51单片机压力传感器

合集下载

基于51单片机的数字气压计系统设计

基于51单片机的数字气压计系统设计

2019.051概述气压计是利用压敏材料将气压变化转化成易于检测和传输的电信号,然后对电信号进行滤波、放大、通过后续电路处理,并将数据显示出来的一种测量工具。

其在观察压力变化、压力大小测量,以及对其他物理量测量等方面都有十分重要的作用。

传统的水银气压计占用空间较大、气压数据不能直接显示、灵敏度低、易损坏,测量结果受环境影响较大。

随着mems 技术和智能芯片技术的发展,气压计正朝着智能化、无线化、微型化的方向发展。

数字压力传感器的应用领域涵盖了医疗卫生、航空航天、户外作业、工矿企业等,并在人们的日常生活中也很常见,如手机、平板、手环等电子设备大部分都安装了数字气压计,给人们的生活带来了极大的便利。

2系统硬件2.1硬件总体框图本设计是基于MPX4115的数字气压计,硬件处理电路为大气压传感器模拟信号的采集、转换、处理和显示,并根据相应的软件需求设计控制程序。

气压计的硬件主要由4部分组成,分别为单片机最小系统、气压信号采集电路、ADC 转换电路和数码管显示电路。

2.2气压数据采集电路数据采集器件采用压力传感器MPX4115,其类型是硅压力传感器。

这种传感器在制造时引入了先进的微电机技术,薄膜镀金属。

工作温度范围是0℃-85℃,在此温度范围内误差不超过1.5%。

2.3气压信号转换电路ADC0832是常用的A/D 转换芯片,8位分辨率,转换时间短,是模拟量转换电路中常用的器件之一。

在本系统中,单片机所需的数字量信号是由气压传感器采集,然后交给ADC0832进行模数转换,并将转换结果传给单片机进行处理。

常用电路中,单片机与ADC0832之间采用4线制进行连接,ADC0832端的4个引脚依次采用DO、DI、CS、CLK。

但在通信过程中,单片机与ADC0832之间是单工通信,DO 引脚与DI 引脚并不需要同时使用,所以本系统中将DO 引脚和DI 引脚并联在一起进行分时使用。

CS 引脚输入高电平时,芯片禁用,ADC0832不能工作,此时其他引脚CLK、DO、DI 电平状态可任意设置。

远程压力监测系统设计与实现电气工程及其自动化学士学位论文

远程压力监测系统设计与实现电气工程及其自动化学士学位论文

xx学院HUIZHOU UNIVERSITY毕业论文(设计)中文题目:远程压力监测系统设计与实现英文题目:The Design And Implementation of The Remote Pressure Detection System姓名学号专业班级10电气工程及其自动化1班指导教师讲师提交日期2014年5 月11 日远程压力监测系统的设计与实现作者: 专业班级: 10电气(1)班指导老师: 职称: 讲师(惠州学院电子科学系, 广东, 惠州, 516007)摘要远程通信技术是现代实现智能化的重要技术之一,在未来具有广阔的应用和发展的空间。

而压力测量技术在军事,工业,生活中随处可见,占据着不可忽视的地位。

因此,将压力测量技术与远程通信技术相结合成的远程压力监测系统具有重要的研究价值。

本文介绍了基于STC89C51单片机的一种远程压力监测系统。

采用压力传感器以及远程通信模块,利用Labview这一个基于图形化的编程语言的虚拟仪器集成开发环境,将在下位机测量的压力值远程的在上位机实时的显示出来,从而实现远程压力的监测。

