上海高三数学模拟试题汇编
2023-2024学年上海市高考数学模拟试题(三模)含解析

2023-2024学年上海市高考数学模拟试题(三模)一、填空题1.已知集合{}{}1,1,1,3,5A xx B =≤=-∣,则A B = __________.【正确答案】{}1,1-【分析】化简A ,根据交集运算得解.【详解】因为{}{}1[1,1],1,1,3,5A xx B =≤=-=-∣,所以{}1,1A B ⋂=-,故答案为.{}1,1-2.复数12i 3iz -=+的模为__________.【正确答案】2【分析】由复数的四则运算以及模长公式计算即可.【详解】()()()()12i 3i 12i 17i ,3i 3i 3i 102z z ----===∴=++-.故23.不等式301x x +≥-的解集为__________.【正确答案】(](),31,∞∞--⋃+【分析】将分式不等式等价转化为二次不等式组,求解即得.【详解】原不等式等价于()()31010x x x ⎧+-≥⎨-≠⎩,解得3x ≤-或1x >,故答案为.(](),31,∞∞--⋃+4.已知幂函数()y f x =的图象过点1,82⎛⎫ ⎪⎝⎭,则()2f -=________【正确答案】18-【分析】设幂函数()f x x α=,将1,82⎛⎫ ⎪⎝⎭代入,求得3α=-,进而可得结果.【详解】设幂函数()f x x α=,因为幂函数()y f x =的图象过点1,82⎛⎫ ⎪⎝⎭,所以311822α-⎛⎫⎛⎫== ⎪ ⎝⎭⎝⎭,解得3α=-,所以()()()331,22,8f x x f --=-=-=-故答案为18-.本题主要考查幂函数的解析式,属于基础题.5.已知函数()2sin2f x x x =+,则函数()f x 的最小正周期是__________.【正确答案】π【分析】根据三角恒等变换化简函数解析式,进而可得函数的最小正周期.【详解】()2sin2sin22sin 23f x x x x x x π⎛⎫=+==+ ⎪⎝⎭,故22T ππ==,故π.6.方程42log 17x x +=的解为_________.【正确答案】4x =【分析】设函数()42log x f x x =+,()0,x ∈+∞,由函数的单调性,结合特殊值,即可求得方程42log 17x x +=的解.【详解】设函数()42log x f x x =+,()0,x ∈+∞,由于函数42,log x y y x ==在()0,x ∈+∞上均为增函数,又()4442log 416117f =+=+=,故方程42log 17x x +=的解为4x =.故答案为.4x =7.81(x的展开式中含x 项的系数为______.【正确答案】28【分析】化简二项式定理展开式通项()()38218C 1k k k T x -+=⋅-⋅,求出k 值,代入即可.【详解】设展开式中第1k +项含x 项,则(()()83821881C C 1k k k k k k k T x x --+⎛⎫=⋅⋅=⋅-⋅ ⎪⎝⎭,令3812k -=,解得6k =,代入得,()6678C 128T x x=⋅-⋅=故28.8.某单位为了解该单位党员开展学习党史知识活动情况,随机抽取了部分党员,对他们一周的党史学习时间进行了统计,统计数据如下表所示:党史学习时间(小时)7891011党员人数610987则该单位党员一周学习党史时间的第40百分位数是___.【正确答案】8.5/172【分析】根据百分位数的定义即可求出结果.【详解】党员人数一共有61098740++++=,4040%16⨯=,那么第40百分位数是第16和17个数的平均数,第16和17个数分别为8,9,所以第40百分位数是898.52+=,故8.59.若存在实数a,使得1x =是方程2()3x a x b +=+的解,但不是方程x a +则实数b 的取值范围是__________.【正确答案】()3,-+∞【分析】根据1x =是2()3x a x b +=+的解,不是x a +.【详解】由题意知,2(1)3a b +=+,且1a +≠()1a =-+,显然30b +≥,即3b ≥-,若3b =-,此时显然不满足题意,故()3,b ∞∈-+.故()3,-+∞10.随机变量()2N 105,19X,()2N 100,9Y ,若()()P X A P Y A ≤=≤,那么实数A 的值为__________.【正确答案】95.5【分析】由正态分布性质可得()105N 0,119X -,()100N 0,19Y -,由此可利用对称性构造方程求得结果.【详解】()2N 105,19X ,()2N 100,9Y ,()105N 0,119X -∴,()100N 0,19Y -,()()P X A P Y A ≤=≤ ,105100199A A --∴=,解得.95.5A =故答案为.95.511.已知曲线1C :2y x =+与曲线2C :22()4x a y -+=恰有两个公共点,则实数a 的取值范围为__________.【正确答案】(){}4,02-⋃【分析】根据2y x =+与22()4x a y -+=的位置关系分析可得.【详解】如图:2y x =+与x 轴焦点为()2,0A -,当点A 在圆2C 外,则2y x =+表示的两条射线与圆相切与2C 相切时恰有两个公共点,联立22()4x a y -+=得()222420x a x a +-+=,由()2242420a a ∆=--⨯⨯=,得2a =-±因2y x =+,所以2x ≥-,故2a =-+当点A 在圆2C 上,如图,此时2y x =+与22()4x a y -+=有3个或1个交点不符合题意,当点A 在圆2C 内,如图,此时2y x =+与22()4x a y -+=有2个交点符合题意,此时,22(2)04a --+<,得40a -<<综上a 的取值范围为.(){}4,0222-⋃-故答案为.(){}4,0222-⋃12.函数()y f x =是最小正周期为4的偶函数,且在[]2,0x ∈-时,()21f x x =+,若存在12,,,n x x x ⋯满足120n x x x ≤<<< ,且()()()()()()122312023n n f x f x f x f x f x f x --+-++-=,则n n x +最小值为__________.【正确答案】1518.5【分析】根据题意,先求出函数一个周期的值域,要使n n x +取得最小值,尽可能多让()1,2,3,,i x i m = 取得最高点,且()()01,23f f ==-,再利用函数的周期性求解.【详解】解: 函数()y f x =是最小正周期为4的偶函数,且在[]2,0x ∈-时,()21,f x x =+∴函数的值域为[]3,1-,对任意(),,1,2,3,,i j x x i j m = ,都有()()min ()()4i j max f x f x f x f x -≤-=,要使n n x +取得最小值,尽可能多让()1,2,3,,i x i m = 取得最高点,且()()01,23f f ==-,()()()()()()12122310,2023n nn x x x f x f x f x f x f x f x -≤<<<-+-++-= ,n ∴的最小值估计值为20231506.754+=,故n 的最小值取507,相应的n x 最小值为1011.5,则n n x +的最小值为1518.5.故1518.5二、单选题13.设R λ∈,则“1λ=”是“直线()311x y λ+-=与直线()12x y λλ+-=平行”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】A【分析】根据直线一般式中平行满足的关系即可求解.【详解】若直线()311x y λ+-=与直线()12x y λλ+-=平行,则()()3110λλλ---=,解得1λ=或3λ=-,经检验1λ=或3λ=-时两直线平行.故“1λ=”能得到“直线()311x y λ+-=与直线()12x y λλ+-=平行”,但是“直线()311x y λ+-=与直线()12x y λλ+-=平行”不能得到“1λ=”故选:A14.函数y ()y ()f x f x ==,的导函数的图象如图所示,则函数y ()f x =的图象可能是A .B .C .D .【正确答案】D【详解】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.15.已知函数()21f x ax x a =+++为偶函数,则不等式()0f x >的解集为()A .∅B .()()1,00,1-UC .()1,1-D .()(),11,-∞-⋃+∞【正确答案】B 【分析】先求得参数a 的值,再去求不等式()0f x >的解集【详解】因为()f x 为偶函数,所以()()11f f -=,即2a a a a++=+解之得1a =-,经检验符合题意.则()2f x x x=-+由20x x -+>,可得()()1,00,1x ∈-U 故()20f x x x =-+>的解集为()()1,00,1-U ,故选:B.16.已知*n ∈N ,集合πsin N,0k A k k n n ⎧⎫⎛⎫=∈≤≤⎨⎬ ⎪⎝⎭⎩⎭∣,若集合A 恰有8个子集,则n 的可能值有几个()A .1B .2C .3D .4【正确答案】B【分析】根据子集个数可得集合元素个数,再由正弦函数性质即可确定n 的取值.【详解】由题意易知,π2ππsin0,sin ,sin ,,sin n n n n ,均是集合A 中的元素,又集合A 恰有8个子集,故集合A 只有三个元素,有πsin0sin sin πn n==,则结合诱导公式易知,n 可取的值是4或5.故选:B三、解答题17.已知{}n a 为等差数列,{}n b 为等比数列,111a b ==,5435()a a a =-,5434()b b b =-.(1)求{}n a 和{}n b 的通项公式;(2)记{}n a 的前n 项和为n S ,求证:22*1()n n n S S S n N ++∈<;【正确答案】(1)n a n =,12n n b -=;(2)证明见解析【分析】(1)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;(2)利用(1)的结论首先求得数列{}n a 的前n 项和,然后利用作差法证明即可.【详解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,11a =,5435()a a a =-得,145=+a d d ,故1d =,于是1(1)n a n n =+-=;由11b =,5434()b b b =-得,4324()q q q =-,又等比数列公比0q ≠,得到2244(2)0q q q -+=-=,故2q =,于是12n n b -=.(2)由(1)得,(1)2n n n S +=,故2(1)(2)(3)4n n n n n n S S ++++=,2221(1)(2)4n n n S +++=,作差可得[]221(1)(2)(1)(2)(3)(1)(2)042n n n n n n n n n n n S S S ++++++=+-++--=<,即221n n n S S S ++<得证.18.如图,PD ⊥平面ABCD ,四边形ABCD 为直角梯形,,90,222AB CD ADC PD CD AD AB ∠===== ∥.(1)求异面直线AB 与PC 所成角的大小;(2)求二面角B PC D --的余弦值.【正确答案】(1)π433【分析】(1)根据AB DC 可得异面直线所成的角,利用直角三角形求解即可;(2)以点D 为坐标原点,建立坐标系,再由向量法得出二面角B PC D --的余弦值.【详解】(1)由AB CD ,则异面直线AB 与PC 所成角即为PCD ∠,由题意知,PD ⊥平面ABCD ,又CD ⊂平面ABCD ,故PD CD ⊥,所以tan 1PD PCD CD ∠==,即π4PCD ∠=,即异面直线AB 与PC 所成角为4π.(2)因为PD ⊥平面ABCD ,AD ⊂平面ABCD ,所以PD AD ⊥,又PD DC ⊥,AD DC ⊥,所以以D 为原点,,,DA DC DP 分别为,,x y z 轴建立空间直角坐标系:则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2D A B C P ,则()()()()0,2,2,1,1,0,0,0,2,1,0,2PC BC DP PA =-=-==- ,设平面PBC 的法向量为(),,n x y z =r ,则2200n PC y z n BC x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,取1x =,得1,1y z ==,得()1,1,1n = ,取平面PDC 的法向量为()1,0,0DA = ,设二面角B PC D --的大小为θ,由图形知,θ为锐角,所以cos n DA n DAθ⋅== ,所以二面角B PC D --19.流行性感冒简称流感,是流感病毒引起的急性呼吸道感染,也是一种传染性强、传播速度快的疾病.了解引起流感的某些细菌、病毒的生存条件、繁殖习性等对于预防流感的传播有极其重要的意义,某科研团队在培养基中放入一定是某种细菌进行研究.经过2分钟菌落的覆盖面积为248mm ,经过3分钟覆盖面积为264mm ,后期其蔓延速度越来越快;菌落的覆盖面积y (单位:2mm )与经过时间x (单位:min )的关系现有三个函数模型:①x y ka =0k >1a >,②log b y x =(1b >),③y q =(0p >)可供选择.(参考数据:lg20.301≈,lg30.477≈)(1)选出你认为符合实际的函数模型,说明理由,并求出该模型的解析式;(2)在理想状态下,至少经过多少分钟培养基中菌落的覆盖面积能超过2300mm ?(结果保留到整数)【正确答案】(1)答案见解析;(2)至少经过9min 培养基中菌落的覆盖面积能超过2300mm .【分析】(1)根据题意,分析三个函数模型的增长速度快慢,选择x y ka =,并求出解析式;(2)根据题意,4273003x⎛⎫⨯> ⎪⎝⎭,求出x 的取值范围,进而得出结果.【详解】(1)因为x y ka =0k >1a >的增长速度越来越快,log b y x =(1b >)和y q =(0p >)的增长速度越来越慢,所以应选函数模型x y ka =0k >1a >.由题意得234864ka ka ⎧=⎨=⎩,解得4327a k ⎧=⎪⎨⎪=⎩,所以该函数模型为4273xy ⎛⎫=⨯ ⎪⎝⎭(0x ≥);(2)由题意得4273003x ⎛⎫⨯> ⎪⎝⎭,即410039x ⎛⎫> ⎪⎝⎭,所以43100log 9x >,又341001g100221g3220.4779log 8.3684921g2lg320.3010.4771g 3--⨯==≈≈-⨯-.所以至少经过9min 培养基中菌落的覆盖面积能超过2300mm .20.在平面直角坐标系xOy 中,若椭圆22:143x y E +=的左、右焦点分别为1F ,2F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,直线1AF 与椭圆E 相交于另一点B.(1)求12AF F ∆的周长;(2)在x 轴上任取一点P ,直线AP 与直线4x =相交于点Q ,求OP QP ⋅ 的最小值;(3)设点M 在椭圆E 上,记OAB 与MAB △的面积分别是1S ,2S ,若213S S =,求点M 的坐标.【正确答案】(1)6;(2)4-;(3)()2,0或212,77⎛⎫-- ⎪⎝⎭.【分析】(1)由椭圆方程的性质可求12AF F ∆的周长;(2)设(),0P t ,求出直线AP 方程,解出Q 点坐标,计算OP QP ⋅ ,利用二次函数求出最下值;(3)由题意可知:M 到直线AB 距离2d 是O 到直线AB 距离1d 的3倍,求出2d 的值,则点M 的坐标为与直线AB 平行的直线和椭圆的交点,求出直线方程与椭圆联立可解出点M .【详解】解:(1)由椭圆方程可知.2,1a c ==所以12AF F △的周长为1212226AF AF F F a c =++=+;(2)由椭圆方程得31,2A ⎛⎫ ⎪⎝⎭,设(),0P t ,则直线AP 方程为()321y x t t=--,又4x =,所以直线AP 与4x =的交点为344,21t Q t -⎛⎫⋅ ⎪-⎝⎭,()22,0344,214(2)44t t t OP QP t t t t -⎛⎫--⋅= ⎪-⎝⎭⋅=⋅-=--≥- ,当2t =时,()min 4OP QP ⋅=- (3)若213S S =,设O 到直线AB 距离1d ,M 到直线AB 距离2d ,则2111322AB d AB d ⨯⨯=⨯⨯⨯,即213d d =,31,2A ⎛⎫ ⎪⎝⎭,1(1,0)F -,可得直线AB 方程为()314y x =+,所以135d =,295d =.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为340x y m -+=,与直线AB 的距离为95,求得6m =-或12,当6m =-时,直线l 为3460x y --=,联立方程:223460143x y x y --=⎧⎪⎨+=⎪⎩,可得27120y y +=,解得()2,0M 或212,77⎛⎫-- ⎪⎝⎭,当12m =时,直线l 为34120x y -+=,联立方程:2234120143x y x y -+=⎧⎪⎨+=⎪⎩可得:2724270y y ++=,∆<0此时方程无解.综上所述,M 点坐标为()2,0或212,77⎛⎫-- ⎪⎝⎭.21.