,同时具备参加重点高中学校的自主招生考试的能力。
2、本资料仅供优生(百分制下得分80分以上学生)使用,其余学生不得使用,每道题目后面附有详细解答及点评,学生至少做两遍资料方能理解其中真谛和得到能力提升。
3、本资料主要根据人教版教材编写,其它版本的教材都是在国家同一个课程标准下编写的,只是编排顺序不同,因此该内容也适用于其它版本的教材的对应章节。
4、编者简介:杨小云,男,1998年任教至今。
初中一线数学和物理教师,同时一直担任班主任,有丰富的教学经验和教学资源。
编有《人教版初中数学培优系列》和《人教版初中物理培优系列》,值得你收藏并推荐给好友。
一.选择题(共11小题)1.下列函数中,与y=|x|表示同一个函数的是()A.y=B.y=C.y=D.y=2.下图中,能表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的大致图象的是()A.B.C.D.3.已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或2 B.1或﹣2 C.﹣1或2 D.﹣1或﹣24.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点A6的坐标是()A.(63,64)B.(63,32)C.(32,33)D.(31,32)5.明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼.明明的速度小于亮亮的速度(忽略掉头等时间).明明从A地出发,同时亮亮从B地出发.图中的折线段表示从开始到第二次相遇止,两人之间的距离y(米)与行走时间x(分)的函数关系的图象,则()A.明明的速度是80米/分B.第二次相遇时距离B地800米C.出发25分时两人第一次相遇D.出发35分时两人相距2000米6.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个 B.3个 C.2个 D.1个7.若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0) C.(﹣6,0)D.(6,0)8.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=﹣|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为()A.﹣4≤b≤﹣2 B.﹣6≤b≤2 C.﹣4≤b≤2 D.﹣8≤b≤﹣29.如图1,在矩形ABCD中,动点P从点B出发,沿B→C→D→A方向运动至点A处停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则三角形ABC的面积为()A.20 B.10 C.30 D.不能确定10.如图,小亮在操场上玩,一段时间内沿M﹣A﹣B﹣M的路径匀速散步,能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是()A.B.C. D.11.甲、乙两人沿同一方向去B地,途中都使用两种不同的速度v1,v2(v1<v2).甲一半路程使用速度v1,另一半路程使用速度v2,乙一半时间使用速度v1,另一半时间使用速度v2,甲、乙两人从A地到B地的路程与时间的函数图象及关系,有下面图中4个不同的图示分析(其中横轴t表示时间,纵轴S表示路程),其中正确的图示分析为()A.(1)B.(3)C.(1)或(4)D.(1)或(2)二.填空题(共10小题)12.如果y﹣3与x+2成正比例,且当x=﹣1时,y=2.则y与x的函数关系式为.13.已知一次函数y=(2m﹣1)x+1的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1<y2,那么m的取值范围是.14.若一次函数y=kx+b的图象与y轴交点的纵坐标为﹣2,且与两坐标轴围成的直角三角形面积为1,则此一次函数的表达式为.15.已知一次函数y=2x﹣a与y=3x+b的图象交于x轴上原点外一点,则=.16.在平面直角坐标系中,点A(2,0)到动点P(x,x+2)的最短距离是.17.已知直线y=x+(n为正整数)与两坐标轴围成的三角形面积为S n,则S1+S2+S3+…S n=.18.如图,已知直线l:,过点M(2,0)作x轴的垂线交直线l于点N,过点N 作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l 的垂线交x轴于点M2,…;按此作法继续下去,则点M6的坐标为.19.如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA分成n等份,分点,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,分别为P1,P2,P3,…,P n﹣1T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则S1+S2+S3+…+S n=.﹣120.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是.21.如图,在平面直角坐标系xOy中,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴,交直线y=x于点B1,以A1为直角顶点,A1B1为直角边,在A1B1的右侧作等腰直角三角形A1B1C1;再过点C1作A2B2∥y轴,分别交直线y=x和y=x于A2,B2两点,以A2为直角顶点,A2B2为直角边,在A2B2的右侧作等腰直角三角形A2B2C2…,按此规律进行下去,点C1的横坐标为,点C2的横坐标为,点C n的横坐标为.(用含n的式子表示,n为正整数)三.解答题(共19小题)22.已知一次函数y=kx+b的自变量的取值范围是﹣3≤x≤6,相应的函数值的取值范围是﹣5≤y≤﹣2,求这个一次函数的解析式.23.等腰三角形的周长为30cm.(1)若底边长为xcm,腰长为ycm,写出y与x的关系式,并注明自变量的取值范围.(2)若腰长为xcm,底边长为ycm,写出y与x的关系式,并注明自变量的取值范围.24.已知函数y=(2m+1)x+m﹣3(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的交点的纵坐标为(0,﹣2),求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.25.已知一次函数y=kx+2b+4的图象经过点(﹣1,﹣3),k满足等式|k﹣3|﹣4=0,且y随x的增大而减小,求这个一次函数解析式.26.已知一次函数y=kx+b的图象过P(1,4),Q(4,1)两点,且与x轴交于A点.(1)求此一次函数的解析式;(2)求△POQ的面积;(3)已知点M在x轴上,若使MP+MQ的值最小,求点M的坐标及MP+MQ的最小值.27.如图,直线AB:y=﹣x﹣b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴的负半轴于点C,且OB:OC=3:1.(1)求点B的坐标;(2)求直线BC的函数关系式;(3)若点P(m,2)在△ABC的内部,求m的取值范围.28.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;②当S=8时,求点P的坐标;△ABP③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.29.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ 时,试用含t的式子表示m.30.如图①,我们在“格点”直角坐标系上可以看到,要求AB或CD的长度,可以转化为求Rt△ABC或Rt△DEF的斜边长.例如:从坐标系中发现:D(﹣7,3),E(4,﹣3),所以DF=|5﹣(﹣3)|=8,EF=|4﹣(﹣7)|=11,所以由勾股定理可得:.(1)在图①中请用上面的方法求线段AB的长:AB=;(2)在图②中:设A(x1,y1),B(x2,y2),试用x1,x2,y1,y2表示:AC=,BC=,AB=;(3)试用(2)中得出的结论解决如下题目:已知:A(2,1),B(4,3);①直线AB与x轴交于点D,求线段BD的长;②C为坐标轴上的点,且使得△ABC是以AB为边的等腰三角形,请求出C点的坐标.31.一条笔直的公路上依次有A、B、C三地,甲、乙两车同时从B地出发,匀速驶往C 地.乙车直接驶往C地,甲车先到A地取一物件后立即调转方向追赶乙车(甲车取物件的时间忽略不计).已知两车间距离y(km)与甲车行驶时间x(h)的关系图象如图1所示.(1)求两车的速度分别是多少?(2)填空:A、C两地的距离是:,图中的t=(3)在图2中,画出两车离B地距离y(km)与各自行驶时间x(h)的关系图象,并求两车与B地距离相等时行驶的时间.32.甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.(1)写出乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式;(4)求救生圈落入水中时,甲船到A港的距离.33.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)34.某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.35.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒定价5元.现两家商店搞促销活动.甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠.某班级需购球拍4付,乒乓球若干盒(不少于4盒).(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y(元),在乙店购买的付甲(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式.