其具有系统简单,灵活性高,实时性好等特点。

关键词:压力监测远程 Labview 单片机The design and imjplementation of the remote pressure detectionsystemAuthor: Chen Pingyang Professional classes: 10 Electrical Engineering and Automation classes (1)Instructor: Xie Heng Title: Lecture(Huizhou University, Department of Electronic Science, Guangdong, Huizhou, 516007)AbstractRemote communication technology is an important technology of the modern intelligent, has broad application and development space in the future. The pressure measurement technology in military, industrial, life everywhere, occupy the position can not be ignored. Therefore, the pressure measurement technology and telecommunications technology combined into a remote pressure monitoring system has important research value.This paper describes a remote pressure monitoring system based on SCM STC90C51. Using pressure sensors and remote communications module, this one based on the use of Labview graphical programming language integrated development environment of virtual instrument, will be displayed in real time on a remote host computer the next bit machine pressure values measured, enabling remote monitoring of pressure. It has a system of simple, high flexibility, good real-time characteristics.Keywords: Pressure Monitoring Remote Labview SCM目录第一章绪论 (1)1.1 本课题的提出及意义 (1)1.2 研究现状 (1)1.2.1 数据采集系统 (1)1.2.2 虚拟仪器 (2)1.2.3 无线通信 (3)1.3 本课题的研究内容 (3)第二章监测系统的硬件设计 (5)2.1 硬件设计的整体方案 (5)2.2 器件的选择 (5)2.2.1 处理器 (5)2.2.2 传感器 (6)2.2.3 AD转换芯片 (7)2.2.4 无线模块 (9)第三章测量系统的软件设计 (11)3.1 软件的整体设计方案 (11)3.2下位机编程 (11)3.2.1下位机软件开发环境——Keil C51简介 (11)3.2.2 编程思路和整体流程 (12)3.3 上位机编程 (14)3.3.1 上位机软件开发环境——LabVIEW简介 (14)3.3.2编程思路和流程 (14)第四章远程压力监测系统调试 (18)4.1 调试过程 (18)4.2 调试结果 (20)结论 (21)致谢 (22)参考文献 (23)附录1:单片机程序 (24)附录2:Labview程序 (27)第一章绪论1.1 本课题的提出及意义远程通信技术是现代实现智能化的重要技术之一,在未来具有广阔的应用和发展空间。

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计随着科技的不断发展,智能化和自动化已经成为我们生活中不可或缺的一部分。

在众多领域中,智能电子秤的设计与应用也越来越受到。

本文将介绍一种基于单片机的智能电子秤设计方案,该设计具有高精度、低成本、易于实现等优点,具有一定的实用价值。

一、概述智能电子秤是一种能够自动测量物体重量的设备,广泛应用于超市、菜市场等场所。

与传统的机械秤相比,智能电子秤具有测量精度高、使用方便、易于维护等优点。

而基于单片机的智能电子秤设计,更是将智能化和自动化技术融入到电子秤中,提高了设备的性能和可靠性。

二、设计原理基于单片机的智能电子秤设计主要是利用单片机的控制和数据处理能力,实现对物体重量的准确测量。

其核心部件为压力传感器和单片机。

压力传感器负责采集物体的重量信号,并将信号传输给单片机;单片机则对信号进行处理、分析和存储,同时控制显示屏显示物体的重量。

三、硬件设计1、单片机选择单片机是智能电子秤的核心部件,负责控制整个系统的运行。

本设计选用AT89C51单片机,该单片机具有低功耗、高性能、易于编程等优点,能够满足智能电子秤的设计要求。

2、压力传感器选择压力传感器是智能电子秤的重要组成部件,负责采集物体的重量信号。

本设计选用电阻应变式压力传感器,该传感器具有测量精度高、稳定性好、抗干扰能力强等优点。

3、显示模块选择显示模块负责将物体的重量信息呈现给用户。

本设计选用LED显示屏,该显示屏具有亮度高、视角广、寿命长等优点。

4、电源模块选择电源模块为整个系统提供稳定的电源,保证系统的正常运行。

本设计选用线性稳压电源,该电源具有输出电压稳定、纹波小、安全性高等优点。

四、软件设计软件设计是智能电子秤的关键部分之一,直接影响设备的性能和可靠性。

本设计的软件部分采用C语言编写,主要包括数据采集、数据处理、数据显示等模块。

具体流程如下:1、开机后,系统进行初始化操作;2、压力传感器采集物体的重量信号;3、单片机对采集到的信号进行处理和分析;4、单片机将处理后的数据存储到存储器中;5、单片机控制LED显示屏显示物体的重量信息;6、系统继续等待下一次测量。

单片机的智能压力传感器毕业设计(完整版)

单片机的智能压力传感器毕业设计(完整版)