记()(),f x g x ''分别为函数()(),f x g x 的导函数.若存在,满足()()00f x g x =且()()00f x g x ''=,则称0x 为函数()f x 与()g x 的一个“兰亭点”.(1)证明:函数()f x x =与()222g x x x =+-不存在“兰亭点”;(2)若函数()21f x ax =-与()ln g x x =存在“兰亭点”,求实数a 的值;(3)已知函数()()2e ,x bf x x ag x x =-+=.对存在实数0a >,使函数()f x 与()g x 在区间()0,∞+内存在“兰亭点”,求实数b 的取值范围.【正确答案】(1)证明见解析(2)e2(3)()327,00,e ∞⎛⎫-⋃+ ⎪⎝⎭【分析】(1)根据题中“兰亭点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“兰亭点”的定义列两个方程,解方程组可得a 的值;(3)通过构造函数以及结合“兰亭点”的定义列两个方程,再由方程组有解即可求得结果.【详解】(1)函数()()2,22f x x g x x x ==+-,则()()1,22f x g x x '='=+.由()()f x g x =且()()f x g x ⅱ=,得222122x x x x ⎧=+-⎨=+⎩,此方程组无解,因此,()f x 与()g x 不存在“兰亭点”.(2)函数()()21,ln f x ax g x x =-=,则()()12,f x ax g x x''==.设0x 为()f x 与()g x 的“兰亭点”,由()0f x =()0g x 且()0f x '=()0g x ',得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎨=⎩,(*)得01ln 2x =-,即120e x -=,则2121e 22e a -==⎛⎫ ⎪⎝⎭.当e 2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“兰亭点”.因此,a 的值为e 2.(3)()()()()2e 12,0x b x f x x g x x x -=-='≠',函数()y f x =与()y g x =在区间()0,∞+内存在“兰亭点”,记为x t =,所以()22e e 12tt b t a t b t t t ⎧-+=⎪⎪⎨-⎪-=⎪⎩,解得()3233121e t t t a t t b t ⎧-=⎪-⎪⎨⎪=⎪-⎩,由于0a >,解得01t <<或3t >,而()321e t t b t =-,所以()()2222330(1)1et t t t b t t '-+=>≠-,所以函数()321e t t b t =-在(0,1),(3,)∞+上为增函数,因为0=t 时0b =,1t →时,b →+∞,3t =时,327e b =-,t →+∞时,0b →,所以01t <<时,()0,b ∈+∞;3t >时,327,0e b ⎛⎫∈- ⎪⎝⎭.综上,实数b 的取值范围是()327,00,e ∞⎛⎫-⋃+ ⎪⎝⎭.方法点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.。
上海高三高中数学高考模拟带答案解析

上海高三高中数学高考模拟班级:___________ 姓名:___________ 分数:___________一、填空题1.方程的解是 .2.已知集合则 .3.若复数是虚数单位),且为纯虚数,则实数= .4.直线(为参数)对应的普通方程是_____.5.若,且,则的值为 .6.某空间几何体的三视图如图所示,则该几何体的侧面积是_____.7.若函数在区间上有零点,则实数的取值范围是 .8.在约束条件下,目标函数的最大值为 .9.某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_____.10.已知椭圆,其左、右焦点分别为.若此椭圆上存在点,使到直线的距离是与的等差中项,则的最大值为 .11.已知定点,动点在圆上,点关于直线的对称点为,向量是坐标原点,则的取值范围是 .12.已知递增数列共有项,且各项均不为零,,如果从中任取两项,当时,仍是数列中的项,则数列的各项和_____.二、选择题1.设分别是两条异面直线的方向向量,向量的夹角的取值范围为所成的角的取值范围为,则“”是“”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件2.将函数图象上的点向左平移个单位,得到点,若位于函数的图象上,则A.的最小值为B.的最小值为C.的最小值为D.的最小值为3.某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则A.①反映了建议(Ⅱ),③反映了建议(Ⅰ)B.①反映了建议(Ⅰ),③反映了建议(Ⅱ)C.②反映了建议(Ⅰ),④反映了建议(Ⅱ)D.④反映了建议(Ⅰ),②反映了建议(Ⅱ)4.设函数的定义域是,对于以下四个命题:(1)若是奇函数,则也是奇函数;(2)若是周期函数,则也是周期函数;(3)若是单调递减函数,则也是单调递减函数;(4)若函数存在反函数,且函数有零点,则函数也有零点.其中正确的命题共有A.1个B.2个C.3个D.4个三、解答题1.直三棱柱中,底面为等腰直角三角形,,,,是侧棱上一点,设.(1) 若,求的值;(2) 若,求直线与平面所成的角.2.设函数,函数的图像与函数的图像关于轴对称.(1)若,求的值;(2)若存在,使不等式成立,求实数的取值范围.3.如图所示,是某海湾旅游区的一角,其中,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸和上分别修建观光长廊和AC,其中是宽长廊,造价是元/米,是窄长廊,造价是元/米,两段长廊的总造价为120万元,同时在线段上靠近点的三等分点处建一个观光平台,并建水上直线通道(平台大小忽略不计),水上通道的造价是元/米.(1)若规划在三角形区域内开发水上游乐项目,要求的面积最大,那么和的长度分别为多少米?(2) 在(1)的条件下,建直线通道还需要多少钱?4.设直线与抛物线相交于不同两点、,与圆相切于点,且为线段中点.(1)若是正三角形(是坐标原点),求此三角形的边长;(2) 若,求直线的方程;(3)试对进行讨论,请你写出符合条件的直线的条数(直接写出结论).5.已知是上的奇函数,,且对任意都成立.(1)求、的值;(2)设,求数列的递推公式和通项公式;(3)记,求的值.上海高三高中数学高考模拟答案及解析一、填空题1.方程的解是 .【答案】【解析】由,得,解得.即方程的解是,故答案为.2.已知集合则 .【答案】【解析】因为;而,所以.故答案为.3.若复数是虚数单位),且为纯虚数,则实数= .【答案】【解析】因为=,其为纯虚数,所以,解得=1.故答案为.4.直线(为参数)对应的普通方程是_____.【答案】【解析】两式相加消去可得:,故答案为.5.若,且,则的值为 .【答案】【解析】展开式的通项公式,令,可得;令,可得;而,即,解得;即展开式的通项公式,令,可得.故答案为.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于中档题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.6.某空间几何体的三视图如图所示,则该几何体的侧面积是_____.【答案】【解析】观察三视图可知:该几何体为底面半径为2,高为6的圆锥,则母线长为,故侧面积为,故答案为.7.若函数在区间上有零点,则实数的取值范围是 .【答案】【解析】因为函数在区间上有零点,则=,解得.即实数的取值范围是.故答案为.8.在约束条件下,目标函数的最大值为 .【答案】【解析】画出可行域,如图四边形所示;,,,.平移目标函数,当过点时,目标函数取得最大值.故答案为.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.9.某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_____.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.10.已知椭圆,其左、右焦点分别为.若此椭圆上存在点,使到直线的距离是与的等差中项,则的最大值为 .【答案】【解析】由题意得:该椭圆为焦点在轴的椭圆,且;而到直线的距离是与的等差中项,所以到准线的距离,即;而,即,解得;而,所以,解得.即的最大值为.故答案为11.已知定点,动点在圆上,点关于直线的对称点为,向量是坐标原点,则的取值范围是 .【答案】【解析】令,而点关于直线的对称点为,所以,;而,所以;而,所以;所以,=;而动点在圆上,所以,所以,即,所以的取值范围是.故答案为.12.已知递增数列共有项,且各项均不为零,,如果从中任取两项,当时,仍是数列中的项,则数列的各项和_____.【答案】【解析】∵当时,仍是数列中的项,而数列是递增数列,∴,所以必有,,利用累加法可得:,故,得,故答案为.点睛:本题主要考查了数列的求和,解题的关键是单调性的利用以及累加法的运用,有一定难度;根据题中条件从中任取两项,当时,仍是数列中的项,结合递增数列必有,,利用累加法可得结果.二、选择题1.设分别是两条异面直线的方向向量,向量的夹角的取值范围为所成的角的取值范围为,则“”是“”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C【解析】由题意得A=[0,π],B=(0,π/2],则 ;所以“α∈A”是“α∈B”的必要不充分条件.故选C.【方法点睛】本题主要考查异面直线的夹角、向量的夹角及充分条件与必要条件,属于中档题.判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.2.将函数图象上的点向左平移个单位,得到点,若位于函数的图象上,则A.的最小值为B.的最小值为C.的最小值为D.的最小值为【答案】A【解析】由题意得,排除B,D;平移后,而位于函数的图象上,所以,而,则的最小值为,排除C.故选A.3.某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变车票价格,减少支出费用;建议(Ⅱ)不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则A.①反映了建议(Ⅱ),③反映了建议(Ⅰ)B.①反映了建议(Ⅰ),③反映了建议(Ⅱ)C.②反映了建议(Ⅰ),④反映了建议(Ⅱ)D.④反映了建议(Ⅰ),②反映了建议(Ⅱ)【答案】B【解析】∵建议(Ⅰ)是不改变车票价格,减少支出费用;也就是增大,车票价格不变,即平行于原图象,∴①反映了建议(Ⅰ);∵建议(Ⅱ)是不改变支出费用,提高车票价格,也就是图形增大倾斜度,提高价格,∴③反映了建议(Ⅱ),故选B.点睛:此题主要考查了函数图象的性质,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程是做题的关键;观察函数图象可知,函数的横坐标表示乘客量,纵坐标表示收支差额,根据题意得;(I)的平行于原图象,(II)与原图象纵截距相等,但斜率变大,进而得到答案.4.设函数的定义域是,对于以下四个命题:(1)若是奇函数,则也是奇函数;(2)若是周期函数,则也是周期函数;(3)若是单调递减函数,则也是单调递减函数;(4)若函数存在反函数,且函数有零点,则函数也有零点.其中正确的命题共有A.1个B.2个C.3个D.4个【答案】C【解析】(1)若是奇函数,则,∴也是奇函数,正确;(2) 若是周期函数,则,也是周期函数,正确;(3)若是单调递减函数,根据“同增异减”的原则,可得也是单调递增函数,故(3)不正确;(4) 若函数存在反函数,且函数有零点,即的图象与的图象有交点,而的图象与的图象关于直线对称,故三者交于一点,即函数也有零点,即(4)正确;故选C.三、解答题1.直三棱柱中,底面为等腰直角三角形,,,,是侧棱上一点,设.(1) 若,求的值;(2) 若,求直线与平面所成的角.【答案】(1)(2)【解析】(1)以为坐标原点,以射线、、分别为、、轴建立空间直角坐标系,求出,,利用,求出的值;(2)求出直线的方向向量与平面的法向量,求出向量的夹角的余弦值可得结果.试题解析:(1)以为坐标原点,以射线、、分别为、、轴建立空间直角坐标系,如图所示,则,,,,由得,即解得.(2) 解法一:此时设平面的一个法向量为由得所以设直线与平面所成的角为则所以直线与平面所成的角为解法二:联结,则,,平面平面所以是直线与平面所成的角;在中,所以所以所以直线与平面所成的角为点睛:本题主要考查了空间向量在立体几何中的应用之利用空间向量的数量积证明垂直关系,利用空间向量求直线与平面所成的角角;两直线垂直等价于直线的方向向量互相垂直即数量积为0,直线与平面所成的角与直线的方向向量与平面的法向量之间所成的角相加为或相减为,且满足.2.设函数,函数的图像与函数的图像关于轴对称.(1)若,求的值;(2)若存在,使不等式成立,求实数的取值范围.【答案】(1)(2)【解析】(1)依题意知,经过整理解出即可求得的值;(2)由得,移项可得,结合基本不等式,故而可求得实数的取值范围.试题解析:(1)由得所以(舍)或,所以(2)由得而,当且仅当时取等号所以,所以.3.如图所示,是某海湾旅游区的一角,其中,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸和上分别修建观光长廊和AC,其中是宽长廊,造价是元/米,是窄长廊,造价是元/米,两段长廊的总造价为120万元,同时在线段上靠近点的三等分点处建一个观光平台,并建水上直线通道(平台大小忽略不计),水上通道的造价是元/米.(1)若规划在三角形区域内开发水上游乐项目,要求的面积最大,那么和的长度分别为多少米?(2) 在(1)的条件下,建直线通道还需要多少钱?【答案】(1)和AC的长度分别为750米和1500米(2)万元【解析】(1)设长为米,长为米,依题意得,即,表示面积,利用基本不等式可得结论;(2)利用向量方法,将表示为,根据向量的数量积与模长的关系可得结果.试题解析:(1)设长为米,长为米,依题意得,即,=当且仅当,即时等号成立,所以当的面积最大时,和AC的长度分别为750米和1500米(2)在(1)的条件下,因为.由得,元所以,建水上通道还需要万元.解法二:在中,在中,在中,=元所以,建水上通道还需要万元.解法三:以A为原点,以AB为轴建立平面直角坐标系,则,,即,设由,求得,所以所以,元所以,建水上通道还需要万元.4.设直线与抛物线相交于不同两点、,与圆相切于点,且为线段中点.(1)若是正三角形(是坐标原点),求此三角形的边长;(2) 若,求直线的方程;(3)试对进行讨论,请你写出符合条件的直线的条数(直接写出结论).【答案】(1)(2)(3)见解析【解析】(1)若是正三角形(是坐标原点),求出的坐标,即可求出此三角形的边长;(2)若,设直线,分类讨论,即可求出直线的方程;(3)根据直线与圆的位置关系,可得结论.试题解析:(1)设的边长为,则的坐标为所以所以此三角形的边长为.(2)设直线当时,符合题意当时,,,,,,,舍去综上所述,直线的方程为:(3)时,共2条;时,共4条;时,共1条.5.已知是上的奇函数,,且对任意都成立.(1)求、的值;(2)设,求数列的递推公式和通项公式;(3)记,求的值.【答案】(1),;(2);(3).【解析】(1)在恒等式中,令、化简即可得结果;(2)取,可得,即,化简可得递推公式,累乘法可得通项公式;(3)代入,化简,利用,可得结果.试题解析:(1)对等式,令,所以令,所以(2)取,可得,即,所以而所以数列的递推公式为故所以数列的通项公式为.(3)由(2)代入得++++=则。
上海高三高中数学高考模拟带答案解析