款数为y乙(2)就乒乓球盒数讨论去哪家商店买合算?36.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型,B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?37.日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位:千元/吨)养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x吨(1)求x的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?38.某食品批发部准备用10000元从厂家购进一批出厂价分别为16元和20元的甲、乙两种酸奶,然后将甲、乙两种酸奶分别加价20%和25%向外销售.如果设购进甲种酸奶为x(箱),全部售出这批酸奶所获销售利润为y(元).(1)求所获销售利润y(元)与x(箱)之间的函数关系式;(2)根据市场调查,甲、乙两种酸奶在保质期内销售量都不超过300箱,那么食品批发部怎样进货获利最大,最大销售利润是多少?39.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).40.为了节约资源,科学指导居民改善居住条件,小王向房管部分提出了一个购买商品房的政策性方案.根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x 的函数关系式(m为常数);(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元且102<y≤105时,求m的取值范围.人教版初中数学培优系列八年级下册之第19章一次函数题目和详解(40题)参考答案与试题解析一.选择题(共11小题)1.【分析】分别分析四个选项的自变量和函数的取值范围,与y=|x|相同者为正确答案.【解答】解:A、x不能为0,故错误;B、y==|x|,故正确;C、x不能为负数,故错误;D、对应关系不同,故错误.故选:B.【点评】函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.2.【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【解答】解:①当mn>0时,m、n同号,y=mnx过一三象限,同正时,y=mx+n经过一、二、三象限;同负时,过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,过一、二、四象限;故选:A.【点评】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.3.【分析】首先根据四条直线的解析式画出示意图,从而发现四边形是梯形,求得梯形的四个顶点的坐标,再进一步根据梯形的面积公式进行计算.【解答】解:如图所示,根据题意,得A(1,3),B(1,﹣1),C(,﹣1),D(,3).显然ABCD是梯形,且梯形的高是4,根据梯形的面积是12,则梯形的上下底的和是6,则有①当k<0时,1﹣+1﹣=6,∴2﹣=6,∴=﹣4,解得k=﹣2;②当k>0时,﹣1+﹣1=6,∴=8,解得k=1.综上所述,则k=﹣2或1.故选:B.【点评】此题考查了用图象法表示函数、两条直线的交点坐标和梯形的面积公式,注意此题的两种情况.4.【分析】先根据题意得出以A n为顶点的正方形边长的规律,进而可得出点A6的坐标.【解答】解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴A2为顶点的正方形边长A2C1=2=21,同理得:A3为顶点的正方形边长A3C2=4=22,…,∴顶点为A6的正方形的边长=25=32,∴点A6的纵坐标为32,当y=32时,32=x+1,解得x=31,即点A6的横坐标为31,∴A6的坐标是(31,32).故选:D.【点评】本题考查了一次函数图象上点的坐标特征以及正方形的性质的运用;求出以A n为顶点的正方形边长的变化规律是解决问题的关键.5.【分析】C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;A、当x=35时,出现拐点,显然此时亮亮到达A地,利用速度=路程÷时间可求出亮亮的速度及两人的速度和,二者做差后可得出明明的速度,进而得出A选项错误;B、根据第二次相遇时距离B地的距离=明明的速度×第二次相遇的时间﹣A、B两地间的距离,即可求出第二次相遇时距离B地800米,B选项正确;D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离=明明的速度×出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误.【解答】解:∵第一次相遇两人共走了2800米,第二次相遇两人共走了3×2800米,且二者速度不变,∴c=60÷3=20,∴出发20分时两人第一次相遇,C选项错误;亮亮的速度为2800÷35=80(米/分),两人的速度和为2800÷20=140(米/分),明明的速度为140﹣80=60(米/分),A选项错误;第二次相遇时距离B地距离为60×60﹣2800=800(米),B选项正确;出发35分钟时两人间的距离为60×35=2100(米),D选项错误.故选:B.【点评】本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题的关键.6.【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:B.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.7.【分析】根据对称的性质得出两个点关于x轴对称的对称点,再根据待定系数法确定函数关系式,求出一次函数与x轴的交点即可.【解答】解:∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴两直线相交于x轴上,∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴直线l1经过点(3,﹣2),l2经过点(0,﹣4),把(0,4)和(3,﹣2)代入直线l1经过的解析式y=kx+b,则,解得:,故直线l1经过的解析式为:y=﹣2x+4,可得l1与l2的交点坐标为l1与l2与x轴的交点,解得:x=2,即l1与l2的交点坐标为(2,0).故选:B.【点评】此题主要考查了待定系数法求一次函数解析式以及坐标与图形的性质,正确得出l1与l2的交点坐标为l1与l2与x轴的交点是解题关键.8.【分析】先解不等式2x+b<2时,得x<;再求出函数y=2x+b沿x轴翻折后的解析式为y=﹣2x﹣b,解不等式﹣2x﹣b<2,得x>﹣;根据x满足0<x<3,得出﹣=0,=3,进而求出b的取值范围.【解答】解:∵y=2x+b,∴当y<2时,2x+b<2,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<2时,﹣2x﹣b<2,解得x>﹣;∴﹣<x<,∵x满足0<x<3,∴﹣=0,=3,∴b=﹣2,b=﹣4,∴b的取值范围为﹣4≤b≤﹣2.故选:A.【点评】本题考查了一次函数图象与几何变换,求出函数y=2x+b沿x轴翻折后的解析式是解题的关键.9.【分析】本题难点在于应找到面积不变的开始与结束,得到BC,CD的具体值.【解答】解:动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9﹣4=5.∴△ABC的面积为=×4×5=10.故选:B.【点评】本题考查了动点问题的函数图象,解决本题应首先看清横轴和纵轴表示的量.10.【分析】考查点的运动变化后根据几何图形的面积确定函数的图象,图象需分段讨论.【解答】解:分析题意和图象可知:当点M在MA上时,y随x的增大而增大;当点M在半圆上时,y不变,等于半径;当点M在MB上时,y随x的增大而减小.而D选项中:点M在半圆上运动的时间相对于点M在MB上来说比较短,所以C正确,D错误.故选:C.【点评】要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义选出正确的图象.11.【分析】甲一半路程使用速度v1,另一半路程使用速度v2,因为v1<v2,所以走一半路程所用时间大于,同时,乙一半时间使用速度v1,另一半时间使用速度v2,在t1时间里所走的路程小于总路程是一半.【解答】解:根据题意,从A 到B 地,甲用的时间为t 1=+=S , 乙用的时间2121222v v s tt v t v s v st +=+==- 用21t t -分析可得t 1>t 2,即乙比甲先到B 地,进而可排除图(3)、(4);当甲前一半路程速度为V 1,后一半路程为V 2时,因为v 1<v 2,所以走一半路程所用时间大于,图(2)正确,当甲前一半路程速度为V 2,后一半路程为V 1时,因为v 1<v 2,所以走一半路程所用时间小于,图(1)正确,则图(1)、(2)都正确;故选D .【点评】本题考查函数图象的变化趋势,是一道非常好的题目.二.填空题(共10小题)12.【分析】首先设y ﹣3=k (x +2),然后再把x=﹣1时,y=2代入可得k 的值,进而可得函数解析式.【解答】解:设y ﹣3=k (x +2),∵当x=﹣1时,y=2,∴2﹣3=k (﹣1+2),﹣1=k ,∴y ﹣3=﹣(x +2),y=﹣x +1,故答案为:y=﹣x +1.【点评】此题主要考查了待定系数法求函数解析式,关键是掌握待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx +b ;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.13.