单片机的智能压力传感器毕业设计(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)51单片机的智能压力传感器毕业设计毕业任务书一、题目智能压力传感器系统设计二、指导思想和目的要求1. 培养学生综合运用所学职业基础知识、职业专业知识和职业技能,提高解决实际问题的能力,从而达到巩固、深化所学的知识与技能;2. 培养学生建立正确的科学思想,培养学生认真负责、实事求是的科学态度和严谨求实作风;3. 培养学生调查研究,收集资料,熟悉有关技术文件,锻炼学生的科研工作能力和培养学生的团结合作攻关能力。

三、主要技术指标1. 培养学生综合运用所学职业基础知识、职业专业知识和职业技能,提高解决实际问题的能力,从而达到巩固、深化所学的知识与技能;2. 培养学生建立正确的科学思想,培养学生认真负责、实事求是的科学态度和严谨求实作风;3. 培养学生调查研究,收集资料,熟悉有关技术文件,锻炼学生的科研工作能力和培养学生的团结合作攻关能力。

三、主要技术指标本设计主要设计一个智能压力传感器的设计,要求如下:被测介质:气体、液体及蒸气量程: Pa~pa综合精度:±0.25%FS供电: 24V Dc(12~36VDC)介质温度:-20~150环境温度:-20~85过载能力: 150%FS响应时间:≤10mS 稳定性:≤±0.15%FS/年? 能实时显示目标压力值和保存参数,并能和上位机进行通信,并具有较强的抗干扰能力。

所需要完成的工作:1.系统地掌握控制器的开发设计过程,相关的电子技术和传感器技术等,进行设计任务和功能的描述;2.进行系统设计方案的论证和总体设计;3.从全局考虑完成硬件和软件资源分配和规划,分别进行系统的硬件设计和软件设计;4.进行硬件调试,软件调试和软硬件的联调;5. 查阅到15篇以上与题目相关的文献,按要求格式独立撰写不少于15000字的设计说明书及1.5万(或翻译成中文后至少在3000字以上)字符以上的英文翻译。

智能压力检测系统的设计

智能压力检测系统的设计

题目:智能压力检测系统的设计基于单片机的智能压力检测系统的设计摘要压力是工业生产过程中的重要参数之一。

压力的检测或控制是保证生产和设备安全运行必不可少的条件。

实现智能化压力检测系统对工业过程的控制具有非常重要的意义。

本设计主要通过单片机及专用芯片对传感器所测得的模拟信号进行处理,使其完成智能化功能。

介绍了智能压力传感器外围电路的硬件设计,并根据硬件进行了软件编程。

本次设计是基于AT89C51单片机的测量与显示。

是通过压力传感器将压力转换成电信号,再经过运算放大器进行信号放大,送至8位A/D转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。