上海高三高中数学高考模拟班级:___________ 姓名:___________ 分数:___________一、填空题1.若集合,则.2.若,,且为纯虚数,则实数的值等于.3..4.函数的定义域为.5.在中,,,,则的值等于.6.设直线和圆相交于点、,则弦的垂直平分线方程是.7.如果的展开式中各项系数之和为128,则含项的系数等于.(用数字作答)8.在中,已知,,三角形面积为12,则.9.在等比数列中,,前项和为,若数列也是等比数列,则等于.10.一个不透明的袋中装有5个白球、4个红球(9个球除颜色外其余完全相同),经充分混合后,从袋中随机摸出3球,则摸出的3球中至少有一个是白球的概率等于.(用分数作答)11.设、满足约束条件目标函数的最大值等于.12.已知双曲线的焦点为、,点在双曲线上且,则点到轴的距离等于.13.已知函数,若方程在区间内有3个不等实根,则实数的取值范围是.14.若数列满足:存在正整数,对于任意正整数都有成立,则称数列为周期数列,周期为.已知数列满足,有以下结论:①,则;②若,则可以取3个不同的值;③若,则是周期为3的数列;④存在且,数列是周期数列.其中正确结论的序号是(写出所有正确命题的序号).二、选择题1.下列函数中,在其定义域内既是奇函数又是减函数的是()A.B.C.D.2.设是等差数列的前项和,若,则()A.B.C.D.3.在下列四个几何体中,它们的三视图(主视图、左视图、俯视图)中有且仅有两个相同,而一个不同的几何体是()A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(4)4.设函数的图像关于点对称,且存在反函数,若,则()A.0B.4C.D.三、解答题1.(本题满分12分)本题共有2小题,第(1)小题满分6分,第(2)小题满分6分.已知函数.(1)化简并求函数的最小正周期;(2)求使函数取得最大值的集合.2.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分.如图,在长方体中,,,点在棱上移动.(1)当为的中点时,求四面体的体积;(2)证明:.3.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元,设为隔热层建造费用与20年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小,并求最小值.4.(本题满分16分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知椭圆的中心在坐标原点,焦点在轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点与轴不垂直的直线交椭圆于两点.(1)求椭圆的方程;(2)当直线的斜率为1时,求的面积;(3)在线段上是否存在点,使得以为邻边的平行四边形是菱形?若存在,求出的取值范围;若不存在,请说明理由.5.本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.已知数列是首项为3,公比为的无穷等比数列,且数列各项的和等于9.对给定的,设是首项为,公差为的等差数列.(1)求数列的通项;(2)求数列的前10项之和;(3)设为数列的第项,,求,并求正整数,使得存在且不等于零.上海高三高中数学高考模拟答案及解析一、填空题1.若集合,则.【答案】【解析】根据题的条件可知,,根据集合的交集的定义可知,.【考点】集合的运算.2.若,,且为纯虚数,则实数的值等于.【答案】【解析】,结合着复数是纯虚数,可知,解得.【考点】复数的运算,纯虚数的定义.3..【答案】【解析】.【考点】极限的求法.4.函数的定义域为.【答案】【解析】由题意可知,解得.【考点】函数的定义域.5.在中,,,,则的值等于.【答案】【解析】根据题意可知,,由,所以,解得.【考点】向量的减法,向量的数量积,向量垂直的条件.6.设直线和圆相交于点、,则弦的垂直平分线方程是.【答案】【解析】由得,所以圆的圆心为,根据圆的相关性质,可知所求的直线的斜率为,根据直线的点斜式方程化简可得结果为.【考点】圆的性质,直线的方程,两直线垂直关系的应用.7.如果的展开式中各项系数之和为128,则含项的系数等于.(用数字作答)【答案】【解析】根据题意,令可知展开式的各项系数和为,可知,所以所给的式子的展开式的通项为,令,解得,故该项的系数为.【考点】二项式定理.8.在中,已知,,三角形面积为12,则.【答案】【解析】根据三角形的面积公式可知,解得,所以.【考点】三角形的面积,余弦的倍角公式.9.在等比数列中,,前项和为,若数列也是等比数列,则等于.【答案】【解析】设数列的公比为,则有,解得,所以.【考点】等比数列的定义,数列的求和问题.10.一个不透明的袋中装有5个白球、4个红球(9个球除颜色外其余完全相同),经充分混合后,从袋中随机摸出3球,则摸出的3球中至少有一个是白球的概率等于.(用分数作答)【答案】【解析】根据题意可知总共有种不同的摸法,而摸出的球全是红球有种摸法,所以则摸出的3球中至少有一个是白球的概率为.【考点】随机事件的概率.11.设、满足约束条件目标函数的最大值等于.【答案】【解析】根据题中所给的约束条件画出相应的可行域,经过分析,可知该题中所求的最优解为,所以目标函数的最大值为.【考点】线性规划.12.已知双曲线的焦点为、,点在双曲线上且,则点到轴的距离等于.【答案】【解析】根据题意可知的面积,,所以有所求的距离为.【考点】双曲线的焦点三角形的面积公式,等级转化.13.已知函数,若方程在区间内有3个不等实根,则实数的取值范围是.【答案】【解析】结合题中所给的函数解析式,作出函数与的图像,利用两个图形的交点个数问题确定的取值范围,结合图形可以确定的取值范围是.【考点】函数的零点与方程根的关系,方程根的个数的应用,函数与方程的思想,数形结合解决问题.14.若数列满足:存在正整数,对于任意正整数都有成立,则称数列为周期数列,周期为.已知数列满足,有以下结论:①,则;②若,则可以取3个不同的值;③若,则是周期为3的数列;④存在且,数列是周期数列.其中正确结论的序号是(写出所有正确命题的序号).【答案】①②③【解析】根据题中所给的数列的递推公式,可以求得,从而可以确定①是正确的,当时,可以确定或,所以可以是,解得,可以为,得,可以是,解得,可以为,解得,不合条件,故一共有个不同的值,故②是正确的,当时,有,,所以是周期为3的数列,故③是正确的,当时,,此时数列不是周期数列,故④是错误的,故答案为①②③.【考点】数列的递推公式,数列的性质.二、选择题1.下列函数中,在其定义域内既是奇函数又是减函数的是()A.B.C.D.【答案】A【解析】B项在定义域上不是单调的,D项不具备奇偶性,C项是增函数,只有A项满足条件,故选A.【考点】函数的奇偶性,函数的单调性.2.设是等差数列的前项和,若,则()A.B.C.D.【答案】A【解析】根据等差数列的性质,结合着题的条件,设则,从而有,结合着等差数列的性质,可知成以为首项,以为公差的等差数列,故可以得出,,所以有,故选A.【考点】等差数列的性质.3.在下列四个几何体中,它们的三视图(主视图、左视图、俯视图)中有且仅有两个相同,而一个不同的几何体是()A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(4)【答案】B【解析】试题解析:因为正方体的三视图都是一样的,故(1)不对,所以选B.令解:正方体的三视图都是一样的,故(1)不满足条件,圆柱的正视图和侧视图是相同的长方形,而俯视图是圆,所以(2)满足条件,对于圆锥,正视图和侧视图都是相同的等腰三角形,俯视图是圆,故(3)满足条件,正四棱柱的正视图和侧视图是相同的长方形,而俯视图是正方形,故(4)满足条件,故选B.【考点】几何体的三视图.4.设函数的图像关于点对称,且存在反函数,若,则()A.0B.4C.D.【答案】C【解析】根据题意可知点在函数的图像上,结合着图像的对称性,可知点在函数的图像上,所以有,所以有,故选C.【考点】函数的图像的对称性,反函数.三、解答题1.(本题满分12分)本题共有2小题,第(1)小题满分6分,第(2)小题满分6分.已知函数.(1)化简并求函数的最小正周期;(2)求使函数取得最大值的集合.【答案】(1)(2)【解析】第一问应用余弦的倍角公式和辅助角公式,将函数的解析式化简,应用函数解析式中的参数与函数的性质的关系,从而确定出函数的最小正周期,第二问注意正弦值在角的终边落在什么地方时,注意将角当做一个整体,求出角的集合,注意整体思维的运用.试题解析:(1)所以函数的最小正周期(2)当,即时,函数取得最大值,所以使函数取得最大值的集合为【考点】余弦的倍角公式,辅助角公式,函数的周期,函数取最大值时自变量的取值情况.2.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分.如图,在长方体中,,,点在棱上移动.(1)当为的中点时,求四面体的体积;(2)证明:.【答案】(1)(2)略【解析】第一问根据三棱锥的特点,将三棱锥的顶点和底面调换,将四面体转换为四面体的体积,从而求得结果;对于第二问,注意用好空间的垂直关系的转化即可得结果.试题解析:(1),因为,所以;(2)正方形中,,因为,所以,所以,所以.【考点】三棱锥的体积的求法,空间的垂直关系的转换.3.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元,设为隔热层建造费用与20年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小,并求最小值.【答案】(1),(2)隔热层修建为厘米时,总费用最小,且最小值为万元【解析】解决该问题的关键是要明确变量之间的关系,注意利用题中所给的解析式,找出所满足的等量关系,从而求得的值,下一步找出各项费用做和即可,注意自变量的取值范围,对于第二问,相当于求函数的最值,将式子进行构造,应用基本不等式求解即可,注意基本不等式中等号成立的条件.试题解析:(1)依题意得:所以;(2),当且仅当,即时等号成立,而,所以隔热层修建为5厘米时,总费用最小,且最小值为70万元.【考点】函数的应用题,基本不等式求最值.4.(本题满分16分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知椭圆的中心在坐标原点,焦点在轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点与轴不垂直的直线交椭圆于两点.(1)求椭圆的方程;(2)当直线的斜率为1时,求的面积;(3)在线段上是否存在点,使得以为邻边的平行四边形是菱形?若存在,求出的取值范围;若不存在,请说明理由.【答案】(1)(2)(3)存在【解析】第一问应用题中所给的条件,设出相应的椭圆的方程,根据其短轴长,可以确定的值,根据焦点和短轴的端点为一个正方形的顶点,从而确定出,进一步求得的值,从而确定出椭圆的方程,第二问根据直线的斜率和过右焦点,将直线的方程写出来,与椭圆方程联立,应用点到直线的距离求得三角形的高,应用弦长公式求得三角形的底,应用面积公式求得结果,第三问关于是否存在类问题,都是假设存在,根据菱形的条件,从而求得结果,再转化为函数的值域问题求解,从而确定出的取值范围.试题解析:(1)设椭圆方程为,根据题意得,所以,所以椭圆方程为;(2)根据题意得直线方程为,解方程组得坐标为,计算,点到直线的距离为,所以,;(3)假设在线段上存在点,使得以为邻边的平行四边形是菱形.因为直线与轴不垂直,所以设直线的方程为.坐标为,由得,,,计算得:,其中,由于以为邻边的平行四边形是菱形,所以,计算得,即,,所以.【考点】椭圆的方程,直线与椭圆相交问题,是否存在类问题.5.本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.已知数列是首项为3,公比为的无穷等比数列,且数列各项的和等于9.对给定的,设是首项为,公差为的等差数列.(1)求数列的通项;(2)求数列的前10项之和;(3)设为数列的第项,,求,并求正整数,使得存在且不等于零.【答案】(1)(2)(3)【解析】第一问根据等比数列的各项和的公式,从而得到关于数列的首项和公比的等量关系式,从而求得其同项公式,第二问根据题中的条件,确定好等差数列的首项和公差,从而求得结果,第三问先确定好,从而求得,进一步求得,根据极限的求法,从而确定出相应的正整数的值.试题解析:(1)根据题意有,解得,,所以;(2),数列的前10项之和等于;(3),所以,所以,计算得,当时,;时,=0,所.【考点】等比数列的各项和,等差数列的求和公式,极限.。
2024年上海市高考高三数学模拟试卷试题及答案详解

2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。
2024年上海市高考数学一模考试题分类(三角与三角函数 )汇编(附答案)

1一、三角定义、常用三角公式1.(2024 高三一模闵行 2)若sin 3α=,则()sin πα-=______.2.(2024高三一模青浦3)已知α满足cos m α=,则πsin 2α⎛⎫+=⎪⎝⎭.(结果用含有m 的式子表示).3.(2024高三一模杨浦3)若3sin 5α=,则cos 2α=______.4.(2024高三一模嘉定4)已知tan 2α=,则tan 2πα⎛⎫+= ⎪⎝⎭______.5.(2024高三一模金山5)已知角α、β的终边关于原点O 对称,则()cos αβ-=______.6.(2024高三一模松江5)已知3sin ,0,52πθθ⎛⎫=∈ ⎪⎝⎭,则tan 4πθ⎛⎫- ⎪⎝⎭的值为______.7.(2024高三一模虹口6)已知1cos 3x =-,且x 为第三象限的角,则tan 2x =______.8.(2024高三一模静安14)设α是第一象限的角,则2α所在的象限为()A.第一象限B.第三象限C.第一象限或第三象限D.第二象限或第四象限9.(2024高三一模长宁15)设点P 是以原点为圆心的单位圆上的动点,它从初始位置()01,0P 出发,沿单位圆按逆时针方向转动角02παα⎛⎫<< ⎪⎝⎭后达点1P ,然后继续沿单位圆按逆时针方向转动角4π到2P .若点2P 的横坐标为35-,则点1P 的纵坐标为()A.210B.25 C.325D.7210二、解三角形1.(2024 高三一模黄浦 8)在 ∆ABC 中,三个内角 A , B ,C 的对边长分别为a ,b ,c ,若5a 2 −5b 2 +6bc −5c 2 =0,则sin 2A 的值为______.2.(2024 高三一模松江 9)在 ∆ABC 中,设角 A , B ,C 所对边的边长分别为a ,b ,c ,若a =3,c =5, B =2A ,则边长b =______.2024年上海市高考数学一模考试题分类(三角与三角函数 )汇编3.(2024高三一模普陀14)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =20c b C -+=,则该三角形外接圆的半径为()A.1B.C.2D.4.(2024高三一模虹口17)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若()sin sin sin ,sin m A B C A =+- ,(),n c b c a =+- ,且m //n .(1)求角B 的大小;(2)若△ABC 为锐角三角形,求sin sin y A C =+的取值范围.5.(2024高三一模奉贤17)在ABC ∆中,设角A 、B 及C 所对边的边长分别为a 、b 及c .cos sin A a B=+(1)求角B 的大小;(2)当a =b =c 和ABC ∆的面积S .6.(2024高三一模嘉定17)已知三角形ABC ,1CA CB ⋅=- ,三角形的面积12S =,(1)求角C 的值;(2)若3sin cos 4A A =,2a =,求c .7.(2024高三一模宝山18)在ABC ∆中,角C B A 、、的对边分别为c b a 、、.(1)若2sin a B =,求角A 的大小;(2)若BC 边上的高等于2a ,求cbb c +的最大值.8.(2024高三一模崇明18)在ABC ∆中,5a =,6b =.(1)若4cos 5B =-,求A 和ABC ∆外接圆半径R 的值;(2)若ABC ∆的面积4S =,求c 的值.9.(2024高三一模闵行18)在ABC △中,角A B C 、、所对边的边长分别为a b c 、、,且2cos a c B c -=.(1)若1cos 3B =,3c =,求b 的值;(2)若ABC △为锐角三角形,求sin C 的取值范围.10.(2024高三一模青浦18)在△ABC 中,角,,A B C 所对的边分别为a ,b ,c ,且满足2220a c b ac -++=.(1)求角B 的大小;(2)若23b =,求△ABC 的周长的最大值.三、三角函数及其性质1.(2024 高三一模嘉定 3)函数y =sin πx 的最小正周期为______.2.(2024高三一模普陀6)若函数tan 3y x =在区间,6m π⎛⎫⎪⎝⎭上是严格增函数,则实数m 的取值范围为______.3.(2024高三一模闵行7)若将函数()()sin 20y x ϕϕπ=+<<的图像向右平移3π个单位,得到的图像所对应的函数为奇函数,则ϕ=______.4.(2024高三一模虹口8)已知函数()()cos 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如右图所示,则()f x =______.(第8题图)5.(2024高三一模青浦8)若函数cos()y x ϕ=+是奇函数,则该函数的所有零点是.6.(2024高三一模奉贤9)设函数()sin 0y x ωω=>在区间()0,2π上恰有三个极值点,则ω的取值范围为______.7.(2024高三一模金山9)已知()()sin 0y x ωω=>在区间[]0,π上是严格增函数,且其图像关于()4,0π对称,则ω的值为______.8.(2024高三一模黄浦10)若ϕ是一个三角形的内角,且函数()3sin 2y x ϕ=+在区间,46ππ⎡⎤-⎢⎥⎣⎦上是单调函数,则ϕ的取值范围是______.9.(2024高三一模杨浦10)函数()()cos f x x ωϕ=+,()0,2ϕπ∈,在x ∈R 上是单调增函数,且函数关于原点对称,则满足条件的数对(),ωϕ=______.10.(2024高三一模普陀10)设函数()sin 2y x ϕ=+02πϕ⎛<<⎫⎪⎝⎭的图像与直线y t =相交的连续的三个公共点从左到右依次记为A ,B ,C ,若2BC AB =,则正实数t 的值为______.11.(2024高三一模浦东新区10)如图,已知函数()sin 0,0,02y A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的图像与y 轴的交点为()0,1,并已知其在y 轴右侧的第一个最高点和第一个最低点的坐标分别为()0,2x 和()02,2x π+-.记()y f x =,则3f π⎛⎫= ⎪⎝⎭______.12.(2024高三一模长宁11)若函数()sin cos x a x f x =+在27,36ππ⎛⎫⎪⎝⎭上是严格单调函数,则实数a 的取值范围为______.13.