【分析】先根据x1<x2时,y1<y2,得到y随x的增大而增大,所以x的比例系数大于0,那么2m﹣1>0,解不等式即可求解.【解答】解:∵当x1<x2时,有y1<y2∴y随x的增大而增大∴2m﹣1>0,∴m>.故答案是:m>.【点评】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.14.【分析】根据题意,画出一次函数y=kx+b的大体图象所在的位置,然后根据直角三角形的面积公式求得该函数图象与x轴的交点,再将其代入函数解析式,求得k值.【解答】解:根据题意,知一次函数y=kx+b的图象如图所示:∵S=1,OC=2,△AOC∴1=×OA•OC,∴OA=1;①∴一次函数y=kx+b的图象经过点(0,﹣2)、(﹣1,0),∴,解得,k=﹣2,∴一次函数的表达式是y=﹣2x﹣2;②同理求得OB=1,∴一次函数y=kx+b的图象经过点(0,﹣2)、(1,0),,∴k=2,∴一次函数的表达式是y=2x﹣2.故答案为:y=2x﹣2或y=﹣2x﹣2;【点评】本题考查了用待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,注意:一次函数图象上的点,一定满足该函数的关系式,题目比较好,注意要进行分类讨论.15.【分析】可分别用a、b表示出两函数与x轴的交点横坐标,由于两函数交x轴于同一点,因此它们与x轴的交点横坐标相同,可求得a、b的比例关系式,进而可求出的值.【解答】解:在一次函数y=2x﹣a中,令y=0,得到x=,在一次函数y=3x+b中,令y=0,得到x=﹣,由题意得:=﹣,图象交于x轴上原点外一点,则a≠0,且b≠0,可以设=﹣=k,则a=2k,b=﹣3k,代入=﹣2.故填﹣2.【点评】正确理解本题的含义是解决问题的关键,难度不大,注意细心运算即可.16.【分析】先判断P点在函数y=x+2上,过A作直线y=x+2的垂线交直线于点P,再根据勾股定理可求得AP的长.【解答】解:∵点P坐标为(x,x+2),∴点P在直线y=x+2上,如图,设直线交x轴于点B,过A作直线的垂线交直线于点P,则AP的长即为最短距离,在y=x+2中,令y=0可知x=﹣2,∴B点坐标为(﹣2,0),又点B在直线y=x+2上,∴∠PBA=45°,∵OA=2,∴AB=4,在Rt△ABP中,则AP=AB•sin45°=4×=2,故答案为:2.【点评】本题主要考查一次函数图象上点的特征,确定出点P所在的直线是解题的关键,注意数形结合.17.【分析】令x=0,y=0分别求出与y轴、x轴的交点,然后利用三角形面积公式列式表示出S n,再利用拆项法整理求解即可.【解答】解:∵直线AB的解析式为:y=﹣x+,∴当x=0时,y=,令y=0,则﹣x+=0,解得x=,所以,S n=••=(﹣),所以,S1+S2+S3+…+S n=(﹣+﹣+…+﹣)=(﹣)=×=.故答案为:.【点评】本题考查的是一次函数图象上点的坐标特点,表示出S n,再利用拆项法写成两个数的差是解题的关键,也是本题的难点.18.【分析】根据直线l的解析式求出∠MON=60°,从而得到∠MNO=∠OM1N=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出OM1=22•OM,然后表示出OM6与OM 的关系,再根据点M6在x轴上写出坐标即可.【解答】解:∵直线l:y=x,∴∠MON=60°,∵NM⊥x轴,M1N⊥直线l,∴∠MNO=∠OM1N=90°﹣60°=30°,∴ON=2OM,OM1=2ON=4OM=22•OM,同理,OM2=22•OM1=(22)2•OM,…,OM6=(22)6•OM=212•2=213,所以,点M6的坐标为(213,0).故答案为:(213,0).【点评】本题考查了一次函数图象上点的坐标特征,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质并求出变化规律是解题的关键.19.【分析】如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣。
2018年人教版八年级下《一次函数》期末专题培优复习有答案
2018年八年级数学下册一次函数期末专题培优复习一、选择题:1、在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=ah,当a为定长时,在此式中( )A.S,h是变量,,a是常量B.S,h,a是变量,是常量C.S,h是变量,,S是常量D.S是变量,,a,h是常量2、函数的自变量x的取值范围为()A.x≠1B.x>-1C.x≥-1D.x≥-1且 x≠13、直线y=-x-2不经过()A.第一象限B.第二象限C.第三象限D.第四象限4、将直线y=﹣2x向下平移两个单位,所得到的直线为()A.y=﹣2(x+2)B.y=﹣2(x﹣2)C.y=﹣2x﹣2D.y=﹣2x+25、已知某一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数为()A.y=﹣x﹣2B.y=﹣x+10C.y=﹣x﹣6D.y=﹣x﹣106、点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定7、小丽的父亲饭后去散步,从家中走20分钟到离家1000米的报亭看了10分钟的报纸后,用15分钟返回家里,下列各图中表示小丽父亲离家的时间与距离之间的关系是()8、下列图象中,以方程-2x+y-2=0的解为坐标的点组成的图象是()9、如图所示,函数y=mx+m的图象可能是下列图象中的()10、若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是( )A.ab>0B.a-b>0C.a2+b>0D.a+b>011、甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4B.3C.2D.112、如图,直线y=x+1与y轴交于点A1,依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n ,使得点A1、A2、…,A n在直线x+1上,点C1、C2、…,C n在x轴上,则点B n的坐标是()﹣1A.(2n﹣1,2n﹣1)B.(2n﹣1+1,2n﹣1)C.(2n﹣1,2n﹣1)D.(2n﹣1,n)二、填空题:13、函数y=中自变量x的取值范围是_____________.14、若将直线y=2x﹣1向上平移3个单位,则所得直线的表达式为 .15、若直线y=-2x+b经过点(3,5),则关于x的不等式-2x+b<5的解集是 .16、如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A(﹣2,0),B(0,1),则直线BC的函数表达式为.17、若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当﹣1≤x1≤2时,﹣2≤y1≤1,则这条直线的函数解析式为.18、无论m取什么实数,点A(m+1,2m-2)都在直线l上,若点B(a,b)是直线l上的动点,则(2a-b-6)3的值等于三、解答题:19、已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值(2)若函数的图象平行于直线y=3x-3,求m的值(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.20、一个有进水管与出水管的容器,从某时刻开始的3分钟内只进水不出水,在随后的9分钟内既进水又出水,每分钟的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.21、某地自来水公司为限制单位用水,每月只给某单位计划内用水3 000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)某月该单位用水3 200吨,水费是______元;若用水2 800吨,水费是______元;(2)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式;(3)若某月该单位缴纳水费1 540元,则该单位这个月的用水量为多少吨?22、如图,直线y=-x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B'处.求:(1)点B'的坐标. (2)直线AM所对应的函数关系式.23、如图,己知直线l:y=x+1(k≠0)的图象与x轴、y轴交于A、B两点.(1)直接写出A、B两点的坐标;(2)若P是x轴上的一个动点,求出当△PAB是等腰三角形时P的坐标;(3)在y轴上有点C(0,3),点D在直线l上.若△ACD面积等于4.请直接写出D的坐标.24、如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=2时,则AP= ,此时点P的坐标是。
专题复习2018学年八年级数学下册 一次函数 专题复习50题(含答案)