而在显示的过程中通过键盘,向计算机系统输入各种数据和命令,让单片机系统处于预定的功能状态,显示需要的值。

本设计的最终结果是,将软件下载到硬件上调试出来了需要显示的数据,当输入的模拟信号发生变化的时候,通过A/D转换后,LED将显示不同的数值。

关键词:压力;AT89C51单片机;压力传感器;A/D转换器;LED显示;Design of pressure detecting system based on single-chipAbstractPressure is one of the important parameters in the process of industrial production. Pressure detection or control is an essential condition to ensure production and the equipment to safely operating, which is of great significance. The single-chip is infiltrating into all fields of our lives, so it is very difficult to find the area in which there is no traces of single-chip microcomputer. In this graduation design, primarily through by using single-chip and dedicated chip, handling of analog signal measured by the sensor to complete intelligent function. This design illustrates external hardware circuit design of intelligent pressure sensor, and conduct software development to the hardware.The design is based on measurement and display of AT89C51 single-chip. Thisis the pressure sensors will convert the pressure into electrical signals. After using operational amplifier, the signal is amplified, and transferred to the 8-bit A/D converter. Then the analog signal is converted into digital signals which can be identified by single-chip and then converted by single-chip into the information which can be displayed on LED monitor, and finally display output. In the course of show, through the keyboard to input all kinds of data and commands into the computer, the single-chip will locate in a predetermined function step to display required values.The end result of this design is that by downloading software to the hardware, it will get the data which is required to display by debugging. When the input analog signals change, the LED monitor will display different values through the A/D converting.Key words:pressure; AT89C51 single-chip; pressure sensor; A/D converter; LED monitor;目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 研究背景 (1)1.2 基于单片机的智能压力检测的原理 (2)1.2.1 压力的概念 (2)1.2.2 测量压力的意义 (3)第二章基于单片机的智能压力检测系统的硬件设计 (4)2.1 压力传感器 (4)2.1.1 压力传感器的选择 (4)2.1.2金属电阻应变片的工作原理 (4)2.1.3电阻应变片的基本结构 (6)2.1.4 电阻应变片的测量电路 (6)2.2 信号放大电路 (8)2.1.2 放大器的选择 (8)2.2.4 三运放大电路 (9)2.3 A/D转换器 (10)2.3.1 A/D转换模块器件选择 (10)2.3.2 A/D转换器的简介 (10)2.3.3 配置位说明 (11)2.3.4 ADC0832工作时序图 (12)2.3.3 单片机对ADC0832的控制原理 (13)2.4 单片机 (14)2.4.1 AT89C51单片机简介 (14)2.4.2主要特性.... (15)2.4.3 管脚说明 (15)2.4.5 芯片擦除 (17)2.5 单片机于键盘的接口技术 (18)2.5.1 键盘功能及结构概述 (18)2.5.2 键盘抖动及去除 (18)2.5.3 单片机与键盘的连接 (19)2.6 LED显示接口 (21)2.6.1发光二极管及LED显示器 (21)2.6.2七段数码显示器 (22)2.6.3 LED数码管静态显示接口 (24)第三章软件设计 (26)3.1 A/D转换器的软件设计 (26)3.1.1 ADC0832芯片接口程序的编写 (26)3.2 单片机与键盘的接口程序设计 (27)3.4 LED数码管显示程序设计 (28)第四章总结 (30)参考文献 (31)附录A (32)附录B (33)致谢 (38)第一章绪论1.1 研究背景近年来,随着微型计算机的发展,他的应用在人们的工作和日常生活中越来越普遍。

单片机与传感器的数据采集与处理技术

单片机与传感器的数据采集与处理技术

单片机与传感器的数据采集与处理技术在现代智能设备和物联网系统中,单片机与传感器的数据采集与处理技术起着至关重要的作用。

单片机作为一个微型计算机,能够通过各种传感器采集到的数据进行处理和分析,从而实现对环境、设备等方面的实时监测和控制。

本文将详细介绍单片机与传感器的数据采集与处理技术,帮助读者更好地了解这一领域的知识和应用。

一、传感器的作用及分类传感器是将感知到的信息转化为电信号或其他形式的信号的设备,常用于测量各种物理量,如温度、湿度、压力等。

根据其工作原理和测量对象的不同,传感器可分为光学传感器、温度传感器、压力传感器等多种类型。

在数据采集系统中,传感器起着关键作用,能够实时捕获环境中的各种信息,并将其转化为数字信号供单片机进行处理。

二、单片机的基本结构和功能单片机是一种集成了微处理器、存储器和各种输入输出接口的微型计算机,常用于嵌入式系统中。

单片机具有高度集成、体积小、功耗低等特点,能够实现对外部设备和传感器的数据采集和控制。

在数据处理方面,单片机通过其内部的运算单元和存储单元,对采集到的数据进行处理和分析,实现各种功能的实现。

三、数据采集与处理流程数据采集与处理技术通常包括三个基本步骤:传感器信号采集、数据传输和单片机数据处理。

首先,传感器将感知到的信息转化为电信号,并通过模拟数字转换芯片(ADC)转化为数字信号;其次,将采集到的数据通过串口或其他接口传输给单片机;最后,单片机对接收到的数据进行处理和分析,根据预先设定的算法实现各种功能。