(2024高三一模静安17)记)(cos sin 32cos sin )(22R ∈++-=x x x x x x f λ,其中λ为实常数.(1)求函数)(x f y =的最小正周期;(2)若函数)(x f y =的图像经过点⎪⎭⎫ ⎝⎛0,2π,求该函数在区间⎥⎦⎤⎢⎣⎡π32,0上的最大值和最小值.四、三角应用题1.(2024 高三一模奉贤 10)某林场为了及时发现火情,设立了两个观测点A 和B . 某日两个观测点的林场人员都观测到C 处出现火情. 在 A 处观测到火情发生在北偏西40方向,而在B 观测到火情在北偏西60方向. 已知B 在A 的正东方向10km 处(如图所示),则BC AC -=______km.(精确到0.1km )2.(2024高三一模徐汇10)某建筑物内一个水平直角型过道如图所示,两过道的宽度均为3米,有一个水平截面为矩形的设备需要水平通过直角型过道.若该设备水平截面矩形的宽BC 为1米,则该设备能水平通过直角型过道的长AB 不超过______米.3.(2024高三一模长宁19)汽车转弯时遵循阿克曼转向几何原理,即转向时所有车轮中垂线交于一点,该点称为转向中心.如图1,某汽车四轮中心分别为A、B、C、D,向左转向,左前轮转向角为α,右前轮转向角为β,转向中心为O.设该汽车左右轮距AB为w米,前后轴距AD为l米.(1)试用w、l和α表示tanβ;(2)如图2,有一直角弯道,M为内直角顶点,EF为上路边,路宽均为3.5米,汽车行驶其中,左轮A、D与路边FS相距2米.试依据如下假设,对问题*做出判断,并说明理由.假设:①转向过程中,左前轮转向角α的值始终为30︒;②设转向中心O到路边EF的距离为d,若OB d<且OM ODw=,<,则汽车可以通过,否则不能通过;③ 1.570l=.2.680问题*:可否选择恰当转向位置,使得汽车通过这一弯道?图1图24.(2024高三一模杨浦19)某数学建模小组研究挡雨棚(图1),将它抽象为柱体(图2),底面ABC 与111A B C 全等且所在平面平行,ABC △与111A B C △各边表示挡雨棚支架,支架1AA 、1BB 、1CC 垂直于平面ABC .雨滴下落方向与外墙(所在平面)所成角为π6(即π6AOB ∠=),挡雨棚有效遮挡的区域为矩形11AA O O (O 、1O 分别在CA 、11C A 延长线上).(1)挡雨板(曲面11BB C C )的面积可以视为曲线段BC 与线段1BB 长的乘积.已知1.5OA =米,0.3AC =米,12AA =米,小组成员对曲线段BC 有两种假设,分别为:①其为直线段且π3ACB ∠=;②其为以O 为圆心的圆弧.请分别计算这两种假设下挡雨板的面积(精确到0.1平方米);(2)小组拟自制ABC △部分的支架用于测试(图3),其中0.6AC =米,π2ABC ∠=,CAB θ∠=,其中ππ62θ<<,求有效遮挡区域高OA 的最大值.图15.(2024高三一模浦东新区19)某街道规划建一座口袋公园.如图所示,公园由扇形AOC 区域和三角形COD 区域组成.其中A O D 、、三点共线,扇形半径OA 为30米.规划口袋公园建成后,扇形AOC 区域将作为花草展示区,三角形COD 区域作为亲水平台区,两个区域的所有边界修建休闲步道.(1)若π3AOC ∠=,2OD OA =,求休闲步道总长(精确到米);(2)若π6ODC ∠=,在前期民意调查时发现,绝大部分街道居民对亲水平台区更感兴趣.请你根据民意调查情况,从该区域面积最大或周长最长的视角出发,选择其中一个方案,设计三角形COD 的形状.6.(2024高三一模黄浦19)某公园的一个角形区域AOB 如图所示,其中23AOB π∠=.现拟用长度为100米的隔离档板(折线DCE )与部分围墙(折线DOE )围成一个花卉育苗区ODCE ,要求满足OD OC OE ==.(1)设333DOC πππαα⎛⎫∠=+-<< ⎪⎝⎭,试用α表示OD ;(2)为使花卉育苗区的面积最大,应如何设计?请说明理由.7.(2024高三一模金山19)网络购物行业日益发达,各销售平台通常会配备送货上门服务.小金正在配送客户购买的电冰箱,并获得了客户所在小区门户以及建筑转角处的平面设计示意图.图1图2第19题图(1)为避免冰箱内部制冷液逆流,要求运送过程中发生倾斜时,外包装的底面与地面的倾斜角α不能超过4π,且底面至少有两个顶点与地面接触.外包装看作长方体,如图1所示,记长方体的纵截面为矩形ABCD ,0.8m AD =, 2.4m AB =,而客户家门高度为2.3米,其他过道高度足够.若以倾斜角4πα=的方式进客户家门,小金能否将冰箱运送入客户家中?计算并说明理由.(2)由于客户选择以旧换新服务,小金需要将客户长方体形状的旧冰箱进行回收.为了省力,小金选择将冰箱水平推运(冰箱背面水平放置于带滚轮的平板车上,平板车长宽均小于冰箱背面).推运过程中遇到一处直角过道,如图2所示,过道宽为1.8米.记此冰箱水平截面为矩形EFGH , 1.2m EH =.设PHG β∠=,当冰箱被卡住时(即点H 、G 分别在射线PR 、PQ 上,点O 在线段EF 上),尝试用β表示冰箱高度EF 的长,并求出EF 的最小值,最后请帮助小金得出结论:按此种方式推运的旧冰箱,其高度的最大值是多少?(结果精确到0.1m )8.(2024高三一模徐汇19)2023年杭州亚运会首次启用机器狗搬运赛场上的运动装备.如图所示,在某项运动赛事扇形场地OAB 中,2AOB π∠=,500OA =米,点Q 是弧AB 的中点,P 为线段OQ 上一点(不与点O ,Q 重合).为方便机器狗运输装备,现需在场地中铺设三条轨道PO ,PA ,PB .记APQ θ∠=,三条轨道的总长度为y 米.(1)将y 表示成θ的函数,并写出θ的取值范围;(2)当三条轨道的总长度最小时,求轨道PO 的长.参考答案1一、三角定义、常用三角公式1. (2024 高三一模闵行 2)若sin 3α=,则()sin πα-=______.【答案】13【解析】诱导公式,()1sin sin 3παα-==.2.(2024高三一模青浦3)已知α满足cos m α=,则πsin 2α⎛⎫+=⎪⎝⎭.(结果用含有m 的式子表示).【答案】m【解析】由诱导公式πsin 2α⎛⎫+= ⎪⎝⎭cos α,所以答案为m .3.(2024高三一模杨浦3)若3sin 5α=,则cos 2α=______.【答案】725【解析】27cos 212sin 25αα=-=.4.(2024高三一模嘉定4)已知tan 2α=,则tan 2πα⎛⎫+= ⎪⎝⎭______.【答案】12-【解析】11tan cot 2tan 2πααα⎛⎫+=-=-=- ⎪⎝⎭.5.(2024高三一模金山5)已知角α、β的终边关于原点O 对称,则()cos αβ-=______.【答案】1-【解析】角α、β的终边关于原点O 对称,所以()21,k k αβπ-=+∈Z ,所以()cos 1αβ-=-.6.(2024高三一模松江5)已知3sin ,0,52πθθ⎛⎫=∈ ⎪⎝⎭,则tan 4πθ⎛⎫- ⎪⎝⎭的值为______.【答案】17-【解析】343sin ,0,,cos ,tan 5254πθθθθ⎛⎫=∈∴== ⎪⎝⎭,3tan tan1144tan 3471tan tan 144πθπθπθ--⎛⎫∴-===- ⎪⎝⎭++.7.(2024高三一模虹口6)已知1cos 3x =-,且x 为第三象限的角,则tan 2x =______.【答案】427-【解析】1cos 3x =-,且x 为第三象限的角,则sin 3x =-,tan x ∴=,()222tan 22242tan 21tan 71x x x ⨯∴===---.8.(2024高三一模静安14)设α是第一象限的角,则2α所在的象限为()A.第一象限B.第三象限C.第一象限或第三象限D.第二象限或第四象限【答案】C【解析】由题意,222k k ππαπ<<+,k ∈Z ,则24k k απππ<<+,k ∈Z ,当k 为奇数时,2α在第三象限,当k 为偶数时,2α在第一象限,故选C.8.(2024高三一模长宁15)设点P 是以原点为圆心的单位圆上的动点,它从初始位置()01,0P 出发,沿单位圆按逆时针方向转动角02παα⎛⎫<< ⎪⎝⎭后达点1P ,然后继续沿单位圆按逆时针方向转动角4π到2P .若点2P 的横坐标为35-,则点1P 的纵坐标为()A.10B.5C.5D.10【答案】D【解析】由题意可知3cos 45πα⎛⎫+=- ⎪⎝⎭,因为3444πππα<+<,所以4sin 45πα⎛⎫+=⎪⎝⎭24372sin sin sin cos cos sin 44444425510ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎫=+-=+-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦故选D.二、解三角形1.(2024 高三一模黄浦 8)在 ∆ABC 中,三个内角 A , B ,C 的对边长分别为a ,b ,c ,若5a 2 −5b 2 +6bc −5c 2 =0,则sin 2A 的值为______.【答案】2425【解析】222222655650,5bca b bc c b c a -+-=∴+-=,222635cos 225bcb c a A bc bc +-∴===,4sin 5A ∴=,4324sin 22sin cos 25525A A A ∴==⨯⨯=.2.(2024高三一模松江9)在ABC ∆中,设角,,A B C 所对边的边长分别为,,a b c ,若3,5,2a c B A ===,则边长b =______.【答案】【解析】由正弦定理sin sin sin 22sin cos a b b b A B A A A ===得cos 2bA a=①,由余弦定理可得222cos 2b c a A bc+-=②,则2222225322625b bc a b b b a bc b +-+-=⇒=⇒=⨯.3.(2024高三一模普陀14)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c,若a =20c b C -+=,则该三角形外接圆的半径为()A.1B.C.2D.【答案】A【解析】20c b C -+=,因为a =22cos 0c b a C -+=,由正弦定理可得sin 2sin 2sin cos 0C B A C -+=,即()sin 2sin 2sin cos 0C A C A C -++=,化简可得1cos 2A =,所以sin 2A =,由正弦定理可得2sin aR A=(R 为外接圆半径),解得1R =.故选A.4.(2024高三一模虹口17)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若()sin sin sin ,sin m A B C A =+- ,(),n c b c a =+- ,且m //n.(1)求角B 的大小;(2)若△ABC 为锐角三角形,求sin sin y A C =+的取值范围.【答案】(1)3B π=;(2)32,⎛ ⎝【解析】(1)因为m //n,所以()()sin sin sin sin A B C b c a c A +-⋅+-=⋅,由正弦定理,可得()()a b c b c a ac +-⋅+-=,即222ac a c b =+-.于是,由余弦定理得2221cos 22a c b B ac+-==,又()0,B π∈,所以3B π=.(2)由(1)可知2,3A C π+=所以2sin sin sin sin()3y A C A A π=+=+-3sin cos )226A A A π=+=+……11分由△ABC 为锐角△,得20,0,232A A πππ<<<-<且所以,62A ππ<<从而362.3A πππ<+<所以sin sin )6y A C A π=+=+的取值范围为32,.⎛ ⎝5.(2024高三一模奉贤17)在ABC ∆中,设角A 、B 及C 所对边的边长分别为a 、b 及c .cos sin A a B=+(1)求角B 的大小;(2)当a =b =时,求边长c 和ABC ∆的面积S .【答案】(1)3π=B ;(2)3+【解析】(1)由正弦定理得B A A B C sin sin cos sin 3sin 3⋅+⋅=由于()B A C +-=π,得()BA AB B A sin sin cos sin 3sin 3⋅+⋅=+展开得B A A B B A B A sin sin cos sin 3sin cos 3cos sin 3⋅+⋅=⋅+⋅化简得B B sin cos 3=,则3tan =B ,所以3π=B (2)由正弦定理,得2322sin sin sin3π==cA C Cc A sin sin 2260sin 32==,22sin =A ,因为<a b ,所以A 是锐角,即4π=A 因为32π=+C A ,所以,5,sin 12sin 3π===C c C所以115sin sin32212ABC S ab C π∆==⨯=+6.(2024高三一模嘉定17)已知三角形ABC ,1CA CB ⋅=- ,三角形的面积12S =,(1)求角C 的值;(2)若3sin cos 4A A =,2a =,求c .【答案】(1)34π;(2)c =【解析】(1)1cos 1CA CB ab C ⋅=⇒=-,1sin 12S ab C =⇒=,两式相除得:tan 1C =-,所以3π4C =.(2)sin cos sin 242A A A =⇒=,所以π6A =或π3(舍),所以π6A =,所以π12B =,sin 4B =由正弦定理得,sin sin a c C A =,sin sin b c C B=,所以22sin sin sin abc C A B=,由(1)ab =所以22c=+即c =7.(2024高三一模宝山18)在ABC ∆中,角C B A 、、的对边分别为c b a 、、.(1)若2sin a B =,求角A 的大小;(2)若BC 边上的高等于2a,求c b b c +的最大值.【答案】(1)323ππ或=A ;(2)22【解析】(1)根据正弦定理得2sin sin A B B =,所以23sin =A ,所以323ππ或=A .(2)由三角形面积公式得A bc a a sin 212121=⋅,即A bc a sin 22=,又由余弦定理A bc c b a cos 2222-+=,得A bc c b A bc cos 2sin 222-+=,解得()A A bc c b cos sin 222+=+,从而()⎪⎭⎫ ⎝⎛+=+=+4sin 22cos sin 222πA A A bc c b .当24ππ=+A 即4π=A 时bc c b 22+有最大值22,即cbb c +的最大值为22.8.(2024高三一模崇明18)在ABC ∆中,5a =,6b =.(1)若4cos 5B =-,求A 和ABC ∆外接圆半径R 的值;(2)若ABC ∆的面积4S =,求c 的值.【答案】(1)6A π=,5R =;(2)4c =或c =【解析】(1)因为4cos 5B =-,()0,B π∈,所以3sin 5B ==,由正弦定理,得2sin sin a bR A B==,即5623sin 5R A ==,所以1sin 2A =,5R =,因为a b <,所以0,2A π⎛⎫∈ ⎪⎝⎭,因此6A π=,5R =(2)由1sin 2ABC S ab C =△得224sin 564ABC S C ab ===⨯△,于是3cos 4C ==±,当3cos 4C =时,由余弦定理,得222356256164c =+-⨯⨯⨯=当3cos 4C =-时,由余弦定理,得2223562561064c ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭.所以,4c =或c =.9.(2024高三一模闵行18)在ABC △中,角A B C 、、所对边的边长分别为a b c 、、,且2cos a c B c -=.(1)若1cos 3B =,3c =,求b 的值;(2)若ABC △为锐角三角形,求sin C 的取值范围.【答案】(1)b =;(2)1sin (,)22C ∈【解析】(1)将1cos 3B =,3c =带入条件中可得5a =,由余弦定理2222cos b a c ac B =+-可得b =;(2)2cos a c B c -= ,由正弦定理可得sin 2sin cos sin A C B C -=,sin sin()sin cos cos sin A B C B C B C =+=+ ,sin cos sin cos sin B C C B C ∴-=,sin()sin B C C -=,(,),(0,)222B C C πππ-∈-∈ ,所以B C C -=,即2B C =,又因为ABC △为锐角三角形,(,)64C ππ∴∈,1sin (,22C ∈10.(2024高三一模青浦18)在△ABC 中,角,,A B C 所对的边分别为a ,b ,c ,且满足2220a c b ac -++=.(1)求角B 的大小;(2)若b =ABC 的周长的最大值.【答案】(1)120B ∠=︒;(2)4+【解析】(1)因为222a cb ac +-=-,由余弦定理得2221cos 22a c b B ac+-∠==-,120B ∠=︒.(2)由正弦定理得,a =4sin A ,c =4sin (600 −A ),所以,∆ABC 的周长为a +b +c =4sin A +4sin (600−A +)=4sin (A +600 +)200 <A <600当 A =300 时,∆ABC 的周长的最大值为4 +.三、三角函数及其性质1.