2018年八年级数学下册一次函数专题复习50题一、选择题:1.若y=x+2-b是正比例函数,则b的值是()A.0 B.﹣2 C.2 D.﹣0.52.P(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()1A.y1>y2B.y1<y2 C.当x1<x2时,y1>y2D.当x1<x2时,y1<y23.小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家、下面哪一个图象能大致描述他回家过程中离学校的距离S(千米)与所用时间t(分)之间的关系()A.B.C.D.4.函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限5.某种型号的计算器单价为40元,商家为了扩大销售量,现按八折销售,如果卖出x台这种计算器,共卖得y元,则用x表示y的关系式为( )A.y=40x B.y=32x C.y=8x D.y=48x6.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x-4)-2b>0解集为()A.x>﹣2 B.x<﹣2 C.x>2 D.x<37.若式子有意义,则一次函数y=(1-k)x+k-1的图象可能是( )8.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A.B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.249.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡的速度仍然保持不变,那么他从学校回到家需要的时间是()A. 8.6分钟B. 9分钟C. 12分钟D.16分钟10.在平面直角坐标系中,将直线l:y=-3x-1平移后,得到直线l2:y=-3x+2,则下列平移方式1正确的是()A.将l1向左平移1个单位B.将l1向右平移1个单位C.将l1向上平移2个单位D.将l1向上平移1个单位11.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20 L B.25 L C.27L D.30 L12.如图,直线l:y =x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2015的坐标为( )A.(0,42015)B.(0,42014)C.(0,32015)D.(0,32014)二、填空题:13.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(-1,1),顶点B在第一象限.若点B在直线y=kx+3上,则k的值为________.14.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.5元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.15元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.15.如图,直线:y=x+1与直线:y=mx+n相交于点P(a,2),则关于x的不等式=x+1≥=mx+n 的解集为.16.已知直线y=(k+2)x+的截距为1,那么该直线与x轴的交点坐标为.17.如图所示的计算程序中,y与x之间的函数表达式为.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示.现有以下4个结论:①快递车从甲地到乙地的速度为100千米/小时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3.75,75);④快递车从乙地返回时的速度为90千米/小时以上结论正确的是________________.19.正方形AB1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示的方式放置.点A1,A2,A3,…,和点C1,1C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1、B2坐标分别为B1(1,1),B2(3,2),则B8坐标是.20.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l,l2,过点(1,0)作1x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.三、解答题:21.已知正比例函数图象经过点(-1,2).(1)求此正比例函数的表达式;(2)画出这个函数图象;(3)点(2,-5)是否在此函数图象上?(4)若这个图象还经过点A(a,8),求点A的坐标.22.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.23.“六一”前夕,某玩具经销商用去2350元购进A.B、C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具x套,B种玩具y套,三种电动玩具的进价和售价如表所示型号 A B C进价(元/套)40 55 50售价(元/套)50 80 65(1)用含x、y的代数式表示购进C种玩具的套数;(2)求y与x之间的函数关系式;(3)假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元.①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时三种玩具各多少套.24.甲、乙两城市之间开通了动车组高速列车.已知每隔2h有一列速度相同的动车组列车从甲城开往乙城.如图,OA是第一列动车组列车离开甲城的路程s(km)与运行时间t(h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(km)与运行时间t(h)的函数图象.请根据图中的信息,解答下列问题:(1)从图象看,普通快车发车时间比第一列动车组列车发车时间 1h(填”早”或”晚”),点B的纵坐标600的实际意义是;(2)请直接在图中画出第二列动车组列车离开甲城的路程s(km)与时间t(h)的函数图象;(3)若普通快车的速度为100km/h,①求第二列动车组列车出发多长时间后与普通快车相遇?②请直接写出这列普通快车在行驶途中与迎面而来的相邻两列动车组列车相遇的时间间隔.25.已知景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x 人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a= ,b= ;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到景区旅游,两团共计50人,两次共付门票费用3040元,求A.B两个旅游团各多少人?26.为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题:(1)当用电量是180千瓦时时,电费是_________元;(2)第二档的用电量范围是________________;(3)“基本电价”是_________元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?27.某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x (个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?28.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?29.在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)(1)写出y与x之间的函数解析式;(2)画出此函数的图象.30.某通讯移动通讯公司手机费用有A.B两种计费标准,如下表:月租费(元/部)通讯费(元/分钟)A种收费标准15 0.2B种收费标准0 0.25设某用户一个月内手机通话时间为x分钟,请根据上表解答下列问题:(1)按A类收费标准,该用户应缴纳费用y A(元)与通话时间x(分钟)之间的函数关系式是;按B类收费标准,该用户应缴纳费用y B(元)与通话时间x(分钟)之间的函数关系式是;(2)如果该用户每月通话时间为400分钟,应选择哪种收费方式?为什么?31.为发展电信事业,方便用户,电信公司对移动采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜.32.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/台)甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.33.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?34.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨.现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.(1)将这些货物一次性运到目的地,有几种租用货车的方案?(2)若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?35.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数关系式;(2)求出自变量x的取值范围.36.甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.37.某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?38.如图,直线y=-x+8与x轴、y轴分别相交于点A,B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B'处.求:(1) 点B'的坐标;(2) 直线AM所对应的函数关系式.39.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.40.为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?41.为表彰学习进步的同学,某班生活委员到文具店买文具作为奖品.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求每个笔记本和每支钢笔的售价.(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受八折优惠,若买x(x>0)支钢笔需要花y元,求y与x的函数关系式.42.