四、常用的传感器和单片机在实际应用中,常用的传感器包括温湿度传感器、光学传感器、压力传感器等;常用的单片机包括51系列单片机、STM32系列单片机等。

这些传感器和单片机具有不同的特点和功能,适用于不同的应用场景和要求。

例如,温湿度传感器可用于环境监测,光学传感器可用于图像识别,压力传感器可用于工业控制等。

五、数据采集与处理技术的应用数据采集与处理技术在各个领域均有广泛的应用,如工业自动化、智能家居、智能农业等。

单片机基于51单片机的温度传感器设计

单片机基于51单片机的温度传感器设计

未来展望
技术升级
智能化发展
应用拓展
安全性考虑
随着技术的进步,未来可以 采用更高精度的温度传感器 ,提高系统的监测和控制精 度。同时,可以采用更先进 的单片机,提高数据处理速 度和控制效果。
未来可以增加更多的人工智 能算法,如神经网络、模糊 控制等,以实现更智能的温 度调控。此外,可以通过增 加传感器种类和数量,实现 对环境因素的全面监测与调 控。
03
02
传感器接口
将DS18B20温度传感器与单片机相 连,实现温度信号的采集。
通讯接口
通过UART串口通讯,实现单片机与 上位机之间的数据传输。
04
软件设计
温度采集
通过DS18B20温度传感器采集 温度信号,并转换为数字信号 。
数据显示
将处理后的温度数据通过 LCD1602液晶显示屏实时显示 出来。
温度传感器选择
选用常用的DS18B20温度传感器, 具有测量精度高、抗干扰能力强等优 点。
显示模块
选用LCD1602液晶显示屏,用于实 时显示温度值。
通讯接口
采用UART串口通讯,实现单片机与 上位机之间的数据传输。
硬件设计
01
电源电路
为单片机和传感器提供稳定的电源 。
显示接口
将LCD1602液晶显示屏与单片机相 连,实现温度的实时显示。
它能够检测环境中的温度变化,并将 其转换为电信号或其他可测量的物理 量,以便进一步处理和控制。
温度传感器的工作原理
温度传感器通常由敏感元件和转换电路组成。敏感元件负责 感知温度变化,而转换电路则将温度变化转换为电信号。
常见的温度传感器工作原理有热电效应、热电阻、热敏电阻 等。
温度传感器的分类

压力传感器单片机课程设计

压力传感器单片机课程设计

压力传感器单片机课程设计第1 章前言电力压力器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。

其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。

由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。

而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。

磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。

早在1954年美国C.S.Smith首先确认了半导体压电效应,1955年C.Herring 指出:这种压电电阻效应是由于应力的作用,引起导体与价电子带能量状态的变化,以及载流子数量与迁移率变化所产生的一种现象。

日本从1970年开始研究开发,首先应用在血压计上,之后在过程控制领域及轿车发动机控制部分都获得了广泛的应用。

最近几年在家用电器、装配机器人等应用领域普遍采用电子压力传感器作为压力控制、压力监控和判断真空吸附的效果。

图1 电子压力器模型1第2章电子压力器的工作原理 2.1 电子压力器的工作原理电子压力器由压力传感器,A/D转换器,数码显示等组成。

当用手按压传感器,腔体内外就会产生压差,这些压差就会转化成电压,电压转化成数字量后,根据压力变化1Kpa,输出电压变化为120mV的关系,依照采样的输出电压,采用线性插值法可计算出实际压力值。

然后将实际压力值送数码管显示。

图2.1.1为PS压力传感器的截面结构图,图2.1.2为其传感器部分的结构。

如图所示,在压力传感器半导体硅片上有一层扩散电阻体,如果对这一电阻体施加压力,由于压电电阻效应,其电阻值将发生变化。

受到应变的部分,即膜片由于容易感压而变薄,为了减缓来自传感器底座应力的影响,将压力传感器片安装在玻璃基座上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、设计题目与设计任务 (1)1.设计题目:单片机压力测控系统设计 (1)2.设计任务 (1)二、前言 (1)三、主体设计 (1)1、系统设计 (1)2、系统框图 (1)3、设计思路 (2)4、压力传感器和A/D转换芯片选择 (2)(1)压力传感器1210—030 G—3 S (2)(2)AD模数转换芯片ADC0809 (3)四、参考文献 (4)五、结束语 (4)六、完整程序 (5)七、仿真结果 (7)八、程序流程图 (9)一、设计题目与设计任务1.设计题目:单片机压力测控系统设计2.设计任务1、本设计是微机控制的制氧机压力测控系统。

单片机系统通过压力传感器和检测比较器测得气缸内压力达到某一上限值(176 kPa)和下限值(64 kPa)时,单片机系统控制执行相应的动作(达到上限值时打开放气阀放气,达到下限值关闭放气阀进行充气)。