(2024 高三一模嘉定 3)函数y =sin πx 的最小正周期为______.【答案】2【解析】22T ππ==.2.(2024高三一模普陀6)若函数tan 3y x =在区间,6m π⎛⎫⎪⎝⎭上是严格增函数,则实数m 的取值范围为______.【答案】,66ππ⎛⎫-⎪⎝⎭【解析】由题意,32666m m m ππππ⎧>-⎪⎪⇒-<<⎨⎪<⎪⎩.3.(2024高三一模闵行7)若将函数()()sin 20y x ϕϕπ=+<<的图像向右平移3π个单位,得到的图像所对应的函数为奇函数,则ϕ=______.【答案】23π【解析】函数向右平移3π个单位可以得到2sin 23y x πϕ⎛⎫=-+ ⎪⎝⎭,此时函数为奇函数,则有2sin 003πϕ⎛⎫-+= ⎪⎝⎭,则2,3k k πϕπ-=∈Z ,因为0ϕπ<<,所以23πϕ=.4.(2024高三一模虹口8)已知函数()()cos 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如右图所示,则()f x =______.(第8题图)【答案】cos 26x π⎛⎫- ⎪⎝⎭【解析】由题意知12243124T T πππππωω=-=⇒==⇒=,将,112π⎛⎫⎪⎝⎭代入,解得cos 21126ππϕϕ⎛⎫⨯+=⇒=- ⎪⎝⎭,则()cos 26f x x π⎛⎫=-⎪⎝⎭.5.(2024高三一模青浦8)若函数cos()y x ϕ=+是奇函数,则该函数的所有零点是.【答案】π,x k k =∈Z【解析】函数cos()y x ϕ=+是奇函数,则,2k k Z πϕπ=+∈,cos()sin y x x ϕ=+=±,所以函数零点为π,x k k =∈Z .6.(2024高三一模奉贤9)设函数()sin 0y x ωω=>在区间()0,2π上恰有三个极值点,则ω的取值范围为______.【答案】5744⎛⎤ ⎥⎝⎦,【解析】cos y x ωω'=,令0y '=,即cos 0x ω=,即,2x k k πωπ=+∈Z ,因为函数在区间()0,2π上恰有三个极值点,则2257244232ππωπωππωπ⎧>+⎪⎪⇒<≤⎨⎪≤+⎪⎩.7.(2024高三一模金山9)已知()()sin 0y x ωω=>在区间[]0,π上是严格增函数,且其图像关于()4,0π对称,则ω的值为______.【答案】14或12【解析】因为函数在区间[]0,π上是严格增函数,所以2πωπ≤,所以12ω≤,又图像关于()4,0π对称,所以4,k k πωπ=∈Z ,即,4k k ω=∈Z ,所以14k =或12.8.(2024高三一模黄浦10)若ϕ是一个三角形的内角,且函数()3sin 2y x ϕ=+在区间,46ππ⎡⎤-⎢⎥⎣⎦上是单调函数,则ϕ的取值范围是______.【答案】0,6π⎛⎤⎥⎝⎦【解析】由题意知()0,ϕπ∈,因为函数()3sin 2y x ϕ=+在区间,46ππ⎡⎤-⎢⎥⎣⎦上是单调函数,则2,23x ππϕϕϕ⎡⎤+∈-++⎢⎥⎣⎦,则220,632ππϕπϕππϕ⎧-+≥-⎪⎪⎡⎤⇒∈⎨⎢⎥⎣⎦⎪+≤⎪⎩,0,6πϕ⎛⎤∴∈ ⎥⎝⎦.9.(2024高三一模杨浦10)函数()()cos f x x ωϕ=+,()0,2ϕπ∈,在x ∈R 上是单调增函数,且函数关于原点对称,则满足条件的数对(),ωϕ=______.【答案】0,2π⎛⎫ ⎪⎝⎭或30,2π⎛⎫ ⎪⎝⎭【解析】当0ω≠时,函数在x ∈R 上显然不具备单调性,故0ω=,又函数关于原点对称,所以函数值为0,所以cos 0ϕ=,又()0,2ϕπ∈,所以2πϕ=或32π,因此满足条件的数对为0,2π⎛⎫ ⎪⎝⎭或30,2π⎛⎫ ⎪⎝⎭.10.(2024高三一模普陀10)设函数()sin 2y x ϕ=+02πϕ⎛<<⎫⎪⎝⎭的图像与直线y t =相交的连续的三个公共点从左到右依次记为A ,B ,C ,若2BC AB =,则正实数t 的值为______.【答案】12【解析】由题意可得T π=,函数与y t =()0t >相交图像如图所示,可知C A x x π-=,又2BC AB =,所以3B A x x π=+,()sin 2A t x ϕ=+,()2cos 21A x t ϕ+=-则()()2sin 2sin 2sin 23A B A x x x πϕϕϕ⎛⎫+=+=++⎪⎝⎭()()22sin 2coscos 2sin 33A A x x ππϕϕ=+++,即12t t =-+12t =或12t =-(舍),所以12t =.11.(2024高三一模浦东新区10)如图,已知函数()sin 0,0,02y A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的图像与y 轴的交点为()0,1,并已知其在y 轴右侧的第一个最高点和第一个最低点的坐标分别为()0,2x 和()02,2x π+-.记()y f x =,则3f π⎛⎫= ⎪⎝⎭______.【解析】由题意2A =,()00222T x x ππ=+-=,所以2142T ππωω==⇒=,()02sin 16f πϕϕ==⇒=,所以()12sin 26f x x π⎛⎫=+ ⎪⎝⎭,所以2sin 366f πππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭.12.(2024高三一模长宁11)若函数()sin cos x a x f x =+在27,36ππ⎛⎫⎪⎝⎭上是严格单调函数,则实数a 的取值范围为______.【答案】3⎡-⎢⎣【解析】()cos sin x x a x f '=-,因为函数()sin cos x a x f x =+在27,36ππ⎛⎫⎪⎝⎭上是严格单调函数,所以()0f x '≥或()0f x '≤,当x π=时,()1f π'=-,则()0f x '≥不符合题意,由()0f x '≤,得sin cos a x x ≥,当2,3x ππ⎛⎫∈⎪⎝⎭时,sin 0x >,所以1tan a x ≥在2,3x ππ⎛⎫∈ ⎪⎝⎭上恒成立,即求max 1tan a x ⎛⎫≥ ⎪⎝⎭,因为2,3x ππ⎛⎫∈ ⎪⎝⎭,所以()tan x ∈,1,tan 3x ⎛∈-∞- ⎝⎭,所以33a ≥-;当7,6x ππ⎛⎫∈ ⎪⎝⎭时,sin 0x <,所以1tan a x ≤在7,6x ππ⎛⎫∈ ⎪⎝⎭上恒成立,即求min 1tan a x ⎛⎫≤ ⎪⎝⎭,因为7,6x ππ⎛⎫∈ ⎪⎝⎭,所以3tan 0,3x ⎛⎫∈ ⎪ ⎪⎝⎭,)1tan x ∈+∞,所以a ≤;综上,33a ⎡-⎢⎣∈.13.(2024高三一模静安17)记)(cos sin 32cos sin )(22R ∈++-=x x x x x x f λ,其中λ为实常数.(1)求函数)(x f y =的最小正周期;(2)若函数)(x f y =的图像经过点⎪⎭⎫ ⎝⎛0,2π,求该函数在区间⎥⎦⎤⎢⎣⎡π32,0上的最大值和最小值.【答案】(1)π;(2)最大值1,最小值2-【解析】(1)()cos 22f x x x =-+π2sin 26x ⎛⎫=- ⎪⎝⎭λ+.所以,函数)(x f y =的最小正周期π.(2) π102f λ⎛⎫=+=⎪⎝⎭,∴1λ=-.∴π()2sin 216f x x ⎛⎫=-- ⎪⎝⎭.令π26x t -=,则π7π,66t ⎡⎤∈-⎢⎥⎣⎦.当ππ266x -=-或7π6,即0x =或2π3时,min 2f =-.当ππ262x -=,即π3x =时,max 1f =.四、三角应用题1.(2024 高三一模奉贤 10)某林场为了及时发现火情,设立了两个观测点A 和B . 某日两个观测点的林场人员都观测到C 处出现火情. 在 A 处观测到火情发生在北偏西40方向,而在B 观测到火情在北偏西60方向. 已知B 在A 的正东方向10km 处(如图所示),则BC AC -=______km.(精确到0.1km )【答案】7.8【解析】由图可知130CAB ∠=,30ABC ∠=,20ACB ∠=2.(2024高三一模徐汇10)某建筑物内一个水平直角型过道如图所示,两过道的宽度均为3米,有一个水平截面为矩形的设备需要水平通过直角型过道.若该设备水平截面矩形的宽BC 为1米,则该设备能水平通过直角型过道的长AB 不超过______米.【答案】22-【解析】分别以,OB OA 所在直线为x ,y 轴建立平面直角坐标系如图所示,则()3,3M ,令()0,A b ,(),0B a ,()0,0a b >>,则直线AB 的方程为1x ya b+=,则点M 直线上方,且到AB 的距离为1,即22331331111a b a b a b ⎧+>⎪+-=⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,则2233111a b a b ⎛⎫⎛⎫+-=+ ⎪ ⎪⎝⎭⎝⎭,整理可得223()a b a b ab +=+-,设AB r =,0,0,2OAB r πθθ⎛⎫⎡⎤∠=>∈ ⎪⎢⎥⎣⎦⎝⎭,则sin a r θ=,cos b r θ=,223()a b a b ab +=+-可化为23(sin cos )sin cos r r r θθθθ=+-,令sin cos 0,2t πθθθ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎣⎦⎝⎭,则224t πθ⎛⎫⎡=+∈ ⎪⎣⎝⎭,则223(sin cos )131121281sin cos (31)(31)999231t r t t t t θθθθ+--===⨯--+---188(31)231t t =--+-,由1,2t ⎡⎤∈⎣⎦,得312,321t⎡⎤-∈-⎣⎦,所以889(31)2321231321321t t --+≤--+=---,所以()1823218(31)231t t ≥---+-,当且仅当2t =时等号成立,该设备能水平通过直角型过道的长AB 不超过622-米.3.(2024高三一模长宁19)汽车转弯时遵循阿克曼转向几何原理,即转向时所有车轮中垂线交于一点,该点称为转向中心.如图1,某汽车四轮中心分别为A 、B 、C 、D ,向左转向,左前轮转向角为α,右前轮转向角为β,转向中心为O.设该汽车左右轮距AB 为w 米,前后轴距AD 为l 米.(1)试用w 、l 和α表示tan β;(2)如图2,有一直角弯道,M 为内直角顶点,EF 为上路边,路宽均为3.5米,汽车行驶其中,左轮A 、D 与路边FS 相距2米.试依据如下假设,对问题*做出判断,并说明理由.假设:①转向过程中,左前轮转向角α的值始终为30︒;②设转向中心O 到路边EF 的距离为d ,若OB d <且OM OD <,则汽车可以通过,否则不能通过;③ 1.570w =,2.680l =.问题*:可否选择恰当转向位置,使得汽车通过这一弯道?图1图2【答案】(1)tan tan llw βα=+;(2)选择恰当转向位置,汽车可以通过弯道【解析】(1)由已知AOD α∠=,tan BOC β∠=,所以tan l OD α=,tan lOC w α=+,进而tan tan llw βα=+.(2)以EF 和FS 分别为x 轴和y 轴建立坐标系,则()3.5, 3.5M --.3 4.642tan lOD l α===,()223 6.766OB l l w=++=,设(),O a b ()0,0a b <<,32 6.642a l =--=-,d b =-,()()()2223.5 3.59.872 3.5OM a b b =+++=++,由OM OD <,得()29.872 3.521.548b ++<,进而 6.9170.83b -<<-,由OB d <,得 6.766b <-,所以当 6.917 6.765b -<<时,OB d <且OM OD <,此时汽车可以通过弯道.答:选择恰当转向位置,汽车可以通过弯道.4.(2024高三一模杨浦19)某数学建模小组研究挡雨棚(图1),将它抽象为柱体(图2),底面ABC 与111A B C 全等且所在平面平行,ABC △与111A B C △各边表示挡雨棚支架,支架1AA 、1BB 、1CC 垂直于平面ABC .雨滴下落方向与外墙(所在平面)所成角为π6(即π6AOB ∠=),挡雨棚有效遮挡的区域为矩形11AA O O (O 、1O 分别在CA 、11C A 延长线上).(1)挡雨板(曲面11BB C C )的面积可以视为曲线段BC 与线段1BB 长的乘积.已知1.5OA =米,0.3AC =米,12AA =米,小组成员对曲线段BC 有两种假设,分别为:①其为直线段且π3ACB ∠=;②其为以O 为圆心的圆弧.请分别计算这两种假设下挡雨板的面积(精确到0.1平方米);(2)小组拟自制ABC △部分的支架用于测试(图3),其中0.6AC =米,π2ABC ∠=,CAB θ∠=,其中ππ62θ<<,求有效遮挡区域高OA 的最大值.【答案】(1)若选择①,挡雨板材料的面积为1.8平方米;若选择②,挡雨板材料的面积为图13π5平方米,约为1.9平方米;(2)OA 的最大值为0.3米【解析】(1)若选择①,结合π6AOB ∠=,得OBC △是直角三角形,10.92BC OC ==米,挡雨板材料的面积为1.8平方米.若选择②,则COB 是一个圆心角为π6的扇形,BC 弧长为π3π1.8610⨯=,挡雨板材料的面积为3π5平方米,约为1.9平方米.(2)在直角ABC △中,由cos AB AC θ=;在ABO △中,由正弦定理,ππsinsin 66AO ABθ=⎛⎫- ⎪⎝⎭,即π6π2sin sin cos 656AO AB θθθ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭2631sin cos cos 522θθθ⎛⎫=⋅-⋅ ⎪⎝⎭3311sin 2cos25222θθ⎛⎫=⋅-⋅- ⎪⎝⎭3π3sin 25610θ⎛⎫=-- ⎪⎝⎭,其中ππ62θ<<.当ππ262θ-=,即π3θ=时,AO 取得最大值310.综上所述,有效遮挡区域高OA 的最大值为0.3米.5.(2024高三一模浦东新区19)某街道规划建一座口袋公园.如图所示,公园由扇形AOC 区域和三角形COD 区域组成.其中A O D 、、三点共线,扇形半径OA 为30米.规划口袋公园建成后,扇形AOC 区域将作为花草展示区,三角形COD 区域作为亲水平台区,两个区域的所有边界修建休闲步道.(1)若π3AOC ∠=,2OD OA =,求休闲步道总长(精确到米);(2)若π6ODC ∠=,在前期民意调查时发现,绝大部分街道居民对亲水平台区更感兴趣.请你根据民意调查情况,从该区域面积最大或周长最长的视角出发,选择其中一个方案,设计三角形COD 的形状.【答案】(1)231米;(2)见解析【解析】(1)休闲步道总长为 2AC OA OD CD+++π301203=⨯++10π120=++231≈米.所以休闲步道总长为231米.(2)方案一:设5π,0,6COD θθ⎛⎫∠=∈ ⎪⎝⎭COD ∆中,由正弦定理得π5πsin sin sin 66OCOD CD θθ==⎛⎫- ⎪⎝⎭,得5π5π60sin ,60sin ,0,66OD CD θθθ⎛⎫⎛⎫=-=∈⎪ ⎪⎝⎭⎝⎭故COD ∆的面积15π5π3060sin sin 900sin sin 266S θθθθ⎛⎫⎛⎫=⨯⨯-⋅=-⋅ ⎪ ⎪⎝⎭⎝⎭π450sin 23θ⎛⎫=-+ ⎪⎝⎭因为5π0,6θ⎛⎫∈ ⎪⎝⎭,所以ππ4π2333θ⎛⎫-∈- ⎪⎝⎭,当ππ232θ-=,即5π12θ=时有max S 450=+平方米因此,当亲水平台区的面积最大时,COD ∆是以OC 为底边的等腰三角形.方案二:设5π,0,6COD θθ⎛⎫∠=∈ ⎪⎝⎭COD ∆中,由正弦定理得π5πsin sin sin 66OCOD CD θθ==⎛⎫- ⎪⎝⎭,得5π5π60sin ,60sin ,0,66OD CD θθθ⎛⎫⎛⎫=-=∈⎪ ⎪⎝⎭⎝⎭故COD ∆的周长5π60sin 60sin 306L θθ⎛⎫=+-+ ⎪⎝⎭(60sin 30cos 30θθ=+++π233012θ⎛⎫=+++ ⎪⎝⎭因为5π0,6θ⎛⎫∈ ⎪⎝⎭,所以ππ11π121212θ⎛⎫+∈ ⎪⎝⎭,当ππ122θ+=,即5π12θ=时有max L 60233030630230=+=+米因此,当亲水平台区的周长最长时,COD ∆是以OC 为底边的等腰三角形.(本题也可用余弦定理、均值不等式解决)6.(2024高三一模黄浦19)某公园的一个角形区域AOB 如图所示,其中23AOB π∠=.现拟用长度为100米的隔离档板(折线DCE )与部分围墙(折线DOE )围成一个花卉育苗区ODCE ,要求满足OD OC OE ==.(1)设333DOC πππαα⎛⎫∠=+-<< ⎪⎝⎭,试用α表示OD ;(2)为使花卉育苗区的面积最大,应如何设计?请说明理由.【答案】(1)50cos2OD α=;(2)当0α=时,花卉育苗区的面积最大,为12503平方米【解析】(1)由πππ()333DOC αα∠=+-<<,2π3AOB ∠=,可知π3COE α∠=-,作OF CD ⊥,垂足为F ,由OD OC =,可知CF DF =且1π262DOF DOC α∠=∠=+,在直角DOF △中,πsin()62DF OD α=+,故π2sin(62CD OD α=+,同理可得ππ2sin(2sin()6262EC OC OD αα=-=-,所以π2sin()62OD α++π2sin()10062OD α-=,可得OD =5050ππsin()sin()cos62622ααα=++-(米).(2)设花卉育苗区的面积为S 平方米,则221π1πsin()sin()2323S OD OD αα=++-22150ππ[sin()sin()]233cos 2ααα=++-.501]1cos1cos2Sα=α==-+α+α.