某县在实施“村村通”工程中,决定在A.B两村之间修一条公路,甲、乙两个工程队分别从A.B两村同时开始相向修路,施工期间,甲队改变了一次修路速度,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到公路修通,甲、乙两个工程队各自所修公路的长度y(米)与修路时间x(天)之间的函数图象如图所示.(1)求甲队前8天所修公路的长度;(2)求甲工程队改变修路速度后y与x之间的函数关系式;(3)求这条公路的总长度.43.为了提高天然气使用效率,保障居民的本机用气需求,某地积极推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3元/m3,(1)根据题意,填写下表:(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式;(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.44.已知A(8,0)及在第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S(1)求S关于x的函数表达式;(2)求x的取值范围;(3)求S=12时P点坐标;45.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C →D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10 cm2?46.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答下列问题:物资种类食品药品生活用品每辆汽车运载量(吨) 6 5 4每吨所需运费(元/吨)120 160 100(1)设装运食品的车辆数为x,装运药品的车辆数为y.求y与x的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.47.某商场经营某种品牌的玩具,进价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是500件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了8000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于35元,且商场要完成不少于350件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?48.为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A.B两贫困村的计划.现决定从某地运送152箱鱼苗到A.B两村养殖,若用大、小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大、小货车的载货能力分别为12箱/辆和8箱/辆,其运往A.B两村的运费如下表:目的地车型A村(元/辆) B村(元/辆)大货车800 900小货车400 600(1)这15辆车中大、小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A.B两村总费用为y元,试求出y与x的函数表达式;(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.49.在平面直角坐标系中,点O为坐标原点,直线y=-x+1分别与x轴、y轴交与点A.B.(1)求△AOB的周长;(2)以AB为腰,作等腰直角三角形,且∠BAC=90°,求点C坐标.50.如图,已知点A(3,4)在y=kx上.(1)求k值;(2)若点P在x轴上,当点P、O、A构成的三角形是等腰三角形,求点P坐标.参考答案1.C2.C3.C4.B.5.B6.B7.C8.D9.C10.B11.A12.答案为:-2;13.答案为:y=0.15x-1;14.x≥115.答案为:(﹣1,0).16.y=-2x+417.答案为:①③④18.答案为:(28﹣1,28﹣1)或(255,128).19.答案为:(21008,21009).20.略21.解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴5k+b=0,k+b=4,解得k=-1,b=5,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴y=-x+5,y=2x-4.解得x=3,y=2,∴点C(3,2);(3)根据图象可得x>3.22.【解答】解:(1)已知共购进A.B、C三种新型的电动玩具共50套,故购进C种玩具套数为:50﹣x﹣y;(2)由题意得40x+55y+50(50﹣x﹣y)=2350,整理得y=2x﹣30;(3)①利润=销售收入﹣进价﹣其它费用,故:p=(50﹣40)x+(80﹣55)y+(65﹣50)(50﹣x﹣y)﹣200,又∵y=2x﹣30,∴整理得p=15x+250,②购进C种电动玩具的套数为:50﹣x﹣y=50﹣x﹣(2x﹣30)=80﹣3x,据题意列不等式组,解得20≤x≤,∴x的范围为20≤x≤,且x为整数,故x的最大值是23,∴当x取最大值23时,P有最大值,最大值为595元.此时购进A.B、C种玩具分别为23套、16套、11套.23.24.25.(1)108 ;(2)180<x≤450 ;(3)0.6 .(4)设直线BC的解析式为y=kx+b,由图象,得解得∴y=0.9x-121.5.26.解:(1)设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,∴y与x之间的函数关系式为y=﹣x+300;(2)∵y=﹣x+300;∴当x=120时,y=180.设甲品牌进货单价是a元,则乙品牌的进货单价是2a元,由题意,得120a+180×2a=7200,解得:a=15,∴乙品牌的进货单价是30元.答:甲、乙两种品牌的文具盒进货单价分别为15元,30元;(3)设甲品牌进货m个,则乙品牌的进货(﹣m+300)个,由题意,得,解得:180≤m≤181,∵m为整数,∴m=180,181.∴共有两种进货方案:方案1:甲品牌进货180个,则乙品牌的进货120个;方案2:甲品牌进货181个,则乙品牌的进货119个;设两种品牌的文具盒全部售出后获得的利润为W元,由题意,得W=4m+9(-m+300)=-5m+2700.∵k=﹣5<0,∴W随m的增大而减小,∴m=180时,W最大=1800元.27.解:(1)设线段AB所表示的函数关系式为y=kx+b(k≠0),根据题意,得b=192,2k+b=0,解得k=-96,b=192.∴线段AB所表示的函数关系式为y=-96x+192(0≤x≤2);由题意可知,行驶2小时,经过了192千米,∴汽车的速度为96(千米/时),又∵出发时距西安192千米,∴线段AB所表示的函数关系式为y=192-96x(0≤x≤2);(2)由题意可知,下午3点时,x=8,y=112.设线段CD所表示的函数关系式为y=k′x+b′(k′≠0),则根据题意,得k′=80,b′=-528,∴线段CD的函数关系式为y=80x-528.∴当y=192时,80x-528=192,解得x=9.∴他当天下午4点到家.28.解:(1)点P在边AB,BC,CD上运动时所对应的y与x之间的函数解析式不相同,故应分段求出相应的函数解析式.①当点P在边AB上运动,即0≤x<3时,y=0.5×4x=2x;②当点P在边BC上运动,即3≤x<7时,y=0.5×4×3=6;③当点P在边CD上运动,即7≤x≤10时,y=0.5×4(10-x)=-2x+20.(2)函数图象如图所示.29. (1) y A=0.2x+15 ;y B =0.25x(2) 当x=400时,算出y A=95元,y B =100元,30.解:(1)设y=kx+b,将(0,29),(30,35)代入,1解得k=,b=29,∴,又24×60×30=43200(min)∴(0≤x≤43200),同样求得;(2)当y1=y2时,;当y1<y2时,.所以,当通话时间等于96min时,两种卡的收费相等,当通话时间小于mim时,“如意卡便宜”,当通话时间大于min时,“便民卡”便宜.31.解(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤80.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.32.解:(1)由题意:设y与的一次函数关系为解得:∴(2)当两摞摆成一摞时,共有11只此时∴这摞碗共高21cm33.解:(1)设租用甲种货车x辆,则乙种货车为8﹣x辆,依题意得:解不等式组得3≤x≤5这样的方案有三种,甲种货车分别租3,4,5辆,乙种货车分别租5,4,3辆.(2)总运费s=1300x+1000(8﹣x)=300x+8000因为s随着x增大而增大所以当x=3时,总运费s最少为8900元.34.解:(1)设y与x的函数关系式为y=kx+b(k≠0),∵函数图象经过点(20,300)和点(30,280),∴,解得:,∴y与x的函数关系式为y=﹣2x+340.(2)∵试销期间销售单价不低于成本单价,也不高于每千克40元,且草莓的成本为每千克20元,∴自变量x的取值范围是20≤x≤40.35.解:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克=30元.故答案为30.(2)由题意y1=18x+50,y2=,(3)函数y1的图象如图所示,由解得,所以点F坐标(,125),由解得,所以点E坐标(,650).由图象可知甲采摘园所需总费用较少时<x<.36.解:(1)第20天的总用水量为1000米3(2)当x ≥20时,设y=kx+b ∵函数图象经过点(20,1000),(30,4000) ∴解得∴y 与x 之间的函数关系式为:y=300x ﹣5000.(3)当y=7000时,由7000=300x ﹣5000,解得x=40答:种植时间为40天时,总用水量达到7000米3.37. (1) y=-x +8,令x=0,则y=8;令y=0,则x=6,∴ A (6,0),B (0,8),∴ OA=6,OB=8,AB=10.