如此反复循环,不断将氧气提供给需氧者。

在此过程中若充气或放气10 s仍达不到设定值(176 kPa和64 kPa)则进行光报警。

2、写出压力测量过程,绘制压力控制系统结构图。

3、(1)系统硬件电路设计。

单片机采用89S52;选择适合上述测量范围的压力传感器,设计数据采集及信号调理电路,设计键盘显示电路及报警电路。

(2)编制压力测量程序。

二、前言本设计为基于AT89S52单片机的气缸压力测量与控制系统,压力传感器选择1210—030G—3S,能够在0~207kPa范围内有效测量气缸供氧系统的压力,并进行实时压力(LED)显示。

单片机控制部分实现当压力超出上限值176kPa时,放气阀打开进行放气,当压力低于下限值64kPa时,放气阀关闭,气缸充气;压力在正常范围(64~176kPa)时,压力改变不影响放气阀的状态。

报警功能实现当压力超出设定的压力范围(64~176kPa)10S时,发光二极管点亮进行报警。

关键词:AT89S52单片机、1210—030G—3S型压力传感器、LED显示、报警。

三、主体设计1、系统设计考虑到过程控制系统的一般组成及本次设计的任务要求,本设计主要由以下几部分组成:被控对象(气缸及附带的进气阀和放气阀)、压力传感器FT、A/D转换(ADC0808)、AT89S52单片机、LED显示、报警电路和放气阀驱动电路。

2、系统框图基于AT89S52的压力测控系统3、设计思路压力传感器(1210—030G—3S)测量气缸中的压力(0~207kPa)输出电流信号(75~150mA),经A/D模数转换(结果为00000000~11111111即0~255)后给单片机,单片机进行算法处理将传感器的输出信号和测量的压力对应起来并实时显示在LED 上,当所测压力大于176kPa时,放气阀打开进行放气,当所测压力小于64kPa时,放气阀关闭,进气阀给气缸充气。

此过程中若放气或充气10S任没达到正常的压力范围则进行1S报警。

当然A/D转换的启停、压力大小的判断、10S延时都由单片机来控制。

4、压力传感器和A/D转换芯片选择(1)压力传感器1210—030 G—3 S网上查找了很多压力传感器,其中较为典型常用的是上海名动公司生产的MD —PS系列和MD—GA高精度绝压传感器,但是由于二者都不适合本次课程设计的压力范围(0~200kPa),最终选择1210—030G—3S压力传感器,它的测压范围为30*6.895=207kPa,输出电流范围是75~150mA,性能参数如下:典型应用电路如下:设计仿真时由于PROTEUS中没有传感器,因此用一个范围为75~150分压电路代替传感器的输出电流,使的仿真得以进行。