当且仅当cos1α=且ππ33α-<<,即0α=时,S取最大值,此时50OD=米.故使π3DOC∠=,且50OD=米,可使花卉育苗区的面积最大.7.(2024高三一模金山19)网络购物行业日益发达,各销售平台通常会配备送货上门服务.小金正在配送客户购买的电冰箱,并获得了客户所在小区门户以及建筑转角处的平面设计示意图.图1图2第19题图(1)为避免冰箱内部制冷液逆流,要求运送过程中发生倾斜时,外包装的底面与地面的倾斜角α不能超过4π,且底面至少有两个顶点与地面接触.外包装看作长方体,如图1所示,记长方体的纵截面为矩形ABCD,0.8mAD=, 2.4mAB=,而客户家门高度为2.3米,其他过道高度足够.若以倾斜角4πα=的方式进客户家门,小金能否将冰箱运送入客户家中?计算并说明理由.(2)由于客户选择以旧换新服务,小金需要将客户长方体形状的旧冰箱进行回收.为了省力,小金选择将冰箱水平推运(冰箱背面水平放置于带滚轮的平板车上,平板车长宽均小于冰箱背面).推运过程中遇到一处直角过道,如图2所示,过道宽为1.8米.记此冰箱水平截面为矩形EFGH, 1.2mEH=.设PHGβ∠=,当冰箱被卡住时(即点H、G分别在射线PR、PQ上,点O在线段EF上),尝试用β表示冰箱高度EF的长,并求出EF的最小值,最后请帮助小金得出结论:按此种方式推运的旧冰箱,其高度的最大值是多少?(结果精确到0.1m)【答案】(1)能;(2)2.6m【解析】(1)当倾斜角π4α=时,冰箱倾斜后实际高度(即冰箱最高点到地面的距离)ππ820.8sin 2.4cos 2.3445h=+=<,故冰箱能够按要求运送入客户家中.(2)延长EF与直角走廊的边相交于M、N,则 1.8 1.8+sin cos MN OM ON =+=ββ, 1.2tan EM β=, 1.2tan FN β=,又EF MN ME NF =--,设()EF f β=,π0,2β⎛⎫∈ ⎪⎝⎭,则 1.8 1.81() 1.2(tan )sin cos tan f =+-+βββββ1.8(sin cos ) 1.2sin cos ββββ+-=,π0,2β⎛⎫∈ ⎪⎝⎭.2222332222221.8(cos sin )(sin cos )(1.8(sin cos ) 1.2)(cos s in )()sin cos 1.8(cos sin ) 1.2(cos sin ) 1.8(sin cos )(cos 1)(sin 1)sin cos sin cos f βββββββββββββββββββββββ--+--'=⋅--+----==⋅⋅求得驻点π4β=,作表格得βπ(0,)4π4ππ(,)42()f β'-0+()f β严格减极小值严格增所以()f β最小值π18212() 2.6945f -=≈.由实际意义需向下取整,此情况下能顺利通过过道的冰箱高度的最大值为2.6米.8.(2024高三一模徐汇19)2023年杭州亚运会首次启用机器狗搬运赛场上的运动装备.如图所示,在某项运动赛事扇形场地OAB 中,2AOB π∠=,500OA =米,点Q 是弧AB 的中点,P 为线段OQ 上一点(不与点O ,Q 重合).为方便机器狗运输装备,现需在场地中铺设三条轨道PO ,PA ,PB .记APQ θ∠=,三条轨道的总长度为y 米.(1)将y 表示成θ的函数,并写出θ的取值范围;(2)当三条轨道的总长度最小时,求轨道PO 的长.【答案】(1)2sin cos 52502,,sin 48y θθππθθ+-⎛⎫=⋅∈ ⎪⎝⎭;(2)()2503263PO =-【解析】(1)因为点Q 是弧AB 的中点,由对称性,知PA PB =,4AOP BOP π∠=∠=,又APO πθ∠=-,4OAP πθ∠=-,500OA =由正弦定理,得()sin sinsin 44APOAOPπππθθ==-⎛⎫- ⎪⎝⎭,所以500sin 25024,sin sin AP OP πθθθ⎛⎫- ⎪⎝⎭==.所以500sin 42sin y AP BP OP AP OP πθθ⎛⎫+- ⎪⎝⎭=++=+=2sin cos sin θθθ+-=,因为APQ AOP ∠>∠,所以4πθ>,13248AQO OAQ πππ⎛⎫∠=∠=-=⎪⎝⎭,所以5,48ππθ⎛⎫∈⎪⎝⎭.(2)法一:由(1)得:2cos sin y θθ-=,5,48ππθ⎛⎫∈ ⎪⎝⎭.记2cos sin t θθ-=,则sin cos 2t θθ+=,由辅助角公式可得:)2sin()1θϕθϕ+=⇒+=,解得tt 5sin()1,6348ππππθθ⎛⎫+=⇒=∈ ⎪⎝⎭,等号可以取得.故当3πθ=时,三条轨道的总长度最小,此时(2503OP =.法二:由(1)得:2cos sin y θθ-=+,5,48ππθ⎛⎫∈ ⎪⎝⎭.记2cos sin t θθ-=,tan tan ,tan 2816x θππ5⎛⎫=∈ ⎪⎝⎭,则由万能置换公式可得:2222123111132221x x x t x x x x x --+⎛⎫+===+≥= ⎪⎝⎭+,当且仅当33x =即3πθ=时等号成立.故当3πθ=,三条轨道的总长度最小,此时(2503OP =.法三:令()2sin cos sin f θθθθ+-=,5,48ππθ⎛⎫∈ ⎪⎝⎭.由()212cos '0sin f θθθ-==,解得3πθ=,则有θ43ππθ<<3πθ=538ππθ<<()'f θ0<0=0>()f θ严格减极小值严格增所以当3πθ=,即(2503OP =米时,()f θ有唯一的极小值,即是最小值,则()min 1f θ=+,三条轨道的最小值为+.故当3πθ=时,三条轨道的总长度最小,此时(2503OP =.。
上海2024年高三数学 一模试卷 分类汇编 导数

上海2024年高三数学一模试卷分类汇编:导数一、客观题:1、闵行已知函数()y f x =的导函数为()y x x f '=∈R ,,且()y x f ='在R 上为严格增函数,关于下列两个命题的判断,说法正确的是()①“12x x >”是“1212(1)()()(1)f x f x f x f x ++>++”的充要条件;②“对任意0x <,都有()(0)f x f <”是“()y f x =在R 上为严格增函数”的充要条件.(A )①真命题;②假命题(B )①假命题;②真命题(C )①真命题;②真命题(D )①假命题;②假命题2、普陀设函数()2e 2xf x a x =-,若对任意()00,1x ∈,皆有()()000lim 0x x f x f x x x x x →--+>-成立,则实数a 的取值范围是______.3、松江函数()y f x =的图像如图所示,()'y f x =为函数()y f x =的导函数,则不等式()'0f x x<的解集为()A .()3,1--B .(0,1)C .()()3,10,1--⋃D .()(),31,-∞-⋃+∞二、解答题:1、宝山已知函数()e x f x x =-,()e x g x x -=+,其中e 为自然对数的底数.(1)求函数()y f x =的图像在点()()1,1f 处的切线方程;(2)设函数()()()F x af x g x =-,①若e a =,求函数()y F x =的单调区间,并写出函数()y F x m =-有三个零点时实数m 的取值范围;②当01a <<时,12x x 、分别为函数()y F x =的极大值点和极小值点,且不等式()()120F x tF x +>对任意()0,1a ∈恒成立,求实数t 的取值范围.2、崇明已知()sin (R 0)f x mx x m m =+∈≠且.(1)若函数()y f x =是实数集R 上的严格增函数,求实数m 的取值范围;(2)已知数列{}n a 是等差数列(公差0d ≠),()n n b f a =.是否存在数列{}n a 使得数列{}n b 是等差数列?若存在,请写出一个满足条件的数列{}n a ,并证明此时的数列{}n b 是等差数列;若不存在,请说明理由;(3)若1m =,是否存在直线y kx b =+满足:①对任意的x ∈R 都有()f x kx b +≥成立,②存在0x ∈R 使得00()f x kx b =+?若存在,请求出满足条件的直线方程;若不存在,请说明理由.3、虹口已知()y f x =与()y g x =都是定义在()0+∞,上的函数,若对任意()12,0x x ∈+∞,,当12x x <时,都有121212()()()()f x f xg x g x x x -≤≤-,则称()y g x =是()y f x =的一个“控制函数”.(1)判断2y x =是否为函数()20y x x =>的一个控制函数,并说明理由;(2)设()ln f x x =的导数为()'f x ,0a b <<,求证:关于x 的方程()()()'f b f a f x b a-=-在区间(),a b 上有实数解;(3)设()ln f x x x =,函数()y f x =是否存在控制函数?若存在,请求出()y f x =的所有控制函数;若不存在,请说明理由.4、黄浦设函数()f x 与()g x 的定义域均为D ,若存在0x D ∈,满足()()00f x g x =且()()00''f x g x =,则称函数()f x 与()g x “局部趋同”.(1)判断函数()151f x x =+与()322f x x x =+是否“局部趋同”,并说明理由;(2)已知函数()()()()2120,0xg x x ax x g x bex =-+>=>,求证:对任意的正数a ,都存在正数b ,使得函数()1g x 与()2g x “局部趋同”;(3)对于给定的实数m ,若存在实数n ,使得函数()()10nh x mx x x=+>与()2ln h x x =“局部趋同”,求实数m 的取值范围.5、金山设函数()y f x =的定义域为D ,给定区间[,]a b D ⊆,若存在0(,)x a b ∈,使得0()()()f b f a f x b a-=-,则称函数()y f x =为区间[,]a b 上的“均值函数”,0x 为函数()y f x =的“均值点”.(1)试判断函数2y x =是否为区间[1,2]上的“均值函数”,如果是,请求出其“均值点”;如果不是,请说明理由;(2)已知函数2112212x x y m --=-+⋅-是区间[1,3]上的“均值函数”,求实数m 的取值范围;(3)若函数222(22)x a y x x +=-+(常数a ∈R )是区间[2,2]-上的“均值函数”,且23为其“均值点”.将区间[2,0]-任意划分成1m +(m ∈N )份,设分点的横坐标从小到大依次为12,,,m t t t ,记02t =-,10m t +=,10|()()|mi i i G f t f t +==-∑.再将区间[0,2]等分成21n +(n ∈N )份,设等分点的横坐标从小到大依次为122,,,n x x x ,记21()ni i H f x ==∑.求使得2023H G ⋅>的最小整数n 的值.6、闵行已知a ∈R ,32()(2)5(1)ln f x a x x x a x =--++-.(1)若1为函数()y f x =的驻点,求实数a 的值;(2)若0a =,试问曲线()y f x =是否存在切线与直线10x y --=互相垂直?说明理由;(3)若2a =,是否存在等差数列123123,,(0)x x x x x x <<<,使得曲线()y f x =在点22(,())x f x 处的切线与过两点11(,())x f x 、33(,())x f x 的直线互相平行?若存在,求出所有满足条件的等差数列;若不存在,说明理由.7、浦东设()y f x =是定义在R 上的函数,若存在区间[],a b 和0(,)x a b ∈,使得()y f x =在0[,]a x 上严格减,在0[,]x b 上严格增,则称()y f x =为“含谷函数”,0x 为“谷点”,[],a b 称为()y f x =的一个“含谷区间”.(1)判断下列函数中,哪些是含谷函数?若是,请指出谷点;若不是,请说明理由:①2y x =,②cos y x x =+;(2)已知实数0m >,()22ln 1y x x m x =---是含谷函数,且[]2,4是它的一个含谷区间,求m 的取值范围;(3)设,R p q ∈,()()432432h x x px qx p q x =-+++--.设函数()y h x =是含谷函数,[],a b 是它的一个含谷区间,并记b a -的最大值为(),L p q .若()()12h h ≤,且()10h ≤,求(),L p q 的最小值.8、普陀(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.设函数()y f x =的表达式为()e exxf x a -=+.(1)求证:“1a =”是“函数()y f x =为偶函数”的充要条件;(2)若1a =,且()()223f m f m +≤-,求实数m 的取值范围.9、松江已知函数()y f x =,记()sin ,f x x x x D =+∈.(1)若[]0,2D π=,判断函数的单调性;(2)若0,2D π⎛⎤= ⎥⎝⎦,不等式()f x kx >对任意x D ∈恒成立,求实数k 的取值范围;(3)若D =R ,则曲线()y f x =上是否存在三个不同的点A 、B 、C ,使则曲线()y f x =在A 、B 、C 三点处的切线互相重合?若存在,求出所有符合要求的切线的方程;若不存在,请说明理由.10、徐汇若函数(),y f x x =∈R 的导函数(),y f x x '=∈R 是以(0)T T ≠为周期的函数,则称函数(),y f x x =∈R 具有“T 性质”.(1)试判断函数2y x =和sin y x =是否具有“2π性质”,并说明理由;(2)已知函数()y h x =,其中2()2sin (03)=++<<h x ax bx bx b 具有“π性质”,求函数()y h x =在[0,]π上的极小值点;(3)若函数(),y f x x =∈R 具有“T 性质”,且存在实数0M >使得对任意x ∈R 都有|()|f x M <成立,求证:(),y f x x =∈R 为周期函数.(可用结论:若函数(),y f x x =∈R 的导函数满足()=0,f x x '∈R ,则()()常数=f x C .)11、杨浦设函数()e ,x f x x =∈R .(1)求方程()2()()2f x f x =+的实数解;(2)若不等式()x b f x +≤对于一切x ∈R 都成立,求实数b 的取值范围.12、长宁若函数()y f x =与()y g x =满足:对任意12,R x x ∈,都有()()()()1212f x f x g x g x -≥-,则称函数()y f x =是函数()y g x =的“约束函数”.已知函数()y f x =是函数()y g x =的“约束函数”.(1)若()2f x x =,判断函数()y g x =的奇偶性,并说明理由;(2)若()()30f x ax x a =+>,()sin g x x =,求实数a 的取值范围;(3)若()y g x =为严格减函数,()()01f f <,且函数()y f x =的图像是连续曲线,求证:()y f x =是()0,1上的严格增函数.13、嘉定已知ln (),()e xx xf xg x x==.(1)求函数()()y f x y g x ==、的单调区间和极值;(2)请严格证明曲线()()y f x y g x ==、有唯一交点;(3)对于常数10,e a ⎛⎫∈ ⎪⎝⎭,若直线y a =和曲线()()y f x y g x ==、共有三个不同交点()()()123,,,x a x a x a 、、,其中123x x x <<,求证:123x x x 、、成等比数列.。
上海高三高中数学高考模拟带答案解析