∵ AB'=AB=10,∴ OB'=10-6=4,∴ B'的坐标为 (-4,0)(2) 设OM=m ,则B'M=BM=8-m ,在Rt △OMB'中,m 2+42=(8-m)2,解得m=3,∴ M 的坐标为 (0,3),设直线AM 的解析式为y=kx +b ,则6k +b=0,b=3,解得k=-,b=3,故直线AM 的解析式为y=-x +338.解:(1)设按优惠方法①购买需用y 1元,按优惠方法②购买需用y 2元y 1=(x ﹣4)×5+20×4=5x+60,y 2=(5x+20×4)×0.9=4.5x+72.(2)解:分为三种情况:①∵设y 1=y 2,5x+60=4.5x+72,解得:x=24,∴当x=24时,选择优惠方法①,②均可;②∵设y 1>y 2,即5x+60>4.5x+72,∴x >24.当x >24整数时,选择优惠方法②; ③当设y 1<y 2,即5x+60<4.5x+72∴x <24∴当4≤x <24时,选择优惠方法①.(3)解:采用的购买方式是:用优惠方法①购买4个书包,需要4×20=80元,同时获赠4支水性笔;用优惠方法②购买8支水性笔,需要8×5×90%=36元.共需80+36=116元.∴最佳购买方案是:用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔.39.解:(1)当4060x <≤时,令y kx b =+,则404602k b k b +=⎧⎨+=⎩,解得1108.k b ⎧=-⎪⎨⎪=⎩, ∴1810y x =-+. 同理,当60100x <<时,1520y x =-+. 18(4060)1015(60100)20x x y x x ⎧-+<⎪⎪∴=⎨⎪-+<<⎪⎩,≤ 40.41.解:(1)由图象可知前八天甲、乙两队修的公路一样长,乙队前八天所修公路的长度为840÷12×8=560(米),答:甲队前8天所修公路的长度为560米.(2)设甲工程队改变修路速度后y与x之间的函数关系式为y=kx+b,将点(4,360),(8,560)代入,得,解得.故甲工程队改变修路速度后y与x之间的函数关系式为y=50x+160(4≤x≤16).(3)当x=16时,y=50×16+160=960;由图象可知乙队共修了840米.960+840=1600(米).答:这条公路的总长度为1800米.42.43.解:(1)∵x+y=10∴y=10﹣x,∴s=8(10﹣x)÷2=40﹣4x,(2)∵40﹣4x>0,∴x<10,∴0<x<10,(3)∵s=12,∴12=40﹣4x,x=7∴y=10﹣7=3,∴s=12时,P点坐标(7,3),44.解:(1)6;2;18(2)PD=6-2(t-12)=30-2t,S=0.5AD·PD=0.5×6×(30-2t)=90-6t,即点P在CD上运动时S与t之间的函数解析式为S=90-6t(12≤t≤15).(3)当0≤t≤6时易求得S=3t,将S=10代入,得3t=10,解得t=10/3;当12≤t≤15时,S=90-6t,将S=10代入,得90-6t=10,解得t=40/3.所以当t为10/3或40/3时,三角形APD的面积为10 cm2.45.解:(1)根据题意,装运食品的车辆数为x,装运药品的车辆数为y,那么装运生活用品的车辆数为(20﹣x﹣y),则有6x+5y+4(20﹣x﹣y)=100,整理得,y=﹣2x+20;(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为x,20﹣2x,x,由题意,得x≥5,20-2x≥4,解这个不等式组,得5≤x≤8,因为x为整数,所以x的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆.(3)设总运费为W(元),则W=6x×120+5(20﹣2x)×160+4x×100=16000﹣480x,因为k=﹣480<0,所以W的值随x的增大而减小.要使总运费最少,需x最大,则x=8.故选方案4.W最小=16000﹣480×8=12160元.最少总运费为12160元.46.47. (1)设大货车用x辆,小货车用y辆,根据题意,得解得答:大货车用8辆,小货车用7辆.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+9 400.(0≤x≤10,且x为整数).(3)由题意,得12x+8(10-x)≥100.解得x≥5.又∵0≤x≤10,∴5≤x≤10且x为整数.∵y=100x+9 400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9 400=9 900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村,3辆大货车、2辆小货车前往B村.最少运费为9 900元.48. (1)∵y=-x+1,∴当y=0时,x=,则A的坐标(,0),当x=0时,y=1,则B的坐标(0,1).∵OA=,OB=1,AB==2,∴C△AOB=OA+OB+AB=+1+2=+3.(2)如图,在直线AB的上方作等腰直角三角形,且∠BAC=90°,过C作CD垂直于x轴于D.∵∠CAD+∠OAB=90°,∠CAD+∠DCA=90°,∴∠OAB=∠DCA.在△DCA与△OAB中,∴△DCA≌△OAB(AAS).∴AD=OB=1,CD=AO=.∴OD=OA+AD=+1.∴C的坐标为(+1,).当点C在直线AB的下方时.同理得出C的坐标为(-1,-).综上所述:点C坐标为(+1,)或(-1,-).49.略50.略;。
人教版2018年 八年级数学下册 平行四边形 一次函数 期末综合复习卷二(含答案)(解析版)
人教版2018年八年级数学下册平行四边形+一次函数期末综合复习卷二一、选择题:1. 函数y=中自变量x 的取值范围是( )A. x >3B. x <3C. x≤3D. x≥﹣3【答案】B【解析】试题解析:由题意得,3-x >0,解得x <3.故选B .考点:函数自变量取值范围2. 一辆汽车从甲地开往乙地,开始以正常速度匀速行驶,但行至途中汽车出了故障,只好停下修车,修好后,为了按时到达乙地,司机加快了行驶速度并匀速行驶.下面是汽车行驶路程S (千米)关于时间t (小时)的函数图象,那么能大致反映汽车行驶情况的图象是( )A. B. C. D.【答案】C【解析】试题分析:要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得出正确的结论,通过分析题意可知,行走的规律是:匀速走—停—匀速走,速度是前慢后快,所以图象是C .故选:C .考点:函数的图象.3. 已知一次函数y=kx+b ,y 随着x 的增大而增大,且kb >0,则在直角坐标系内它的大致图象是( )A. B. C. D.【答案】D【解析】试题分析:首先根据反比例函数的增减性确定k的符号,然后根据kb>0确定b的符号,从而根据一次函数的性质确定其图形的位置即可.解:∵一次函数y=kx+b,y随着x的增大而增大,∴k>0.∵kb>0,∴b>0,∴此函数图象经过一、二、三象限.故选D.考点:一次函数图象与系数的关系.4. 关于函数y=﹣2x+1,下列结论正确的是( )A. 图象经过点(﹣2,1)B. y随x的增大而增大C. 图象不经过第三象限D. 图象不经过第二象限【答案】C【解析】【分析】根据一次函数的性质可知,图象经过第一、二、四象限;要判断点是否在图象上,可以把点的坐标代入解析式进行检验;要判断y与x的增减关系,要看x系数的正负情况.【详解】把(﹣2,1)代入y=﹣2x+1,等式两边不等,故A错;因为x的系数﹣2<0,所以y随x的增大而减小.故B错;因为﹣2<0,1>0,所以图象经过第一、二、四象限,故C正确,D错误.故正确选项为C.【点睛】此题考核一次函数的基本性质:1.如何判断点是否在图象上;2.函数值y与x的增减关系;3.图象在平面直角坐标系中的位置.解决这些问题.解题关键在于弄清中k和b的符号.5. 如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A. 1cmB. 2cmC. 3cmD. 4cm【答案】B【解析】解:如图,∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC-BE=5-3=2.故选B.6. 如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】试题分析:是四边形ABCD的对称轴△ABC≌△ADC又AD∥BC故AB∥CD;AB="BC" ①②成立.又△ABC≌△ADC,AB="BC"故四边形ABCD是菱形,,④成立四边形ABCD是菱形,但是不一定是正边形,所以不一定存在,故③不成立.选C.考点:1、轴对称图形的性质2、平行线的性质. 3、菱形的性质.7. 如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=2,∠ABE=45°,则DE的长为( )A. 2-2B. -1C. -1D. 2-【答案】A【解析】∵四边形ABCD是矩形,∴AD∥BC.∴∠DEC=∠BCE.∵EC平分∠DEB,∴∠DEC=∠BEC.∴∠BEC=∠ECB.∴BE=BC.∵四边形ABCD是矩形,∴∠A=90°.∵∠ABE=45°,∴∠ABE=AEB=45°.∴AB=AE=2.∵由勾股定理得:BE= =,∴BC=BE=.∴DE=AD-AE=BC-AB=-2故选:A.点睛:本题考查了矩形的性质、角平分线的性质、等腰三角形的性质、勾股定理的应用等知识;要学会添加常用的辅助线,构造特殊三角形来解决问题.熟练掌握矩形的性质、等腰三角形的判定与性质是解决问题的关键.8. 在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连结DF并延长交AC于点E.