(2)AD模数转换芯片ADC0809ADC0809是目前广泛使用的逐位逼近型8位单片A/D转换芯片,片内含8 路模拟开关,可允许8路模拟量输入。

主要由3部分组成:模拟输入选择部分、转换器部分、输出部分。

ADC0809芯片为28引脚为双列直插式封装,ADC0809主要信号引脚功能说明如下:IN7~IN0——八路模拟量输入通道。

ALE——地址锁存允许信号。

START——转换启动信号。

START=1转换启动。

A、B、C——地址线、通道端口选择线。

CLK——时钟信号。

ADC0809要求外接时钟频率为10kHz~1.2MHz。

通常使用频率为500KHz的时钟信号。

EOC——转换结束信号。

EOC=1,转换结束。

D7~D0——数据输出线。

OE——输出允许信号。

OE=1,输出转换得到的数据。

Vcc——+5V电源。

Vref——参考电源参考电压用来与输入的模拟信号进行比较,作为逐次逼近的基准。

其典型值为+5V(Vref(+)=+5V, Vref(-)=-5V)。

ADC0809与MCS-51单片机的连接主要涉及两个问题。

一是8路模拟信号通道的选择,二是A/D转换完成后转换数据的传送。

转换数据的传送有定时传送方式、查询方式、中断方式这三种方式。

A、B、C的值与被选择的通道之间的关系如下表1—1所示:表1—1 通道选择表实际画图时由于PROTEUS中没有ADC0809,因此用ADC0808代替。

ADC0808和ADC0809的使用接发相同,只是ADC0809的转换误差为1位,ADC0808为5位而已。

四、参考文献1. 《51单片机原理及应用—基于Keil C与Proteus》陈海宴北京航空航天大学出版社。

2. 《单片机原理与接口技术》第二版马淑华等北京邮电大学出版社。

3. 《微型计算机原理与接口技术》第二版冯博琴吴宁清华大学出版社。

五、结束语本次课程设计历时一周,除键盘电路外基本完成了所要求的设计任务。

设计过程中参考了陈海宴老师编著的《51单片机原理及应用—基于Keil C与Proteus》一书中数字电压表的设计。

本设计的难点在于:考虑到现场传感器的气体压力测量与传感器输出是实时进行的,因此ADC0808的模数转换必须时刻进行,至少两次转换之间的时间间隔不能太长。

但是如果一次转换完成后立即进行下一次转换,则对应的转换子程序就是一个死循环,这样的话就不能进行报警,因为无法取出10S之后的转换数据。

考虑到这个问题之后再转换之程序中做一个0.1S的延时,这样每次转换大约耗时0.1S,转换子程序进行多少次转换通过主程序来控制,这样调用转换子程序100次之后就可以得到10S以后的转换结果,将转换结果和压力上下限比较以后就可以决定是否进行报警了。

当然,这样做的局限是使得LED的显示不那么连续了。

因此,进一步想办法解决这个问题是我们以后应该继续做的。

设计过程中老师和同学给了我很多支持和帮助,这里一并致谢!六、完整程序#include<reg51.h>#define uint unsigned int#define uchar unsigned charuchar code table[]={0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xe0,0xf6,0xee,0x3e,0x9c,0x7a,0x9e,0x8e};//七段共阴数码管编码表sbit START=P3^0;sbit EOC=P3^1;sbit OE=P3^2;sbit ONOFF=P3^3; //控制放气门开或关sbit ALARM=P3^4; //报警显示void delay(uint m) //LED显示延时子程序{while(m--);}delay1(uint c) //循环间隔延时C毫秒子程序{uchar a,b;for( ;c>0;c--)for(b=142;b>0;b--)for(a=2;a>0;a--);}void fun1(uint i) //AD转换及数据处理子程序{uint P;extern uint PP; //定义全局变量PPSTART=1;START=0;while(i>0) //fun1只执行i次{if(i>0){OE=1; //转换结束输出使能P=P0; //AD转换结果赋给PP=P*1.0/255*207; //完成75~150mA到0~207kPa的转换OE=0; //停止输出P2=0xfe; //个位位选P1=table[P%10]; //个位段选delay(500); //个位显示延时约1msP2=0xfd; //十位位选P1=table[P/10%10]; //十位段选delay(500); //十位显示延时约1msP2=0xfb; //百位位选P1=table[P/100%10]; //百位段选delay(500); //百位显示延时约1msif(P>176)ONOFF=1; //打开放气阀if(P<64)ONOFF=0; //打开放气阀i=i-1;delay1(100); //每次转换后延时100ms(0.1s)START=1; //启动下一次转换START=0;}}}void main() //主程序{ONOFF=0; //初始时放气阀关闭START=0; //初始时不进行AD转换ALARM=0; //初始时不报警OE=0;while(1) //死循环{fun1(1); //调用一次转换子程序PP=P; //转换处理结果(压力值)给PPif(PP>176||PP<64) //判断压力是否超限{fun1(100); //压力超限则调用转换子程序100次,用时约0.1*100=10s PP=P;if(PP>176) //10s后压力任超出上限则进行报警{ALARM=1;delay1(1000); //报警显示延时1s}if(PP<64) //10s后压力任超出下限则进行报警{ALARM=1;delay1(1000); //报警显示延时1s}if(64<PP<176) //10s后压力正常则不进行报警{ALARM=0;delay1(1000);}}else if(64<PP<176)ALARM=0; //10s后压力正常则不报警}}七、仿真结果正常压力范围,放气阀关闭压力超出上限,放气阀打开压力超出上限10S后仍未恢复正常报警八、程序流程图NY开始 初始化 P<64||P>176 启动A/D 转换采集模拟信号转化成0-207KPa 压力扫描数据并进行 LED 动态显示。

相关文档
最新文档