上海高三高中数学高考模拟班级:___________ 姓名:___________ 分数:___________一、填空题1.集合,,则等于.2.函数的定义域是.3.已知函数,则.4.若复数的实部与虚部相等,则的值为.5.若对任意正实数,不等式恒成立,则实数的最小值为.6.等比数列的前n项和为,已知成等差数列,则数列的公比为.7.已知平面上四点,若,则.8.如图,在底面边长为的正方形的四棱锥中,已知,且,则直线与平面所成的角大小为.9.在极坐标系中,曲线与直线的两个交点之间的距离为.10.某班级有4名学生被复旦大学自主招生录取后,大学提供了3个专业由这4名学生选择,每名学生只能选择一个专业,假设每名学生选择每个专业都是等可能的,则这3个专业都有学生选择的概率是.11.函数图像的对称中心是.12.设分别为双曲线的左、右焦点,若在双曲线右支上存在点P,满足且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为13.设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为.14.直角坐标平面上,有个非零向量,且,各向量的横坐标和纵坐标均为非负实数,若(常数),则的最小值为.二、选择题1.下列函数中,与函数的值域相同的函数为()A.B.C.D.2.角终边上有一点,则下列各点中在角的终边上的点是()A.B.C.D.3.一无穷等比数列各项的和为,第二项为,则该数列的公比为()A.B.C.D.或4.下图揭示了一个由区间到实数集上的对应过程:区间内的任意实数与数轴上的线段(不包括端点)上的点一一对应(图一),将线段围成一个圆,使两端恰好重合(图二),再将这个圆放在平面直角坐标系中,使其圆心在轴上,点的坐标为(图三).图三中直线与轴交于点,由此得到一个函数,则下列命题中正确的序号是();是偶函数;在其定义域上是增函数;的图像关于点对称.A.(1)(3)(4)B.(1)(2)(3)C.(1)(2)(4)D.(1)(2)(3)(4).三、解答题1.已知复数(是虚数单位)在复平面上对应的点依次为,点是坐标原点. (1)若,求的值;(2)若点的横坐标为,求.2.某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,(为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为千元. (1)写出关于的函数表达式,并求该函数的定义域;(2)求该储油罐的建造费用最小时的的值.3.已知.(1)当,时,若不等式恒成立,求的范围;(2)试判断函数在内零点的个数,并说明理由.4.已知椭圆C过点,两焦点为、,是坐标原点,不经过原点的直线与该椭圆交于两个不同点、,且直线、、的斜率依次成等比数列.(1)求椭圆C的方程;(2)求直线的斜率;(3)求面积的范围.5.如果数列同时满足:(1)各项均不为,(2)存在常数k, 对任意都成立,则称这样的数列为“类等比数列” .由此等比数列必定是“类等比数列” .问:(1)各项均不为0的等差数列是否为“类等比数列”?说明理由.(2)若数列为“类等比数列”,且(a,b为常数),是否存在常数λ,使得对任意都成立?若存在,求出λ;若不存在,请举出反例.(3)若数列为“类等比数列”,且,(a,b为常数),求数列的前n项之和;数列的前n项之和记为,求.上海高三高中数学高考模拟答案及解析一、填空题1.集合,,则等于.【答案】【解析】因为所以结合数轴可得:【考点】集合运算2.函数的定义域是.【答案】【解析】根据偶次根式下被开方数非负得:,因此函数的定义域是.【考点】函数定义域3.已知函数,则.【答案】1【解析】因为,所以因此【考点】反函数4.若复数的实部与虚部相等,则的值为.【答案】【解析】因为,所以由题意得:【考点】复数概念5.若对任意正实数,不等式恒成立,则实数的最小值为.【答案】【解析】因为对任意正实数,不等式恒成立,所以,因此【考点】不等式恒成立6.等比数列的前n项和为,已知成等差数列,则数列的公比为.【答案】【解析】设等比数列的公比为则由成等差数列得:,因为所以而所以【考点】等比数列7.已知平面上四点,若,则.【答案】【解析】因为,所以【考点】向量表示8.如图,在底面边长为的正方形的四棱锥中,已知,且,则直线与平面所成的角大小为.【答案】【解析】将四棱锥补成一个正四面体,则有如图:因此直线与平面所成的角大小为因为所以直角三角形中有【考点】线面角9.在极坐标系中,曲线与直线的两个交点之间的距离为.【答案】【解析】因为表示圆直线,所以两个交点纵坐标为因此两个交点之间的距离为.【考点】极坐标化为直角坐标10.某班级有4名学生被复旦大学自主招生录取后,大学提供了3个专业由这4名学生选择,每名学生只能选择一个专业,假设每名学生选择每个专业都是等可能的,则这3个专业都有学生选择的概率是.【答案】【解析】4名学生选择,每名学生各有3种不同选择,共有种基本事件,若这3个专业都有学生选择,则必有一个专业有两个学生同时选,另两个专业各有一个学生选,即有因此所求概率为【考点】排列组合11.函数图像的对称中心是.【答案】【解析】因为,而函数为奇函数,对称中心是,因此函数图像的对称中心是【考点】奇函数性质,图像变换12.设分别为双曲线的左、右焦点,若在双曲线右支上存在点P,满足且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为【答案】【解析】设中点为M,因为所以为到直线的距离,即由得:,因此,双曲线的渐近线方程为,即.【考点】双曲线定义,双曲线渐近线13.设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为.【答案】【解析】令得:,令得:,由得:,又角的终边在第一象限,所以因而的集合为.【考点】抽象函数赋值法14.直角坐标平面上,有个非零向量,且,各向量的横坐标和纵坐标均为非负实数,若(常数),则的最小值为.【答案】【解析】因为,所以共线,共线. 又各向量的横坐标和纵坐标均为非负实数,所以即最小值为.【考点】向量平行与垂直关系二、选择题1.下列函数中,与函数的值域相同的函数为()A.B.C.D.【答案】B【解析】函数的值域为R,而,只有,所以选B.【考点】函数值域2.角终边上有一点,则下列各点中在角的终边上的点是()A.B.C.D.【答案】B【解析】因为角终边上有一点,所以因此即角的终边上的点在第三象限,所以选C.【考点】三角函数定义3.一无穷等比数列各项的和为,第二项为,则该数列的公比为()A.B.C.D.或【答案】D【解析】设公比为由题意得消得解得或【考点】无穷等比数列各项的和4.下图揭示了一个由区间到实数集上的对应过程:区间内的任意实数与数轴上的线段(不包括端点)上的点一一对应(图一),将线段围成一个圆,使两端恰好重合(图二),再将这个圆放在平面直角坐标系中,使其圆心在轴上,点的坐标为(图三).图三中直线与轴交于点,由此得到一个函数,则下列命题中正确的序号是();是偶函数;在其定义域上是增函数;的图像关于点对称.A.(1)(3)(4)B.(1)(2)(3)C.(1)(2)(4)D.(1)(2)(3)(4).【答案】A【解析】由题意得:对应点为,此时直线与轴交于坐标原点,所以成立,由于函数定义区间为,所以是偶函数不成立,由题意得:直线与轴的交点从左到右,因此在其定义域上是增函数成立,根据直线与轴的交点关于原点对称,而由知的图像关于点对称成立.【考点】函数对应关系三、解答题1.已知复数(是虚数单位)在复平面上对应的点依次为,点是坐标原点. (1)若,求的值;(2)若点的横坐标为,求.【答案】(1),(2)【解析】(1)根据复数与平面上点一一对应关系有:,,从而,,由得∴,,(2)由⑴,记,∴,,∴⑴解法1:由题可知:,,∵,得, 2分,得∴, 4分解法2:由题可知:,,, 2分∵,∴,得 4分(2)解法1:由⑴,记,∴,(每式1分) 6分∵,得(列式计算各1分) 8分(列式计算各1分)10分∴(列式计算各1分)12分解法2:由题意得:的直线方程为 6分则即(列式计算各1分) 8分则点到直线的距离为(列式计算各1分) 10分又,∴ 12分解法3:即(每式1分) 6分即:, 7分,,9分∴ 10分则(列式计算各1分)12分解法4、根据坐标的几何意义求面积(求B点的坐标2分,求三角形边长2分,求某个内角的余弦与正弦各1分,面积表达式1分,结果1分)【考点】向量垂直坐标表示,两角差正弦公式2.某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,(为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为千元. (1)写出关于的函数表达式,并求该函数的定义域;(2)求该储油罐的建造费用最小时的的值.【答案】(1),(2).【解析】(1)求实际问题函数解析式,关键正确理解题意,列出正确的等量关系,明确自变量取值范围. 储油罐的建造费用等于圆柱形部分建造费用与半球形部分建造费用之和,由得:,(2)所研究函数是一个关于的一元二次函数,求其最值关键在于研究对称轴与定义区间之间位置关系,上是增函数,所以当时,储油罐的建造费用最小.[解] :(1) 3分() 6分(2) 8分上是增函数 12分所以当时,储油罐的建造费用最小. 14分【考点】函数解析式,二次函数最值3.已知.(1)当,时,若不等式恒成立,求的范围;(2)试判断函数在内零点的个数,并说明理由.【答案】(1),(2)存在唯一的零点.【解析】(1)不等式恒成立问题,通常利用变量分离法转化为求最值问题. 由, 则,不等式恒成立就转化为,又在上是增函数,,所以.(2)判断函数在内零点的个数,关键分析其在图像走势,即单调性变化情况. 因为是增函数, 所以在内至多存在一个的零点.又,由零点存在性定理有在内至少存在一个的零点.两者综合得:在内存在唯一的零点.[解] (1)由, 则, 2分又在上是增函数, 4分所以. 6分(2) 是增函数,且, 8分12分所以在内存在唯一的零点. 14分【考点】不等式恒成立,函数零点4.已知椭圆C过点,两焦点为、,是坐标原点,不经过原点的直线与该椭圆交于两个不同点、,且直线、、的斜率依次成等比数列.(1)求椭圆C的方程;(2)求直线的斜率;(3)求面积的范围.【答案】(1),(2)(3).【解析】(1)求椭圆标准方程,通常利用待定系数法求解,即只需两个独立条件解出a,b即可. 由及,解得所以椭圆的方程为.(2)涉及斜率问题,通常转化为对应坐标的运算. 由消去得:,,,因为直线的斜率依次成等比数列,所以,故(3)解几中面积问题,通常转化为点到直线距离.所以的取值范围为.[解] (1)由题意得,可设椭圆方程为 2分则,解得所以椭圆的方程为. 4分(2)消去得: 6分则故 8分因为直线的斜率依次成等比数列所以,由于故 10分(3)因为直线的斜率存在且不为,及且. 12分设为点到直线的距离,则14分则 <,所以的取值范围为. 16分【考点】椭圆方程,直线与椭圆位置关系5.如果数列同时满足:(1)各项均不为,(2)存在常数k, 对任意都成立,则称这样的数列为“类等比数列” .由此等比数列必定是“类等比数列” .问:(1)各项均不为0的等差数列是否为“类等比数列”?说明理由.(2)若数列为“类等比数列”,且(a,b为常数),是否存在常数λ,使得对任意都成立?若存在,求出λ;若不存在,请举出反例.(3)若数列为“类等比数列”,且,(a,b为常数),求数列的前n项之和;数列的前n项之和记为,求.【答案】(1)是,(2),(3)【解析】(1)解决新定义问题,关键根据“定义”列条件,根据“定义”判断. 因为为各项均不为的等差数列,故可设(d、b为常数),由得得为常数,所以各项均不为0的等差数列为“类等比数列”,(2)存在性问题,通常从假设存在出发,列等量关系,将是否存在转化为对应方程是否有解. 先从必要条件入手,再从充分性上证明:因为所以所以即得所以而(3)由(2)易得,均为公比为的等比数列,,,[解] (1)因为为各项均不为的等差数列,故可设(d、b为常数) 1分由得 2分得为常数,所以各项均不为0的等差数列为“类等比数列” 4分(2)存在常数使(只给出结论给2分)(或从必要条件入手)证明如下:因为所以所以即 6分由于此等式两边同除以得 8分所以即当都有因为所以所以所以对任意都有此时 10分(3) 11分均为公比为的等比数列 12分14分16分18分【考点】新数列,数列通项,数列求和。
2023-2024学年上海市徐汇区高三下册高考数学模拟试题(三模)附答案

2023-2024学年上海市徐汇区高三下学期高考数学模拟试题(三模)一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.已知集合,,则______.{}1,2,6M ={}2,3N =M N = 2.已知,则______.()()2log ,02,0x x f x f x x >⎧=⎨+≤⎩()1f -=3.已知复数z 满足,则的最小值为______.z i -=z4.已知向量,,则在上的投影向量的模为______.(a = ()b = ab 5.已知,则的最大值为______.2x y +=()y x y -6.已知扇形的弧长为,面积为,则扇形所在圆的半径为______.2π3π7.在中,内角A ,B ,C 的对边是a ,b ,c .若,且,则ABC △(222a b =+⋅b c =______.A =8.将一枚质地均匀的骰子连续抛掷6次,得到的点数分别为1,2,4,5,6,x ,则这6个点数的中位数为4的概率为______.9.若的展开式中第三项与第五项的系数之比为,则展开式中常数项是2nx ⎛- ⎝314______.10.已知两个等差数列2,6,10,…,202和2,8,14,…,200,将这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的各项之和为______.11.日常生活中,较多产品的包装盒呈正四棱柱状,烘焙店的包装盒如图所示,正四棱柱的底面ABCD 是正方形,且,.1111ABCD A B C D -3AB =11AA =店员认为在彩绳扎紧的情况下,按照图A 中的方向捆1111H E E F F G G H H --------扎包装盒会比按照图B 中的十字捆扎法更节省彩绳(不考虑打结处的用绳量和彩绳的宽度).则图A 比图B 最多节省的彩绳长度为______.12.正实数x ,y 满足:存在和,使得,,[]0,a x ∈[]0,b y ∈222a y +=221b x +=,则的最大值为______.1ax by +=x y +二、选择题(本大题共4题,满分18分,第13-14题每题4分,第15-16题每题5分)13.设,则“”是“”的( )x R ∈0x <()ln 10x +<A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件14.要得到函数的图像,只需将函数的图像( )()ln 2y x =ln y x =A .每一点的横坐标变为原米的2倍B .每一点的纵坐标变为原来的2倍C .向左平移ln2个单位D .向上平移ln2个单位15.在一个有限样本空间中,假设,且A 与B 相互独立,A 与C ()()()13P A P B P C ===互斥,以下说法中,正确的个数是( )① ② ③若,则B 与C 互斥()23P A B = ()()2P C A P A C =()()12P C B P C B +=A .0B .1C .2D .316.设无穷正数数列,如果对任意的正整数n ,都存在唯一的正整数m ,使得{}n a ,那么称为内和数列,并令,称为的伴随数123m n a a a a a =++++ {}n a n b m ={}n b {}n a 列,则( )A .若为等差数列,则为内和数列{}n a {}n aB .若为等比数列,则为内和数列{}n a {}n a C .若内和数列的伴随数列为严格增数列,则为严格增数列{}n a {}n b {}n a D .若内和数列为严格增数列,则其伴随数列为严格增数列{}n a {}n b 三、解答题(本大题共有5题,满分78分)17.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.已知向量,,其中,若,且函数()2sin ,cos 2m x x =ωω ),1n x =ω0ω>()f x m n =⋅的最小正周期为π.()y f x =(1)求的单调增区间;()y f x =(2)在中,若,,求的值.ABC △()2f B =-BC =sin B A =BA BC ⋅18.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.在四面体中,,.D ABC -2AB BC BD AC ====AD DC ==(1)求证:平面ADC ⊥平面ABC ;(2)对角线BD 上是否存在一点E ,使得直线AD 与平面ACE 所成角为30°.若存在求出的值,若不存在说明理由.BEED19.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.为了解人们是否喜欢跑步,某机构在一小区随机抽取了40人进行调查,统计结果如下表.喜欢不喜欢合计男12820女101020合计221840(1)根据以上数据,判断能否有95%的把握认为人们对跑步的喜欢情况与性别有关?附:,其中,()()()()()22n ad bc a b c d a c b d -χ=++++n a b c d =+++()2 3.8410.05P χ≥≈(2)该小区居民张先生每天跑步或开车上班,据以往经验,张先生跑步上班准时到公司的概率为,张先生跑步上班迟到的概率为.对于下周(周一~周五)上班方式张先生作出2313如下安排:周一跑步上班,从周二开始,若前一天准时到公司,当天就继续跑步上班,否则,当天就开车上班,且因公司安排,周五开车去公司(无论周四是否准时到达公司).设从周一开始到张先生第一次开车去上班前跑步上班的天数为X ,求X 的分布及数学期望E[X].20.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满8分.已知椭圆:的左、右焦点分别为、.Γ()222210x y a b a b+=>>1F 2F (1)以为圆心的圆经过椭圆的左焦点和上顶点B ,求椭圆的离心率;2F 1F Γ(2)已知,,设点P 是椭圆上一点,且位于x 轴的上方,若是等腰三5a =4b =Γ12PF F △角形,求点P 的坐标;(3)已知,且倾斜角为的直线与椭圆在x 轴上方的交点记作,2a =b =2F 2πΓA 若动直线l 也过点且与椭圆交于M 、N 两点(均不同于A ),是否存在定直线:2F Γ0l ,使得动直线l 与的交点C 满足直线AM 、AC 、AN 的斜率总是成等差数列?若存0x x =0l 在,求常数的值.若不存在,请说明理由.0x 21.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满8分.设函数的定义域为D ,对于区间,当且仅当函数满足以()y f x =[](),I a b I D =⊆()y f x =下①②两个性质中的任意一个时,则称区间I 是的一个“美好区间”.()y f x =性质①:对于任意,都有;性质②:对于任意,都有.0x I ∈()0f x I ∈0x I ∈()0f x I ∉(1)已知,.