若AB=10,BC=16,则线段EF的长为( )A. 2B. 3C. 4D. 5【答案】B【解析】试题分析:已知AF⊥BF,AB=10,D为AB中点,根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=5且∠ABF=∠BFD,又因BF平分∠ABC,可得∠CBF=∠DFB,即DE∥BC,可判定△ADE∽△ABC,根据相似三角形的对应边成比例可求得DE=8,由EF=DE﹣DF=8-5=3.故答案选B.考点:直角三角形斜边上的中线;平行线的判定;相似三角形的判定与性质.9. 如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A. 4B. 8C. 16D. 8【答案】C【解析】试题分析:∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3,BC=5,∵∠CAB=90°,∴AC=4,∴点C的坐标为(1,4),当点C落在直线y=2x﹣6上时,∴令y=4,得到4=2x﹣6,解得x=5,∴平移的距离为5﹣1=4,∴线段BC扫过的面积为4×4=16,故选C.考点:1.一次函数综合题;2.一次函数图象上点的坐标特征;3.平行四边形的性质;4.平移的性质.视频10. 如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为()A. B. C. D. 3【答案】B【解析】【分析】由图形折叠可得BE=EG,DF=FG;再由正方形ABCD的边长为3,BE=1,可得EG=1,EC=3-1=2,CF=3-FG;最后由勾股定理可以求得答案.【详解】由图形折叠可得BE=EG,DF=FG,∵正方形ABCD的边长为3,BE=1,∴EG=1,EC=3-1=2,CF=3-FG,在直角三角形ECF中,∵EF2=EC2+CF2,∴(1+GF)2=22+(3-GF)2,解得GF=,∴EF=1+=.故正确选项为B.【点睛】此题考核知识点是:正方形性质;轴对称性质;勾股定理.解题的关键在于:从图形折叠过程找出对应线段,利用勾股定理列出方程.11. 如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC 于点Q,PR⊥BR于点R,则PQ+PR的值是()A. 2B. 2C. 2D.【答案】A【解析】如图,连接BP,设点C到BE的距离为h,则S△BCE=S△BCP+S△BEP,即BE⋅h=BC⋅PQ+BE⋅PR,∵BE=BC,∴h=PQ+PR,∵正方形ABCD的边长为4,∴h=4×=.故答案为:.12. 若A(x1,y1)、B(x2,y2)是一次函数y=ax―3x+5图像上的不同的两个点,记W=(x1―x2)( y1―y2),则当W<0时,a的取值范围是()A. a<0B. a>0C. a<3D. a>3【答案】C【解析】试题解析∵W=(x1-x2)(y1-y2)<0,∴x1-x2与y1-y2异号,∴a-3<0,解得:a<3.故选C.【点睛】本题考查了一次函数的性质,熟练掌握“当k<0时,y随x的增大而减小”是解题的关键.二、填空题:13. 函数中自变量x的取值范围是________.【答案】x≥-2 且x≠1【解析】根据二次根式的性质,被开方数大于等于0,列不等式求解.解:根据题意得:x+2≥0,x-1≠0解得:x≥-2且x≠1.考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14. 如图,直线y=3x和y=kx+2相交于点P(a,3),则关于x不等式(3﹣k)x≤2的解集为_____.【答案】x≤1.【解析】【分析】先把点P(a,3)代入直线y=3x求出a的值,可得出P点坐标,再根据函数图象进行解答即可.【详解】∵直线y=3x和直线y=kx+2的图象相交于点P(a,3),∴3=3a,解得a=1,∴P(1,3),由函数图象可知,当x≤1时,直线y=3x的图象在直线y=kx+2的图象的下方.即当x≤1时,kx+2≥3x,即:(3-k)x≤2.故正确答案为:x≤1.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.15. 一次函数y= -2x+4的图象与坐标轴所围成的三角形面积是______.【答案】4【详解】令y=0,则x=2;令x=0,则y=4,∴一次函数y=-2x+4的图象与x轴的交点为(2,0),与y轴的交点为(0,4).∴S=.故正确答案为4.【点睛】本题考查了一次函数图象与坐标轴的交点坐标.关键令y=0,可求直线与x轴的交点坐标;令x=0,可求直线与y轴的交点坐标.16. 如图,在矩形ABCD中,AB=10cm,BC=5cm.点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A′、D′处,则整个阴影部分图形的周长为__________.【答案】30cm....... ........................考点:折叠图形的性质17. 如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为________.【答案】1.5.【解析】延长CF交AB于点G,证明△AFG≌△AFC,从而可得△ACG是等腰三角形,GF=FC,点F是CG中点,判断出DF是△CBG的中位线,继而可得出答案.18. 如图,在中,,,,点在上,以为对角线的所有平行四边形中,最小值是______.【答案】3【解析】【分析】利用“在含有的直角三角形中,角所对的直角边等于斜边的一半.”求出AC,利用平行四边形性质求出OC=3,根据垂线段最短,可求OD=1.5,最后由DE=2OD可得结果。
人教版数学八年级下册 期末培优专题 一次函数行程类问题(含简单答案)
参考答案
2.(1)100 ; 80 (2) y 40t 20 ,教官们领取装备所用的时间 0.5h ; (3)客车第二次出发时的速度至少是 60km/h .
3 即按原路返回,结果比货车早一个小时到达甲地.如图是两车距各自出发地的距离 y( km ) 与货车行驶时间 x(h)之间的函数图象,结合图象回答下列问题:
(1)图中 a 的值是______;
(2)求轿车到达乙地再返回甲地所花费的时间; (3)轿车在返回甲地的过程中与货车相距 30km ,直接写出货车已经从乙地出发了多长时间? 15.小聪和小慧沿图 1 中的风景区游览,约好在飞瀑见面.小聪驾驶电动汽车从宾馆出发, 小慧也于同一时间骑电动自行车从塔林出发:图 2 中的图象分别表示两人离宾馆的路程 y(km) 与时间 x(h) 的函数关系,试结合图中信息回答:
8.快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地卸装货物用 时 30 分钟,结束后,立即按原路以另一速度匀速返回,直至与慢车相遇,已知慢车的速度
为 60km / h .两车之间的距离 y km 与慢车行驶的时间 x h 的函数图象如图所示.
(1)求出图中线段 AB 所表示的函数表达式; (2)两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需多长时间.
(1) a ________, b __________; (2)求出姐姐从家出发直到返回家的过程中,姐姐离家的距离 y1 与时间 t 之间的关系式; (3)在姐姐去体育场的过程中,直接写出 t 为何值时,两人相距 400m .
4.港口 A 、 B 、 C 依次在同一条直线上,甲、乙两艘船同时分别从 A 、 B 两港出发,匀速 驶向 C 港,甲、乙两船与 B 港的距离 y (海里)与行驶时间 x (时)之间的关系如图所 示.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018 年人教版八年级下《一次函数》期末专题培优复习含答案
一次函数培优复习试卷
一、选择题:
△1、在 ABC 中,它的底边是 a ,底边上的高是 h ,则三角形面积 S = ah ,当 a 为定长时,在此式中( )
A.S ,h 是变量, ,a 是常量
B.S ,h ,a 是变量, 是常量
C.S ,h 是变量, ,S 是常量
D.S 是变量,
,a ,h 是常 量
2、函数 的自变量 x 的取值范围为( )
A.x ≠1
B.x >-1
C.x ≥-1
D.x ≥-1 且 x ≠1
3、直线 y=-x -2 不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
4、将直线 y=﹣2x 向下平移两个单位,所得到的直线为( )
A.y=﹣2(x+2)
B.y=﹣2(x ﹣2)
C.y=﹣2x ﹣2
D.y=﹣2x+2
5、已知某一次函数的图象与直线 y=﹣x+1 平行,且过点(8,2),那么此一次函数为( )
A.y=﹣x ﹣2
B.y=﹣x+10
C.y=﹣x ﹣6
D.y=﹣x ﹣10
6、点 A (3,y 1)和点 B (﹣2,y 2)都在直线 y=﹣2x+3 上,则 y 1 和 y 2 的大小关系是( )
A.y 1>y 2
B.y 1<y 2
C.y 1=y 2
D.不能确定
7、小丽的父亲饭后去散步,从家中走 20 分钟到离家 1000 米的报亭看了 10 分钟的报纸后,用 15 分钟返回家里, 下列各图中表示小丽父亲离家的时间与距离之间的关系是( )
8、下列图象中,以方程-2x +y -2=0 的解为坐标的点组成的图象是( )
9、如图所示,函数 y=mx+m 的图象可能是下列图象中的(
)
10、若一次函数 y =ax +b 的图象经过第一、二、四象限,则下列不等式中总是成立的是(
)
A.ab >0
B.a -b >0
C.a 2+b >0
D.a +b >0
11、甲骑摩托车从 A 地去 B 地,乙开汽车从 B 地去 A 地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两 人间距离为 s (单位:千米),甲行驶的时间为 t (单位:小时),s 与 t 之间的函数关系如图所示,有下列结论:
①出发 1 小时时,甲、乙在途中相遇;
②出发 1.5 小时时,乙比甲多行驶了 60 千米;
③出发 3 小时时,甲、乙同时到达终点;
④甲的速度是乙速度的一半.
其中,正确结论的个数是(
)
A.4
B.3
C.2
D.1
12、如图,直线 y=x+1 与 y 轴交于点 A 1,依次作正方形 A 1B 1C 1O 、正方形 A 2B 2C 2C 1、…、正方形 A n B n C n C n ﹣1,使得点 A 1、 A 2、…,A n 在直线 x+1 上,点 C 1、C 2、…,C n 在 x 轴上,则点 B n 的坐标是( )
A.(2n ﹣1,2n ﹣1)
B.(2n ﹣1+1,2n ﹣1)
C.(2n ﹣1,2n ﹣1)
D.(2n ﹣1,n )
二、填空题:
13、函数 y=
中自变量 x 的取值范围是_____________.
14、若将直线 y=2x ﹣1 向上平移 3 个单位,则所得直线的表达式为
.
15、若直线 y=-2x+b 经过点(3,5),则关于 x 的不等式-2x+b<5 的解集是
.
16、如图,将含 45°角的直角三角尺放置在平面直角坐标系中,其中 A (﹣2,0),B (0,1),则直线 BC 的函数 表达式为 .
17、若点 M (x 1,y 1)在函数 y=kx+b (k ≠0)的图象上,当﹣1≤x 1≤2 时,﹣2≤y 1≤1,则这条直线的函数解析式 为
.
18、无论 m 取什么实数,点 A (m+1,2m-2)都在直线 l 上,若点 B (a ,b )是直线 l 上的动点,则(2a-b-6)3 的值 等于
三、解答题:
19、已知函数 y =(2m +1)x +m -3.
(1)若函数图象经过原点,求 m 的值
(2)若函数的图象平行于直线 y =3x -3,求 m 的值
(3)若这个函数是一次函数,且 y 随着 x 的增大而减小,求 m 的取值范围.
20、一个有进水管与出水管的容器,从某时刻开始的3 分钟内只进水不出水,在随后的 9 分钟内既进水又出水,每 分钟的进水量和出水量都是常数.容器内的水量 y(单位:升)与时间 x(单位:分)之间的关系如图所示.当容器内的 水量大于 5 升时,求时间 x 的取值范围.
21、某地自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.
(1)某月该单位用水3200吨,水费是______元;若用水2800吨,水费是______元;
(2)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式;
(3)若某月该单位缴纳水费1540元,则该单位这个月的用水量为多少吨?
22、如图,直线y=-x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B 恰好落在x轴上的点B'处.求:
(1)点B'的坐标.(2)直线AM所对应的函数关系式.
23、如图,己知直线l:y=x+1(k≠0)的图象与x轴、y轴交于A、B两点.
(1)直接写出A、B两点的坐标;
(2)若P是x轴上的一个动点,求出当△PAB是等腰三角形时P的坐标;
(3)在y轴上有点C(0,3),点D在直线l上△.若ACD面积等于4.请直接写出D的坐标.
24、如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.
(1)当t=2时,则AP=,此时点P的坐标是。
(2)当t=3时,求过点P的直线l:y=-x+b的解析式?
(3)当直线l:y=-x+b从经过点M到点N时,求此时点P向上移动多少秒?
=8时,请直按写出点Q的坐标是
(4)点Q在x轴时,若△S
ONQ
参考答案
1、A
2、D
3、A
4、C
5、B.
6、B.
7、C
8、B
9、D.
10、C
11、B.
12、A
13、x>3
14、答案为:y=2x+2.
15、3
16、答案为:y=﹣x+1.
17、答案为:y=x﹣1或y=﹣x.
18、-8
19、解:(1)∵y=(2m+1)x+m﹣3经过原点,是正比例函数,∴.解得m=3.(2)∵函数的图象平行于直线y=3x﹣3,∴2m+1=3,解得m=1
(3)根据y随x的增大而减小说明k<0.即2m+1<0.解得:m<﹣
20、①0≤x<3时,设y=mx,则3m=15,解得m=5.所以y=5x.当y=5时,x=1.
②3≤x≤12时,设y=kx+b(k≠0),∵函数图象经过点(3,15),(12,0),
∴y=-x+20.当y=5时,x=9.
∴当容器内的水量大于5升时,时间x的取值范围是1<x<9.
21、解:(1)1660;1400.
(2)y=
(3)因为缴纳水费1540元>1500元,所以用水量应超过3000吨,
故1500+0.8(x-3000)=1540,解得x=3050.答:该月的用水量是3050吨.
22、(1)A (6,0),B (0,8),OA=6,OB=8
AB=10
A B'=AB=10,O B'=10-6=4,B'(-4,0)
(2)设 OM=m 则 B'M=BM=8-m ,m 2+42=(8-m)2,m=3,M(0,3)
设直线 AM 的解析式为 y=kx+b
23、解:(1)当 y=0 时, x+1=0,解得 x=﹣2,则 A (﹣2,0),
当 x=0 时,y=
(2)AB=
= x+1=1,则 B (0,1);
,当 AP=AB 时,P 点坐标为(﹣ ,0)或( ,0);
当 BP=BA 时,P 点坐标为(2,0);
当 PA=PB 时,作 AB 的垂直平分线交 x 轴于 P ,连结 PB ,如图 1,则 PA=PB ,
设 P (t ,0),则 OA=t+2,OB=t+2,
在 △R t OBP 中,12+t 2=(t+2)2,解得 t=﹣ ,此时 P 点坐标为(﹣ ,0);
(3)如图 2,设 D (x ,
x+1),当 x >0 时,∵S △ABC △+S
BCD
△=S
ACD
,
∴ •2•2+ •2•x=4,解得 x=2,此时 D 点坐标为(2,2);
当 x <0 时,∵△S BCD ﹣S △ABC △=S
ACD
,∴ •2•(﹣x )﹣ •2•2=4,
解得 x=﹣6,此时 D 点坐标为(﹣6,﹣2),
综上所述,D 点坐标为(2,2)或(﹣6,﹣2).
故答案为(﹣2,0),(0,1);(2,2)或(﹣6,﹣2).
24、(1)2;(0,3);
(2)直线交y轴于点P(0,b),
由题意,得b>0,t≥0,b=1+t当t=3时,b=4∴
(3)当直线
当直线
过M(3,2)时
过N(4,4)时
解得b=5,5=1+t
1
,∴t
1
=4
解得b=8,8=1+t
2
,∴t
2
=7
∴t
2
-t
1
=7-4=3秒.答略
(4)(4,0)或(-4,0)。