分别判断区间和区间是否为函数()22f x x x =-+x R ∈[]0,2[]1,3的“美好区间”,并说明理由;()y f x =(2)已知且,若区间是函数的一个()()3213123f x x x x x R =--+∈0m >[]0,m ()y f x =“美好区间”,求实数m 的取值范围;(3)已知函数的定义域为R ,其图像是一条连续不断的曲线,且对于任意,()y f x =a b <都有.求证:函数存在“美好区间”,且存在,使得不()()f a f b b a ->-()y f x =0x R ∈0x 属于函数的任意一个“美好区间”.()y f x =答案一、填空题1.;2.;;4.;5.;6.;7.; 8.; {}1,2,3,601-012356π169.; 10.; 11.45166616-11.日常生活中,较多产品的包装盒呈正四棱柱状,烘焙店的包装盒如图所示,正四棱柱的底面ABCD 是正方形,且,.1111ABCD A B C D -3AB =11AA =店员认为在彩绳扎紧的情况下,按照图A 中的方向捆1111H E E F F G G H H --------扎包装盒会比按照图B 中的十字捆扎法更节省彩绳(不考虑打结处的用绳量和彩绳的宽度).则图A 比图B 最多节省的彩绳长度为______.【正确答案】16-对于图(A ),沿彩绳展开正四棱柱,则彩绳长度的最小值为对于图(B ),彩绳长度的最小值为16,因为A 比图B 最多节省的彩绳长度.16>16-12.正实数x ,y 满足:存在和,使得,,[]0,a x ∈[]0,b y ∈222a y +=221b x +=,则的最大值为______.1axby +=x y +构造,(,),(,)OP a y OQ x b ==, ,|||1,1OP OQ OP OQ ==⋅= 4POQ π∠=问题转化为一个等腰直角三角形绕着点转动,OPQ O 因为,所以点位于点的左上方,[0,],[0,]a x b y ∈∈P Q 设,则,QOM θ∠=4POM πθ∠=+所以,||cos ,||4xQN y PM πθθ⎛⎫====+ ⎪⎝⎭所以cos sin 2cos 4x y πθθθθ⎛⎫+=+=+ ⎪⎝⎭)θϕ=+≤所以x y +二、选择题13.B14.D15.C16.D14.D15.C16.D 15.C 16.D15.在一个有限样本空间中,假设,且A 与B 相互独立,A 与C ()()()13P A P B P C ===互斥,以下说法中,正确的个数是( )① ② ③若,则B 与C 互斥()23P A B = ()()2P C A P A C =()()12P C B P C B +=A .0B .1C .2D .3【正确答案】C 对于①, 且与相互独立, 则()()1,3P A P B ==A B ,①错误;()()()()13P A B P A P B P AB ⋃=+-=11153339+-⨯=对于②,()()()(),|3P CAP C A PCA P A ==()()()()()3|1213P CAP CA P A C P CA P C ===-故, 故②正确;()()2|P CA P A C =对于③,则,()()1,||2P C B P C B +=()()()|P CB P C B P B =()()()|,P C B P C B P B=故, 即 (1),()()112233P C B P CB +=()()631P CB P C B +=若互斥,则, 满足(1)式,BC ()()()10,3P BC P C B P C ===故, 即与互斥, 故③正确.故选:C.()0P BC =B C 16.设无穷正数数列,如果对任意的正整数n ,都存在唯一的正整数m ,使得{}n a ,那么称为内和数列,并令,称为的伴随数123m n a a a a a =++++ {}n a n b m ={}n b {}n a 列,则( )A .若为等差数列,则为内和数列{}n a {}n aB .若为等比数列,则为内和数列{}n a {}n a C .若内和数列的伴随数列为严格增数列,则为严格增数列{}n a {}n b {}n a D .若内和数列为严格增数列,则其伴随数列为严格增数列{}n a {}n b 【正确答案】D对于选项: 例如, 可知即为等差数列, 也为等比数列,AB 1n a ={}n a 则, 但不存在, 使得所以不为内和数列, 故错误;122a a +=*m N ∈2,m a ={}n a AB 对于选项C: 例如:数列:显然是所有正整数的排列, 可知为内和数列, 2,1,3,4,5,⋯{}n a {}n a 且的伴随数列为递增数列,但不是递增数列, 故C 错误.{}n a {}n a 对于选项D: 因为,对任意, 可知存在,0n a >*1212,,n n N n n ∈<*12,m m N ∈使得,,11123m n a a a a a =+++⋯+22123m n a a a a a =+++⋯+则即,21112120m m n n n a a a a a ++-=++⋯+>21m m a a >所以其伴随数列为递增数列, 故D 正确;故选D.{}n b三.解答题17.(1)(2),,36k k k Z ππ⎡⎤π-π+∈⎢⎥⎣⎦32-18.(1)证明略(2)BEED=19.(1)否(2),分布列如下()6527E X =20.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满8分.已知椭圆:的左、右焦点分别为、.Γ()222210x y a b a b+=>>1F 2F (1)以为圆心的圆经过椭圆的左焦点和上顶点B ,求椭圆的离心率;2F 1F Γ(2)已知,,设点P 是椭圆上一点,且位于x 轴的上方,若是等腰三5a =4b =Γ12PF F △角形,求点P 的坐标;(3)已知,且倾斜角为的直线与椭圆在x 轴上方的交点记作,2a =b =2F 2πΓA 若动直线l 也过点且与椭圆交于M 、N 两点(均不同于A ),是否存在定直线:2F Γ0l ,使得动直线l 与的交点C 满足直线AM 、AC 、AN 的斜率总是成等差数列?若存0x x =0l 在,求常数的值.若不存在,请说明理由.0x【正确答案】(1)(2)(3)存在,12e =()504,3,⎛± ⎝04x =(1)由题意可得:,.2c a ==12c e a ∴==(2),椭圆的方程为:5,4a b ==Γ2212516x y += 3.c ==点是椭圆上一点, 且位于轴的上方,若, 则.P Γx 12PF PF =()04P ,若, 设,212F F PF =()P x,y,,226,12516x y =+=()()55,04x ,y ,∈-∈联立解得,.53x =-53y P ⎛=∴- ⎝若, 设, 根据对称性可得.211F F PF =()P x,y 53P ⎛ ⎝综上可得点的坐标为.P ()504,3,⎛± ⎝(3), 椭圆的方程为,2,a b ==Γ221,143x y c +===()210,F ,∴把代入椭圆方程可得, 解得.1x =211,043y y +=>33,122y A ,⎛⎫=∴ ⎪⎝⎭设直线的方程为:,, 设,l ()(01,y k x C x =-())01k x -()()1122,M x ,y N x ,y 联立, 化为()221122y k x x y ⎧=-⎪⎨+=⎪⎩()22223484120,k x k x k +-+-=0,Δ>假设存在定直线, 使得动直线与的交点221212228412,,3434k k x x x x k k -∴+==++00:l x x =l 0l 满足直线的斜率总是成等差数列,则,C ,,AM AC AN 2AC AM AN k k k =+,,()01201233312222111k x y y x x x ----∴⨯=+---()()11221,1y k x y k x =-=-代入化为:而012211111x x x =+---()12121212211111x x x x x x x x +-+=---++, 解得.22220228222234313412813434k k x k k k k -+==∴=---+++04x =因此存在定直线, 使得动直线与的交点满足直线的斜率总是成0:4l x =l 0l C ,,AM AC AN 等差数列.21.(本题满分18分)第1小题满分4分,第2小题满分6分,第3小题满8分.设函数的定义域为D ,对于区间,当且仅当函数满足以()y f x =[](),I a b I D =⊆()y f x =下①②两个性质中的任意一个时,则称区间I 是的一个“美好区间”.()y f x =性质①:对于任意,都有;性质②:对于任意,都有.0x I ∈()0f x I ∈0x I ∈()0f x I ∉(1)已知,.分别判断区间和区间是否为函数()22f x x x =-+x R ∈[]0,2[]1,3的“美好区间”,并说明理由;()y f x =(2)已知且,若区间是函数的一个()()3213123f x x x x x R =--+∈0m >[]0,m ()y f x =“美好区间”,求实数m 的取值范围;(3)已知函数的定义域为R ,其图像是一条连续不断的曲线,且对于任意,()y f x =a b <都有.求证:函数存在“美好区间”,且存在,使得不()()f a f b b a ->-()y f x =0x R ∈0x 属于函数的任意一个“美好区间”.()y f x =【正确答案】(1)是(2) (3)见解析03m <≤(1) 函数,当时,,3y x =-[1,2]x ∈[1,2]y ∈因此区间是函数的一个“美好区间”.[1,2]3y x =-(2),2()23(1)(3)f x x x x x '=--=+-由得,所以或()f m m =2(3)(12)0m m --=3m =m =当时,在上严格减,所以,满足题意;03m <≤()f x [0,]m ()[(),12]f x f m ∈当时,,所以且,无解;3m >min ()(3)3f x f ==12m ≥()f m m ≤所以,;03m <≤(3)证明:对于任意区间,[],()I a b a b =< 记由已知得在上单调递减, 故(){}|,S f x x I =∈()f x I ()(),S f b ,f a ⎡⎤=⎣⎦因为, 即的长度大于的长度, 故不满足性质①,()()f a f b b a ->-S I 所以若为的 “美好区间”, 必满足性质②), I ()f x 这只需,即只需或,S I ⋂=∅()f a a <()f b b >由显然不恒成立, 所以存在常数使得,()f x x =c ()f c c ≠如, 取,区间满足性质②;()f c c <a c =[],()I a b a b =<综上,函数一定存在 “美好区间”;()f x 记, 则图象连续不断, 下证明有零点:()()g x f x x =-()g x ()g x因为在上是减函数,所以在上是减函数, 记,()f x R ()g x R ()0f t =若, 则是的零点,0t =00x =()g x 若, 则, 即,,0t >()()0f t f t <=()00g >()0g t <由零点存在性定理, 可知存在, 使得,()00x ,t ∈()00g x =若, 则, 即,,0t <()()0f t f t >=()0g t >()00g <由零点存在性定理, 可知存在, 使得,()00x t ,∈()00g x =综上,有零点, 即,()g x 0x ()00f x x =因为的所有 “美好区间”都满足性质②, 故,(否则, 与性质②()f x I 0x I ∉()00f x x I =∈不符),即不属于的任意一个“美好区间”, 证毕.0x ()f x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市各区县2015届高三上学期期末考试数学理试题分类汇编
函数
一、填空题
1、(崇明县2015
届高三上期末)函数2()f x =
的定义域是
2、(奉贤区2015届高三上期末)定义函数34812
2
()1()2
22
x x f x x f x ⎧--≤≤⎪⎪=⎨
⎪>⎪⎩,则函数()()6
g x xf x =-在区间[]8,1内的所有零点的和为
3、(黄浦区2015
届高三上期末)函数()f x =的定义域是 4、(黄浦区2015届高三上期末)若函数2
13()2x ax a
f x ++-=是定义域为R 的偶函数,则函数()f x 的
单调递减区间是
5、(嘉定区2015届高三上期末)函数x
x y -+
-=21
)1lg(的定义域是____________ 6、(嘉定区2015届高三上期末)已知24=a
,a x =lg ,则=x ___________ 7、(静安区2015届高三上期末)已知11)(+-=x x x f ,4
5
)2(=x f (其中)0>x ,则=x 8、(浦东区2015届高三上期末)已知1
()y f x -=是函数3()f x x a =+的反函数,且1(2)1f -=,
则实数a =
9、(浦东区2015届高三上期末)定义在R 上的偶函数()y f x =,在),0[+∞上单调递增,则不等式)3()12(f x f <-的解是
10、(普陀区2015届高三上期末)方程1)7lg(lg =-+x x 的解集为
11、(普陀区2015届高三上期末)函数22)(2+-=x x x f (0≤x )的反函数是 12、(青浦区2015届高三上期末)数()y f x =的反函数为()1
y f x -=,如果函数()y f x =的图
像过点()2,2-,那么函数()1
21y f
x -=-+的图像一定过点 .
13、(青浦区2015届高三上期末)已知函数()f x 对任意的x ∈R 满足()()f x f x -=,且当0x ≥时,
2()1f x x ax =-+.若()f x 有4个零点,则实数a 的取值范围是 .
14、(松江区2015届高三上期末)已知()log (0,1)a f x x a a =>≠,且2)1(1
=--f ,则=-)(1x f
▲
15、(松江区2015届高三上期末)设)(x f 是定义在R 上的偶函数,对任意R x ∈,都有
)
2()2(+=-x f x f ,且当
[]
0,2-∈x 时,
1
21)(-⎪⎭
⎫ ⎝⎛=x
x f .若函数
)1)(2(log )()(>+-=a x x f x g a 在区间(]6,2-恰有3个不同的零点,则a 的取值范围是 ▲
16、(徐汇区2015届高三上期末)函数2
()2(0)f x x x =-<的反函数1
()f x -=
17、(杨浦区2015届高三上期末)函数()()012<-=x x x f 的反函数()=-x f
1
18、(闸北区2015届高三上期末)若)(x f 为R 上的奇函数,当0<x 时,)2(log )(2x x f -=,则
=+)2()0(f f
19、(长宁区2015届高三上期末)已知函数()1log a f x x =+,1()y f x -=是函数()y f x =的反函数,若1()y f x -=的图象过点(2,4),则a 的值为._________
二、选择题
1、(宝山区2015届高三上期末)14.已知函数y x b α
=+,(0,)x ∈+∞是增函数,则 ( )
(A )0α>,b 是任意实数 (B )0α<,b 是任意实数 (C )0b >,α是任意实数 (D )0b <,α是任意实数
2、(宝山区2015届高三上期末)若log 3log 30a b <<,则( )
()01()01()1()1A a b B b a C a b D b a <<<<<<>>>>
3、(奉贤区2015届高三上期末)与函数y x =有相同图像的一个函数是 ( )
A
.y =
B .log (01)a x y a a a =>≠且
C .2x y x
= D .log (01)x
a y a a a =>≠且
4、(嘉定区2015届高三上期末)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点, 角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线, 垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则
y =()f x 在],0[π上的图像大致为………………………………………………………( )
O A
M
P
5、(静安区2015届高三上期末)在下列幂函数中,是偶函数且在),0(+∞上是增函数的是 ( ) A .2-=x y ; B .2
1-=x
y ; C .3
1x y =
; D .3
2x y =
6、(浦东区2015届高三上期末)函数1
, 0
()=2ln , >0
x x f x x
x x ⎧-<⎪⎨⎪-+⎩的零点个数为 ( ) ()A 0 ()B 1 ()C 2 ()D 3
7、(长宁区2015届高三上期末)函数(),01,10x b
y a
a b +=<<-<<的图象为 ( )
A B C D
参考答案
一、填空题 1、[)1,0 2、2
21
3、(1,)
4、(,0]
5、)2,1(
6、10
7、22
1log 2
+=x
8、1 9、(1,2)- 10、}5,2{ 11、)2(11)(1
≥--=-x x x f
12、()1,3; 13.()2,+∞; 14、x
⎪⎭⎫
⎝⎛21
15、
(
)
2,43
16、2(2)x x -+>-
17、()11x x -+>- 18、-2 19、4
二、选择题
1、A
2、B
3、D
4、B
5、D
6、C
7、C。